
Citation: Zhang, Z.; Dong, Y.

Weighted Similarity and

Core-User-Core-Item Based

Recommendations. Entropy 2022, 24,

609. https://doi.org/10.3390/

e24050609

Academic Editor: Éloi Bossé

Received: 14 March 2022

Accepted: 24 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Weighted Similarity and Core-User-Core-Item
Based Recommendations
Zhuangzhuang Zhang 1 and Yunquan Dong 1,2,*

1 School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,
Nanjing 210044, China; zhuang.zhang@nuist.edu.cn

2 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
* Correspondence: yunquandong@nuist.edu.cn

Abstract: In traditional recommendation algorithms, the users and/or the items with the same rating
scores are equally treated. In real world, however, a user may prefer some items to other items and
some users are more loyal to a certain item than other users. In this paper, therefore, we propose a
weighted similarity measure by exploiting the difference in user-item relationships. In particular, we
refer to the most important item of a user as his core item and the most important user of an item as its
core user. We also propose a Core-User-Item Solver (CUIS) to calculate the core users and core items of
the system, as well as the weighting coefficients for each user and each item. We prove that the CUIS
algorithm converges to the optimal solution efficiently. Based on the weighted similarity measure and
the obtained results by CUIS, we also propose three effective recommenders. Through experiments
based on real-world data sets, we show that the proposed recommenders outperform corresponding
traditional-similarity based recommenders, verify that the proposed weighted similarity can improve
the accuracy of the similarity, and then improve the recommendation performance.

Keywords: weighted similarity; recommendation; core users; core items

1. Introduction

With the rapid development in Internet technology, there has been an explosive growth
in the amount of information on the Internet. For each single user, therefore, it is quite
difficult to find the information they are really interested in. To this end, many efforts
have been made to help users to identify those information they really need, such as the
information retrieval technology and the information filtering method. The most popular
tool for information retrieval is the search engine. Although they are widely available to
users, however, search engines fail to satisfy the individual demands and preferences of
each user. Therefore, various information filtering based recommendation systems, which
are designed to meet users’ special needs, have been widely investigated [1].

As one of the most effective recommendation methods, Collaborative Filtering (CF)
based recommenders make recommendations by learning user-item preference patterns
from a large amount of historical data [2,3]. In particular, CF can be implemented by
the memory-based (neighborhood-based) methods or the model-based methods. In the
neighborhood-based methods, we first find some of the most similar users (friends) for a
user, and then recommend some popular items among these friends to the user. We can also
find out those items similar to the preferable items of a user and recommend these items to
him. Since the performance of recommendations is largely determined by how accurately
similar users (or items) are found, the metric measuring the similarity among users (items)
is crucial. Among the widely used similarity measures such as the Cosine similarity, the
Pearson correlation coefficient, the Euclidean distance inverse, and the Jaccard similarity
coefficient [4], we note that the users and items are treated equally. That is, users (items)
with the same rating scores are used and processed with no difference. There have been
many works studying weighted similarity based schemes. However, most of the current

Entropy 2022, 24, 609. https://doi.org/10.3390/e24050609 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050609
https://doi.org/10.3390/e24050609
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24050609
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050609?type=check_update&version=2

Entropy 2022, 24, 609 2 of 28

weighting schemes [5] are humanly devised and computed by predefined functions. Thus,
it is unclear about what the optimization objectives those weighting schemes are trying to
achieve and whether they are reasonable. For example, the automatic weighting schemes
proposed in [6–8] assumed that the weighting coefficients of items are same for all users.
However, the weighting coefficients of items for different users should be different from
each other, since the tastes of the users are different. In addition, the weighting coefficients
of the users to items were rarely considered in the previous literatures. In everyday life,
however, we often observe that a certain user likes some items much more than others, and
some users are more fanatical to an item than others.

Example 1. We show a rating matrix with five movies and five users in Table 1. For each movie,
we summarize the rating scores made by the users as a row of the matrix. For each user, his rating
scores are all presented in the corresponding column. If a user has not watched and rated a certain
movie, then the corresponding element of the matrix is denoted by ∗.

First, it is clear that a user likes a set of movies differently if he has rated them differently. For
example, Joe likes Star Wars more than Frozen. Second, it is readily seen that Bob’s favorite movie is
Frozen and the most loyal user of Frozen is Bob. In this sense, Bob is the most recognizable user
for Frozen and reflects the main characteristics of users voting for it. Third, we observe that Ali
rated three of the movies with full scores. Thus, it is not clear which movie he likes best. Likewise,
three of the users rated Star Wars with full scores and it is difficult to tell which user likes the movie
the most. This is mainly because the precision of both the pre-defined system scores and the rating
capability of the users are very limited. That is, the rating scores are limited to integers between 1
and 5 while the users can only evaluate their preferences approximately and randomly.

For example, we assume that Ali is an adult college student. Ali likes Star Wars due to the
spectacle of the film and likes WALL·E since he is touched by the delicate emotional story. However,
his true favorite is Inception since he is a sci-fi fan. In addition, the elements like passion and
imagination are crucial to him. Although we cannot observe his preference to sci-fi and how he likes
the three movies differently from his 3 full scores, we do can obtain more information from the movie
he does not like. Based on the fact that he does not like the relatively childish ‘Frozen’, it would be
reasonable to deduce that he likes Inception more than the other two movies.

Therefore, it is important to investigate the differences of the users’ preferences for movies and
the importance of the movies to users in terms of two sets of optimized weighting coefficients. By
defining new similarity measures based on these weighting coefficients, we can also evaluate the
similarity among users and among movies more accurately.

Table 1. An example of rating matrix.

Joe John Ali Mike Bob

Star Wars 5 5 5 ∗ 3
WALL·E 4 ∗ 5 5 3
Inception 4 3 5 ∗ 2

The Lion King ∗ 3 ∗ 4 ∗
Frozen 2 3 2 4 5

In this paper, therefore, we further exploit the relations between the users and between
the items by considering the difference in the degrees of preference. In particular, we
propose a new metric of similarity, which is referred to as the weighted similarity, to
quantify the similarity between users and between items. Moreover, we propose a Core-
User-and-Item-Solver (CUIS) to find the core (most favorable) items of each user, the core
(most fanatical) user of each item, and the weighting coefficients for all the users and
items. Based on these information, we further propose three recommenders and verify
their effectiveness via real-world data sets.

The contributions of the paper are summarized as follows.

Entropy 2022, 24, 609 3 of 28

• We propose a weighted similarity measure to quantify the similarity between users
and between items, and to explore the difference in the degrees of importance of the
items (to users), as well as of the users (to items).

• We propose a CUIS algorithm to find the weighting coefficients of the items and users,
the core items of users, and the core users of items.

• Based on CUIS and the weighted similarity, we propose three effective recommenda-
tion methods. Through experiments based on real-world data sets, we also verify that
the proposed weighted similarity measure can improve the accuracy of the similarity
and improve the recommendation performance.

Table 2 provides a check list of the frequently used notions throughout the paper.

Table 2. Summary of notations.

R ∈ RM×N Rating matrix
η ∈ RM×N Importance degree matrix of items to users
ρ ∈ RM×N Importance degree matrix of users to items

Ui Set of users who like item i
Iu Set of items liked by user u
�(u) Core item of user u
�(i) Core user of item i
tuv Traditional non-weighted user similarity of users u and v
sij Traditional non-weighted item similarity of items i and j
t̂uv Weighted similarity of users u and v
ŝij Weighted similarity of items i and j
Su Core user selection scheme
Si Core item selection scheme

T̂u→i Total weighted user similarity centered at u for item i
Ŝi→u Total weighted item similarity centered at i for user u

ˆ̂Ti Total weighted user similarity centered at �(i) for item i
ˆ̂Su Total weighted item similarity centered at �(u) for user u
l Iteration rounds

ˆ̂T(l) ∈ RM The l-th each item-revenue
ˆ̂S(l) ∈ RN The l-th each user-revenue

d(l) ∈ RN+M The l-th system-revenue
V(η(0)) ∈ RN+M The total revenue of the system

k Number of clusters
K Number of recommended users or items
F Number of users or items neighbors

1.1. Related Work

The recommendation algorithm is the core of the recommendation systems, and its
performance determines whether the final recommendations are accurate or not. In general,
recommendation algorithms fall into four categories: content-based filtering (CBF), collabo-
rative filtering (CF), hybrid methods and deep learning methods. Content-based filtering
techniques try to learn a feature-based representation of the content of recommendable
items [9]. Specifically, these approaches aim to recommend items which are similar to that
the user liked in past or is looking at present [10]. Albatayneh et al. [11] presented a content-
based preference learning model called “Discriminate2Rec”, which discriminates between
items’ attributes based on their influence on user temporal preferences. The advantages of
content-based recommender systems include simplicity, transparency, independence, and
immune to the cold start problem. Content-based recommendation algorithms also have
many drawbacks, including serendipity, heterogeneity of information, and low accuracy.
The CF approaches include memory-based (neighborhood-based) CF and model-based
CF. Memory-based CF can be classified into item-based CF and user-based CF, in which

Entropy 2022, 24, 609 4 of 28

item-based CF methods [12] recommend items similar to those items loved by the same
user, and user-based CF methods [13] suggest items to target users that their neighbors
like. Model-based CF uses data mining techniques or machine learning algorithms to
learn a model, which is then used to make rating predictions [14]. Compared with CBF
methods, memory-based CF has some merits, including sharing the experience of others,
avoiding the incompleteness and imprecision of content analysis, and providing serendipi-
tous recommendations. Moreover, memory-based CF methods are also easy to implement,
relatively simple, and are able to present intuitive explanations of the recommendations.
The demerits of memory-based CF methods include sparsity, scalability, and cold start
problems. Compared with memory-based CF, which only uses one dimension to express
data (either users or items), a model-based CF is constructed from two dimensions of users
and items. Therefore, model-based methods have stronger expression ability in describing
all aspects of data and output better predictions. Model-based CF makes use of all scoring
information, so it is more effective for the overall evaluation. Neighborhood-based CF only
considers a small part of the main key ratings, so it is more effective for evaluating local-
ization relationships. These methods when used individually have many complementary
merits and demerits. This fact has provided a stimulus for research in hybrid recommender
systems, which combine various techniques to improve performance. Various hybrid
methods have been proposed, including the hybridization techniques (weighted, mixed,
switching, feature combination, feature augmentation, and meta-level) [15]. Hybrid meth-
ods can deal with the problems of cold start and sparse data, improve the robustness and
scalability of the system, and improve the accuracy of recommendation. However, the
disadvantages are also obvious. That is, the integration of multiple algorithms inevitably
increases the overall algorithm complexity and occupies a lot of memory and comput-
ing resources. Compared with the above mentioned traditional methods, deep learning
methods automatically learns features from multi-source heterogeneous data and the deep
interactive relationship between learning features. Deep learning models commonly used
in the recommendation system include: multi-layer perceptron [16], autoencoder [17],
convolutional neural networks [18], recurrent neural networks [19], generative adversarial
networks [20,21], etc. Although deep learning recommendation methods can generate a
very good recommendation effect, it suffers from interpretability difficulties and extensive
hyper-parameters adjustment.

Despite the long history of the neighborhood based CF methods, they are still widely
used in both research and industry (such as in research management areas [22] and Amazon.
com (accessed at 22 April 2022) [23]) because of its advantages of easy implementation,
good interpretability and intuitive simplicity. For this kind of recommendation algorithms,
one of the key problems is how to measure the similarity among users and items [24].
Therefore, improving the accuracy of similarity plays a decisive role in improving the
recommendation performance.

There have been many works studying the similarity among users and items. Re-
searchers first used the distance between two vectors to calculate the similarity of items or
users. Among them, the Euclidean distance [25] is the most commonly used distance mea-
sure, which is measured by the absolute distance of each point in the two multi-dimensional
vectors. Euclidean distance needs to ensure that the indicators of each dimension are at
the same scale level. For two vectors with different scales, it is necessary to standardize
the data first and then use Euclidean distance to derive Mahalanobis distance [26]. These
distance measurement methods are more used in the research that needs to reflect the
difference from the individual value size of each dimension. Therefore, researchers began
to use correlation based methods to measure the similarity in neighborhood-based CF
methods. Singh et al. [27] used the cosine similarity to measure the similarity between
two vectors. However, this method did not consider the difference between the mean and
variance of each item’s ratings. The authors used Pearson correlation coefficients (PCC) [28]
to eliminate this effect, which centralized item ratings by subtracting the average of the
elements from all dimensions in the two vectors. Musa et al. [29] also used adjusted cosine

Amazon.com
Amazon.com

Entropy 2022, 24, 609 5 of 28

similarity to improve similarity accuracy by considering the average value of centralized
user ratings, and found that in the case of item-based CF recommendations, this similarity
performs better than PCC. In addition, another correlation-based similarity is Spearman
rank correlation coefficients (SRCC) [30]. PCC uses the score value, while SRCC uses the
hierarchical order of these scores, that is, the similarity value is independent of the specific
value of each element of the two vectors, but only related to the size relationship between
its values. Although SRCC avoids the problem that the score must be standardized, when
there are many score values, a large number of grade values will be generated. SRCC needs
to calculate these grades, so it will incur more calculation cost. Some Jaccard similarity and
its variants [31,32] are mainly used in binary implicit feedback recommendation systems. In
Ref. [7], the authors investigated the performance of several similarity measures, including
PCC, SRCC, the vector “cosine” measure, the entropy-based uncertainty measure, and the
mean-squared difference. It is observed that PCC and SRCC can exploit the correlation
among users and items better than other measures. Howe et al. [33] found that the
calculation accuracy of similarity is also related to the data itself through experimental
analysis. The literature [4] summarized common similarity based on neighborhood rec-
ommendation and analysed their advantages and disadvantages. However, all of these
similarity measures treat the items and users with the same scores equally. Thus, some
weighting schemes were investigated, such as inverse user frequency based method [6],
entropy and mutual information based method [5], the variance weighting scheme [7] and
the automatic weighting scheme [8]. In Ref. [6], the authors proposed an inverse user
frequency (IUF) for weighting different items. More specifically, the IUF weight for an item
i is defined as wIUF

i = log(N/Ni) where N is the number of training users and Ni is the
number of training users that have rated item i. The IUF weights favor the items that have
been rated by a few users. However, the items rated by fewer users may not necessarily be
useful in telling users of different tastes. The results in [5] showed that the IUF weighting
has degraded the performance of the PCC method. The authors [7] considered a variance
based weighting scheme. It is based on the intuition that an item with a larger rating
variance is more valuable in discerning the true interests of the users than an item with
a smaller variance. Specifically, the weight for item i is computed as wVW

i = vari−varmin
varmax

where vari =
∑N

u=1 (rui−ri)
2

N−1 , and varmin and varmax represent the minimum and maximum
variances over all items. However, this is not necessarily true because a large variance in
the ratings of an item can also arise from the difficulty in rating such an item by many users.
As shown in [7], the variance weighting scheme leaded to slightly worse performance than
those schemes without weighting. In [8], the authors proposed a probabilistic model for
measuring the similarity between different users that can incorporate weights for different
items and formulated the problem of finding appropriate weights for each item into an
optimization problem to solve. However, the same set of weight coefficients (for items)
are used for all users, which may diverge from the true tastes of the users. It is noted that,
these weighting schemes only considered a set of weights of items for the system, ignoring
the differences of different users’ preferences for items, thus failed to find the personalized
item-weighting coefficients for different users. In addition, these schemes did not consider
the users’ weights (to items) to design the weighted similarity. In this paper, therefore, we
further improve the similarity between the users and between the items by considering the
difference in the degree of preference of different users for the items and the importance of
different items to the users.

1.2. Organizations

The rest of the paper is organized as follows. In Section 2, we present the definition
of the weighted similarity between users and between items, and illustrate how the CUIS
algorithm works. In this section, we also prove the optimality and the convergence of CUIS.
In Section 3, we propose three recommenders by combining the traditional recommenders
and the obtained results on core users/items and weighted coefficients. We verify the

Entropy 2022, 24, 609 6 of 28

effectiveness of CUIS and proposed recommenders in Section 4 and conclude the paper in
Section 5.

2. The CUIS Algorithm
2.1. Weighting Coefficients and Weighted Similarity

In order to improve the running speed of the algorithm and simplify the analytical
model, we denote the user-item rating matrix of the system as an M× N matrix R with
binary entries riu ∈ {1, 0}. Specifically, the i-th row includes the ratings of item i made by
all the users and the u-th column includes the ratings of user u, for all the items. Moreover,
we have riu = 1 if user u likes (with a relatively high rating score) item i and riu = 0 if user
u dislikes or has not observed item i. In the i-th row, we denote the set of users who like
item i as Ui; in the u-th column, we denote the set of items liked by user u as Iu, as shown
in Figure 1. In most cases, the matrix R is sparse.

1 N

1

M

usersu

R=

v

i

j

1

1

1

111

Iu

Ui

1

i

u i
u U

r
®

Î

=å

()u()u

()ii

ˆ
uv
t

ˆ
ij
s

it
em
s

it
em
s

1

u

i u
i I

h
®

Î

=å

Figure 1. The R matrix and weighting coefficients η and ρ.

Although all users in Ui like item i, we note that not all them like i equally. Likewise,
we know that the items in Iu are not equally important to user u either. In this paper,
therefore, we shall propose a mathematical recommendation model and the corresponding
algorithm to find out the most important item for each user, as well as the most loyal and
fanatical user for each item, which are referred to, respectively, as the core item �(u) of
user u and the core user �(i) of item i, as shown in Figure 1.

To this end, we shall use an M× N weighting matrix η to measure the importance
of the items to the users, in which ηi→u = {η}iu, 0 ≤ ηi→u ≤ 1 and ∑i∈Iu ηi→u = 1. By its
definition, it is clear that the larger ηi→u is, the more important (to user u) item i would be.
In particular, we have

ηi→u

{
> 0, if i ∈ Iu (equivalently riu = 1),

= 0, if i /∈ Iu (equivalently riu = 0).
(1)

We also present how the users like the items by an M × N weighting matrix ρ, in
which ρu→i = {ρ}iu, 0 ≤ ρu→i ≤ 1, ∑u∈Ui

ρu→i = 1, ρu→i > 0 if u ∈ Ui and ρu→i = 0
otherwise.

Note that for a given pair of users u and v, the traditional non-weighted user similarity
tuv is defined as the number of items that they like in common. In addition, the traditional

Entropy 2022, 24, 609 7 of 28

non-weighted item similarity sij between items i and j is defined as the number of users
who like them in common. That is,

tuv =
M

∑
i=1

riuriv and sij =
N

∑
u=1

riurju. (2)

To consider the difference in users and items, we shall define the weighted similarity
between users and between items as follows.

Definition 1. The weighted similarity t̂uv between users u and v is defined as

t̂uv =
M

∑
i=1

riuriv
√

ηi→u
√

ηi→v. (3)

That is, the weighted similarity not only depends on how many common items the
two users have, but also how important to them these common items are. Since we have
ηi→u = 0 if riu = 0 (i.e., i /∈ Iu, cf. (1)), we further have

t̂uv = ∑
i∈Iu∩Iv

√
ηi→uηi→v. (4)

Definition 2. The weighted similarity between items i and j is defined as

ŝij =
N

∑
u=1

riurju
√

ρu→i
√

ρu→j. (5)

Thus, the weighted similarity between items i and j is large if many users like both of
them and like them very much. Further, we have ŝij = ∑u∈Ui∩Uj

√
ρu→iρu→j since we have

ρu→i = 0 if riu = 0 (i.e., u /∈ Ui).

2.2. Recommendation Model and Problem Formulation

Based on the proposed weighted similarities, we shall find out the two matrices of
weighting coefficients, the core users and core items of the system. After that, we shall
recommend items to users similar to their core users and recommend similar items to the
core item to corresponding users.

We start from an initial weighting matrix η(0) = {η(0)
i→u}M×N . Based on these weighting

coefficients, the weighted similarity t̂(0)uv between any pair of users u and v can be calculated
by (4).

For an item i, it is noted that Ui is the set of users who like the item i, and thus is a
small group of similar users. When we sum the weighted similarities among them together,
the total similarity would be larger if the user group Ui is more compact (similar). Thus, we
are interested in searching for such a user �(0)(i) that the sum of the weighted similarity
between �(0)(i) and other users in Ui can be maximized. In doing so, �(0)(i) would be the
most representative user in Ui and the most important user for item i, and thus is referred
to as the core user of item i.

We denote the core user selection scheme as Su and denote the total weighted similarity
ˆ̂T(0)
i centered at �(0)(i) as

ˆ̂T(0)
i = ∑

v∈Ui

t̂�(0)(i),v (6)

which characterizes how close the users are gathered around item i.
Likewise, we denote the core item selection scheme as Si and the core item (i.e., the

most representative item liked by a user) of user u as �(0)(u). The total weighted similarity

Entropy 2022, 24, 609 8 of 28

of u centered at its core item �(0)(u) can be expressed as ˆ̂S(0)
u = ∑i∈Iu ŝ�(0)(u),i. Thus, ˆ̂S(0)

u

represents how compact the item set Iu is.
In this paper, we shall propose an iterative algorithm to solve the core users, the core

items, and the weighting matrices η and ρ. In the l-th iteration, we denote each user-revenue

by ˆ̂S(l) =
[

ˆ̂S(l)
1 , ˆ̂S(l)

2 , · · · , ˆ̂S(l)
N

]T
, denote each item-revenue by ˆ̂T(l) =

[
ˆ̂T(l)
1 , ˆ̂T(l)

2 , · · · , ˆ̂T(l)
M

]T
,

and denote the l-th system-revenue by d(l) = [(ˆ̂S(l))T, (ˆ̂T(l))T]T. In an L-iteration running
of the algorithm, we define the total revenue V(η(0)) of the system as

V(η(0)) =
L

∑
l=1

αL−ld(l), (7)

in which the discount factor α→ 0 is a small and positive number. The rationale behind the
discount factor is that the revenues obtained in the past are less important than revenues
obtained at present.

It is clear that as α approaches zero, the weighted revenues of the first L− 1 rounds
approach zero. Since we have 00 = 1, the total revenue V(η(0)) degrades to the revenue of
the L-th iteration. Note that the elements ˆ̂Su and ˆ̂Ti in V(η(0)) are the sums of weighted
similarities among users and items. Thus, ˆ̂S(l)

u and ˆ̂T(l)
i would be maximized when the

correct group centers are found, i.e., the most representative items and users are found.
Next, we shall then solve the following maximization problem

max
Su,Si

V(η(0)) (8)

by designing the proper core user selection scheme Su and core item selection scheme Si.

2.3. Algorithm Initialization

We propose an iterative algorithm CUIS to solve problem (8), as shown in Algorithm 1.
With a certain initial weighting matrix η(0), we shall find the core users, the weighting
matrix ρ(l), the core items, and a new weighting matrix η(l) successively and iteratively.

Algorithm 1 The CUIS Algorithm

1: Input: the rating matrix R, tolerable iterative error ε
2: Output: ρ: weighting matrix of users’ importance to items

η: weighting matrix of items’ importance to users
�(u): vector of core item of each user
�(i): vector of core user of each item

3: Initialize: l = 0, ∆ = ∞
Calculate �(0)(i) with η

(0)
i→u by Equation (11)

4: While: ∆ > ε, do
5: Calculate ρ(l) and �(l)(u) by Equations (12) and (15)
6: Calculate η(l) and �(l)(i) by Equations (17) and (20)
7: Calculate ∆ =

∥∥∥η(l+1) − η(l)
∥∥∥

∞
8: l = l + 1
9: End While

We begin with an initial weighting matrix η(0) in which

η
(0)
i→u =

1
|Iu|

(9)

for each 1 ≤ u ≤ N and i ∈ Iu. Note that |Iu| is the number of items in Iu, i.e., the number
of items user u likes. In a practical system, the users interact with items differently. For
example, a user may watch some movies for many times and watch some movies only by

Entropy 2022, 24, 609 9 of 28

some pieces. We can find a better initial weighting matrix if all these information can be
exploited. In this paper, we initialize the weighting coefficients η(0) evenly for simplicity. It
is also shown in Section 2.5 that the CUIS converges to the optimal solution regardless of
the initial point.

According to (4), we then calculate the weighted similarity t̂(0)uv between each pair of
users u, v ∈ Ui for item i. For each u ∈ Ui, the total weighted similarity centered at u is

T̂(0)
u→i = ∑

v∈Ui

t̂(0)uv = ∑
v∈Ui

∑
j∈Iu∩Iv

√
η
(0)
j→uη

(0)
j→v. (10)

In particular, we use such a core user selection scheme Su that the core user of item i is
chosen as the user satisfies

�(0)(i) = arg max
u∈Ui

T̂(0)
u→i. (11)

As it will be proved in Section 2.5, this chosen core user selection scheme guarantees
that the total revenue of the system would be maximized. Furthermore, we denote the
maximum total weighted similarity achieved by item i as ˆ̂T(0)

i = maxu∈Ui T̂(0)
u→i = T̂(0)

�(0)(i)→i
,

i.e., the total weighted similarity centered at �(0)(i).

2.4. Update Process

Each iteration of CUIS consists of the following four steps: updating ρ(l), updating
the core item for each user, updating η(l), and updating the core user for each item.

2.4.1. Updating ρ
(l)
u→i

For each item i, the weighting coefficient ρ
(l)
u→i, i.e., the importance of a user u ∈ Ui

to item i, is evaluated by the normalized weighted similarity t̂(l−1)
u,�(l−1)(i)

with the core user

�(l−1)(i). That is,

ρ
(l)
u→i =


t̂(l−1)
u,�(l−1)(i)

∑
v∈Ui

t̂(l−1)
v,�(l−1)(i)

, u ∈ Ui

0, u /∈ Ui.

(12)

We can also present ρ
(l)
u→i in a more concise form as ρ

(l)
u→i = t̂(l−1)

u,�(l−1)(i)
/ ˆ̂T(l−1)

i . Moreover, it

is seen that ∑u∈Ui
ρ
(l)
u→i = 1 is satisfied naturally.

2.4.2. Updating Core Items

For each user u and each pair of items i, j ∈ Iu, we evaluate the weighted similarity
between the two items as (cf. (5))

ŝ(l)ij = ∑
v∈Ui∩Uj

√
ρ
(l)
v→iρ

(l)
v→j. (13)

Centered at item i, the total weighted similarity Ŝ(l)
i→u, i.e., the contribution (to user u)

achieved by the item i is

Ŝ(l)
i→u = ∑

j∈Iu

ŝ(l)ij = ∑
j∈Iu

∑
v∈Ui∩Uj

√
ρ
(l)
v→iρ

(l)
v→j. (14)

Entropy 2022, 24, 609 10 of 28

It is clear that the larger Ŝ(l)
i→u is, the more important to user u and the more represen-

tative the item i would be. Thus, we use such a core item selection scheme Si that the item
with the largest Ŝ(l)

i→u is chosen. That is, the core item �(l)(u) of the user u is chosen as

�(l)(u) = arg max
i∈Iu

Ŝ(l)
i→u. (15)

We denote the maximum total weighted similarity achieved by user u as

ˆ̂S(l)
u = max

i∈Iu
Ŝ(l)

i→u = Ŝ(l)
�(l)(u)→u

, (16)

i.e., the total weighted similarity centered at �(l)(u).

2.4.3. Updating η
(l)
i→u

For each user, we then quantify the importance of each of his items by the normalized
weighted similarities.

η
(l)
i→u =


ŝ(l)

i,�(l)(u)

∑
j∈Iu

ŝ(l)
j,�(l)(u)

, i ∈ Iu

0, i /∈ Iu.

(17)

It is clear that ∑i∈Iu η
(l)
i→u = 1 and the closer to �(l)(u) an item is, the more important

to u it would be. Moreover, we have η
(l)
i→u = ŝ(l)

i,�(l)(u)
/ ˆ̂S(l)

u .

2.4.4. Updating Core Users

Based on the updated weighting coefficients η
(l)
i→u, we shall re-evaluate the weighted

similarity between each pair of users u, v ∈ Ui, for each item i. In doing so, we could see
how similar to (or how far from) each other the users are, so that the most representative
(core) user of an item could be updated. Specifically, for a certain item i, the weighted
similarity between users u, v ∈ Ui is given by (cf. (4))

t̂(l)uv = ∑
i∈Iu∩Iv

√
η
(l)
i→uη

(l)
i→v. (18)

Centered at user u, the total weighted similarity T̂(l)
u→i, i.e., its total contribution (to

item i) as a center is

T̂(l)
u→i = ∑

v∈Ui

t̂(l)uv = ∑
v∈Ui

∑
j∈Iu∩Iv

√
η
(l)
j→uη

(l)
j→v. (19)

Afterwards, we use such a core user selection scheme Su that the user with the largest
T̂(l)

u→i is chosen. That is,

�(l)(i) = arg max
u∈Ui

T̂(l)
u→i. (20)

In particular, we denote ˆ̂T(l)
i = maxu∈Ui T̂(l)

u→i = T̂(l)
�(l)(i)→i

.

For the proposed CUIS algorithm (cf. Algorithm 1), variables ρ
(l)
u→i, �

(l)(u), η
(l)
i→u,

and �(l)(i) will be updated sequentially and iteratively. In the following, we present an
example of how the algorithm operates. More importantly, we shall prove that the used core

Entropy 2022, 24, 609 11 of 28

user and core item selection schemes are optimal, and the CUIS algorithm is guaranteed to
be convergent.

Example 2. We consider the example shown Table 1 again. By mapping the scores with 4 points
and 5 points into 1 and map other ratings to 0, we have the following binary rating matrix.

R =


1 1 1 0 0
1 0 1 1 0
1 0 1 0 0
0 0 0 1 0
0 0 0 1 1

. (21)

In the simulation, we observe that CUIS has run for six iterations before it converges. For
notational simplicity, we replace the names of the movies and the users with um and in. The final
weighting matrices η and ρ are shown in Table 3, with the core item �(u) of each user, core user
�(i) of each item and the maximum total weighted similarities given in Table 4.

First, it is observed that item i4 is liked only by user u4 while user u5 likes only one item, i.e., i5.
Thus, it is no doubt that the core user of i4 is u4 and the core item of u5 is i5, which is in accordance
with Table 4. Second, although item i1 is liked by u1, u2, and u3, user u2 is more important since u2
likes it much more than other items, and thus is the core user of i1. Thus, investigating the profile
and the unique demands of u2 would be useful for the system, especially for i1. Likewise, although
user u3 like three items (i.e., i1, i2, i3), u3 has chosen i3 with his special sight of items (other users
pay little attention to i3). Thus, there are good reasons to say that i3 is important to u3 and is his
core item.

Table 3. Weighting Matrices.

ηi→u ρu→i

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

i1 0.269 1 0.269 0 0 i1 0.255 0.491 0.255 0 0
i2 0.355 0 0.355 0.176 0 i2 0.445 0 0.445 0.110 0
i3 0.376 0 0.376 0 0 i3 0.5 0 0.5 0 0
i4 0 0 0 0.518 0 i4 0 0 0 1 0
i5 0 0 0 0.316 1 i5 0 0 0 0.358 0.642

Table 4. Core Users and Core Items.

u1 u2 u3 u4 u5
�(u) i3 i1 i3 i4 i5

ˆ̂Su 7.971 8.769 7.971 5.789 3.917

i1 i2 i3 i4 i5
�(i) u2 u1 u1 u4 u5

ˆ̂Ti 6.109 5.451 4 1 3.113

2.5. Convergence Analysis

In this section, we show that the updating scheme (cf. Algorithm 1, Section 2.4) and
the chosen core user/item selection schemes (cf. (11), (15), (20)) guarantee that the CUIS
algorithm converges quickly.

Given an initial weighting matrix η and the corresponding total revenue V(η) (cf. (7)),
we define a functional T(·) of V as follows.

TV(η) = max
�(i),�(u)

{αV(η) + (1− α)d(η)}, (22)

in which α→ 0 is small positive number.

Entropy 2022, 24, 609 12 of 28

That is, in each iteration, we update V(η) to be the weighted sum of itself and the
current revenue d(η), which is maximized by properly selecting the core items and core
users. Note that d = [(ˆ̂S)T, (ˆ̂T)T]T and both V(η) and d(η) are N + M dimensional vectors.
Thus, the maximization operation in (22) is performed element by element, i.e.,

(TV(η))k = max
�(u)

{
α(V(η))k + (1− α)Ŝk

}
, (23)

(TV(η))k = max
�(i)

{
α(V(η))k + (1− α)T̂k−N

}
, (24)

for 1 ≤ k ≤ N and N + 1 ≤ k ≤ N + M, respectively. (TV(η))k and (V(η))k denote the
k-th element of the corresponding vectors. Since the previous revenue (V(η))k is known
and is a constant, (TV(η))k would be maximized if Ŝk or T̂k is maximized, which can
be solved, respectively, by the core item selection scheme Si (cf. (15)) and the core user
selection scheme Su (cf. (20)) used in CUIS. Next, we show the contraction property of the
functional T(·) in the following theorem.

Theorem 1. The functional TV(η) defined in (22) is a contraction mapping under the infi-
nite norm.

Proof. We denote u(η) and v(η) as two revenue functions of the weighting matrix η and
denote them as u and v for notational simplicity. We have,

T(u) = max
�
{αu + (1− α)d}

= max
�
{αv+α(u− v) + (1− α)d}

≤ max
�
{αv + (1− α)d}+ α‖u− v‖∞ · 1

= T(v) + α‖u− v‖∞ · 1, (25)

in which 1 is an all-ones vector, the inequality holds because each element of α(u− v) is no
larger than the largest element of itself. Thus, we have

T(u)− T(v) ≤ α‖u− v‖∞ · 1. (26)

Likewise, we also have
T(v)− T(u) ≤ α‖u− v‖∞ · 1. (27)

By combining (26) and (27), we finally have

‖T(u)− T(v)‖∞ ≤ α‖u− v‖∞, (28)

which means that functional TV(η) is a contraction mapping under the infinite norm. This
completes the proof.

According to Banach’s fixed point theorem [34], by applying the contraction mapping
operator T(·) repeatedly to an initial point η(0), the proposed CUIS algorithm is guaranteed
to converge, and the output core users, core items would maximize the total revenue
V(η(0)).

3. CUIS Based Recommenders
3.1. Recommendation Methods

With the CUIS algorithm, we have obtained the core user �(i) of each item i, the core
item �(u) of each user u, the optimal weighting matrix η indicating the importance of
items to users, and the optimal weighting matrix ρ indicating the importance of users to
items. In this section, we shall make recommendations for users based on these obtained
results. In particular, we can either find and recommend a proper item to a user or find

Entropy 2022, 24, 609 13 of 28

a proper user for an item, which are referred to, respectively, as the core item (CI) based
recommender and the core user (CU) based recommender.

3.1.1. Core User and Core Item Based Recommenders

In a CU-recommender, we try to use the obtained information of core users. To be
specific, we calculate the weighted user similarity t̂�(i),v between the core user �(i) and
each user v except the core user following (3). Then, we shall recommend item i to the user
with the largest weighted similarity t̂�(i),v.

Likewise, we try to use the obtained information of core items in a CI-recommender.
That is, we calculate the weighted item similarity ŝ�(u),j between the core item �(u) and
each item j except the core item following (5). Then, we shall recommend the item with the
largest weighted similarity ŝ�(u),j to user u.

3.1.2. Core User and Core Item Based k-Means Clustering Recommenders

We note that finding the proper item out of all the items or finding a proper user out of
all the users is very computing consuming. Thus, we shall combine the CU-recommender
and the CI-recommender with the k-means clustering method, which are referred to,
respectively, as the CU-kMCL-recommender and the CI-kMCL-recommender.

In a CU-kMCL-recommender, we first group all the users into k clusters using the k-
means method. In particular, the traditional similarity measure is replaced by the weighted
user similarity measure of this paper, as shown in (3). For a given item i, we then find the
most similar user u∗ with its core user �(i) (i.e., with the largest t̂u�(i)) within the cluster
in which �(i) belongs to. Next, item i is recommended to user u∗ .

In a CI-kMCL-recommender, we group all the items into k clusters using the k-means
method and calculate item similarity with the weighted item similarity measure (cf. (5)). For
a given user u, we then find the most similar item i∗ with its core item �(u) (i.e., with the
largest ŝi�(u)) within the cluster in which �(u) belongs to. Next, item i∗ is recommended
to user u.

In doing so, the CU-kMCL-recommender and CI-kMCL-recommender not only find
out your best “friend” from your neighborhood and recommend his “lobster” to you, but
also save memory space, reduce computing time and release scalability issues.

3.1.3. Weighted Similarity Based PAF Recommenders

The proposed weighted similarity can also be combined with the popularity amongst
friends (PAF) recommender [35]. It can also be implemented in two modes, which
are referred to, respectively, as the weighted user similarity based PAF recommender
(WUS-PAF-recommender) and the weighted item similarity based PAF recommender
(WIS-PAF-recommender).

In the traditional PAF method, the top-F best fiends (denoted as set Fuser
Eu,u) of each user

u would be found out based on non-weighted similarity measure (cf. (2)). For each item,
we then calculate the number pR,i of recommendations (i.e., riv = 1) made by these best
friends. That is,

pR,i = ∑
v∈Fuser

Eu,u

riv, ∀ i ∈ I , (29)

in which I = {1, 2, · · · , M} is the set of all items. The item i∗R with the largest pR,i is
considered as the most popular amongst the friends of user u, and thus is recommended to
user u. Namely, the recommended item satisfies

i∗R = arg max
i∈I

pR,i. (30)

The weighted similarity based PAF recommenders try to improve performance by
considering the difference among users and items.

Entropy 2022, 24, 609 14 of 28

To be specific, a WUS-PAF-recommender identifies the top-F best fiends (denoted
as set Fuser

ws,u) of a user u through their weighted similarities (cf. (3)) instead of the non-
weighted user similarity. As mentioned in Section 2.2 and Equation (1), the items liked
by a user u (i.e., i ∈ Iu) are not equally important to u. Thus, we say that an item i is
popular among friends if many friends like i and i is very important to them (i.e., with
large ηi→u). To be specific, the popularity of an item based on weighting matrix η is defined
as (cf. Figure 2a)

pη,i = ∑
v∈Fuser

ws,u

rivηi→v, ∀ i ∈ I , (31)

and the item i∗η with the largest pη,i is recommended to user u. Namely, the recommended
item satisfies

i∗η = arg max
i∈I

pη,i. (32)

Likewise, a WIS-PAF-recommender would find out the friends of an item and rec-
ommend this item to the user that in favor of these similar items most. First, we identify
the top-F best item friends (denoted as set F item

ws,i) of an item i through their weighted
similarities (cf. (5)). We say that a user u is popular to F item

ws,i if u like many of these items
and u is very important to these items (i.e., with large ρu→i). To be specific, the popularity
of a user based on weighting matrix ρ is defined as (cf. Figure 2b)

pρ,u = ∑
j∈F item

ws,i

rjuρu→j, ∀ u ∈ U , (33)

and the user u∗ρ with the largest pρ,u is recommended to item i:

u∗ρ = arg max
u∈U

pρ,u, (34)

in which U = {1, 2, · · · , N} is the set of all users.

1 N

1

M

u

i

u1 u2 u3

i u
h

®
2

i u
h

®
1

i u
h
®

3
i u
h
®

3

,
1

f
i i u

f

p
h

h
®

=

=å

(a) Popularity of items

1 N

1

M

u

i

i1

i2

i3

u i
r

®

2
u i
r
®

1
u i
r

®

3
u i
r

®

3

,
1

f
u u i

f

p
r

r
®

=

=å

(b) Popularity of users

Figure 2. Popularity calculations with weighting matrices η and ρ, respectively, Formulas (31) and (33)
have been simplified under binary rating matrix. Suppose user u has 3 friends u1, u2, u3 and item i has 3
friends i1, i2, i3.

We can also understand the PAF recommenders from the perspective of the core users
and the core items. Take the WUS-PAF-recommender as an example, we consider all the

Entropy 2022, 24, 609 15 of 28

neighbors of the target user as an virtual user, then the most popular item amongst these
neighbors can be viewed as the core item of this virtual user. Therefore, the recommendation
process of WUS-PAF-recommender can be understood as follows. First, we find the virtual
user closest to the target user (i.e., user neighbors). Second, we recommend the “core
item” of the virtual user (the most popular item amongst the user neighbors) to the target
user. Likewise, in the WIS-PAF-recommender, we treat all neighbors of the target item
as an virtual individual item. We treat the most loyal user amongst the item neighbors
as the core user of this virtual item. Thus, the recommendation process can be regarded
as finding the virtual item closest to the target item (i.e., item neighbors) first, and then
recommending the target item to the “core user” of this virtual item (the most loyal user
amongst item neighbors).

3.2. Computational Complexity

The recommendation process of this paper includes two stages, namely the knowledge
discovery stage (CUIS, cf. Algorithm 1) and the recommendation generation stage. In
this section, we denote the number of items as m, the number of users as n, the non-zeros
in recommendation matrix R as nnz, the number of CUIS iterations as l, the number of
clusters as k, and the number of k-means iterations as lk. Note that matrices ρ, η and R have
the same number of non-zeros.

In the initialization phase of CUIS, the calculation complexity of η(0) is O(nnz ∗ 2).
Assuming that for each item i, the average length of Ui is d|Ui |, i.e., d|Ui | = nnz/m, and for
each user u, the average length of Iu is d|Iu |, i.e., d|Iu | = nnz/n. The complexity of calculating

a T̂(0)
u→i is O(d|Ui | ·m), thus the complexity of calculating all T̂(0)

u→i is O(nnz · d|Ui | ·m). After
that, the complexity of obtaining�(0)(i) of all items is O(nnz). Therefore, the computational
complexity of the initialization phase is O(nnzd|Ui |m + 3nnz), and can also be simplified
as O(nnz2).

The complexity of updating all numerators of ρ(l) (cf. (12)) is O(nnz ·m), while the
complexity of the operation of sum in denominators and dividing the numerators by the
denominators are both O(nnz). The complexity of calculating a Ŝ(l)

i→u is O(d|Iu | · n), thus the

complexity of calculating all Ŝ(l)
i→u is O(nnz · d|Iu | · n). After that, the complexity of obtaining

�(l)(u) of all users is O(nnz). Therefore, the computational complexity for updating ρ(l)

and �(l)(u) is O(nnz(m + d|Iu |n) + 3nnz), and can be simplified as O(nnz(m + nnz)).
The complexity of updating all numerators of η(l) (cf. (17)) is O(nnz · n), while the

complexity of the operation of sum in denominators and dividing the numerators by the
denominators are both O(nnz). The complexity of calculating all T̂(l)

u→i is O(nnz · d|Ui | ·m), and
then the complexity of obtaining�(l)(i) of all items is O(nnz). Therefore, the computational
complexity for updating η(l) and�(l)(i) is O(nnz(n+ d|Ui |m)+ 3nnz), and can be simplified
as O(nnz(n + nnz)).

In a finite number l-iteration running, the overall computational complexity of CUIS
can be approximately expressed as O(nnz2 + nnz(m + n + 2nnz)l). Since the algorithm
is guaranteed to converge in a few number of iterations, l can be considered as a finite
constant. Thus, the overall computational complexity of CUIS degrades to O(nnz2).

In the recommendation generation stage, we characterize the relationships among
users by an undirected graph, in which an edge exists between vertex u and v iff t̂uv > 0.
We denote the average degree of vertexes in the graph as du. Likewise, we express the
relations among items with another graph, in which an edge exists between vertex i and j iff
ŝij > 0, we denote the average degree item vertexes in the graph as di. For recommenders
with k-means clustering, the users or items are grouped in to k clusters while the graph is
divided into k-sub-graphs, and the corresponding complexity are expressed as O(nklk) and
O(mklk), respectively. We denote corresponding average degree of each user and each item,
respectively, as dû and dî. It is noted that du, di, dû and dî are generally smaller than m or n.

Entropy 2022, 24, 609 16 of 28

Thus, the overall complexity of the recommendation stage is low. Detailed information on
the complexity of CUIS and the proposed recommenders are summarized in Table 5.

Table 5. Computational Complexity of CUIS and the Proposed Recommenders.

CUIS O(nnz2)

Recommenders

CU-Rec O(dum) CI-Rec O(din)
CU-kMCL-Rec O(nklk + dûm) CI-kMCL-Rec O(mklk + dîn)
WUS-PAF-Rec O(dim) WIS-PAF-Rec O(dun)

4. Experiments

In this section, we investigate the performance of the proposed CUIS algorithm
(cf. Algorithm 1) and recommenders on two real datasets. Particularly, we try to an-
swer the following two questions: (1) does CUIS algorithm converge on the real data sets
and how fast does it converge? (2) whether the proposed recommenders can improve
the accuracy of recommendations compared with the traditional non-weighted similarity
based recommenders? The purpose of our experiments is not to compare our methods
with excellent state-of-the-art recommendation solutions, but to illustrate the weighting
coefficients can be combined with many similarity measures and show that the weighted
similarity measure improves the performance of recommendations.

4.1. Experiment Setup
4.1.1. Datasets

In the experiments, we use the following two real-world movie datasets, i.e., Movie-
Lens100k and MovieLens1m, which consist of, respectively, 105 ratings and 106 ratings [36],
and denote them as ML100k and ML1m. The overall statistics of the two datasets are
presented in Table 6 and the datasets are available online (https://grouplens.org/datasets/
movielens/, accesseed on 22 April 2022).

In the original datasets, each user rates at least 20 of the movies with integer scores
between 1 and 5. To apply the CUIS algorithm, the datasets are pre-processed as follows.
First, all the ratings with 4 points and 5 points are considered as positive feedbacks and
are denoted as “1” (i.e., these users are interested in the movies). The other ratings are
considered as negative feedbacks and are denoted as “0” (i.e., these users dislike or have
unobserved the movies). Second, the all-zeros rows and all-zeros columns are removed. In
this way, we have obtained a rating matrix R with binary elements.

Since CUIS converges quickly, we set the maximum number of iterations to 20. In the
recommendation generation stage, we shall recommend K items to each user or recommend
each item to K users. Since the number K of recommendations affects the performance a lot,
we shall implement the CUIS-based recommenders with several K values. For the k-Means
clustering recommenders, we set the size k of the clusters to {1, 5, 10, 15, 20, 25} for the
ML100k dataset and {1, 10, 20, 30, 40, 50} for the ML1m dataset. In doing so, we could see
whether the size of the clusters affects the recommendation performance.

Table 6. Statistics of the Two Datasets.

Dataset #Ratings #Items #Users Density

ML100k 100,000 1628 943 6.3%
ML1m 1,000,209 3706 6040 4.5%

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Entropy 2022, 24, 609 17 of 28

4.1.2. Evaluation Metrics

For binary ratings based recommenders, we recommend K items to each user u, and
evaluate the performance by recommendation error rates, which are defined, respectively, as

ε̂u =
#error
N × K

, (35)

ε̂i =
#error
M× K

, (36)

in which #error is the number of known wrong recommendations. We cannot judge
whether the recommendations are right or wrong if the corresponding ratings of the users
(or items) have never been observed. Therefore, we use the estimated value ε̂ which only
considers the number of those known recommendation errors.

Likewise, we also evaluate the performance of recommenders by right rate γ̂ which
are defined, respectively, as

γ̂u =
#right
N × K

, (37)

γ̂i =
#right
M× K

, (38)

in which #right is the number of known right recommendations.
Note that the ratings that the recommended users or items have not been observed by

the system, we can’t tell whether these recommendations are right or wrong. Thus, the true
recommendation error rate ε and right rate γ are higher than the estimated values ε̂ and γ̂.

In addition, the Precision and Recall are two widely used metrics to evaluate the accu-
racy of recommendation algorithms. To evaluate the precision and recall of the proposed
CUIS based recommenders, we present the corresponding confusion matrix, as shown in
Table 7.

Table 7. Confusion Matrix.

Ground Truth
Prediction Results

Recommended Not Recommended

Relevant True Positive (TP) False Negative (FN)
Irrelevant False Positive (FP) True Negative (TN)

Specifically, the precision returns the proportion of relevant items relative to all recom-
mended items and the recall shows the proportion of relevant items relative to all actual
relevant items. The expression of Precision and Recall are shown as follows:

Precision =
#TP

#TP + #FP
, (39)

Recall =
#TP

#TP + #FN
. (40)

Moreover, we evaluated the ranking of relevant items in the recommendation list
using normalized discounted cumulative gain (NDCG) and mean reciprocal rank (MRR),
which respectively defined as:

NDCG =
1
|U | ∑

u∈U

log 2
log(ranku + 1)

, (41)

MRR =
1
|U | ∑

u∈U

1
ranku

, (42)

Entropy 2022, 24, 609 18 of 28

in which U is the set of all users and ranku is the hit position for the recommendation list
of user u.

The cut-off point K is used for the above mentioned four metrics, in which Precision@K
and Recall@K focus on how many relevant items are included in the first K recommended
items, while NDCG@K and MRR@K account for the ranked position of relevant items of
the first K recommended items. For all of the four evaluation metrics, the higher value
indicates the better performance. In particular, we calculate the metrics with K = 5 and
K = 20.

4.1.3. Recommenders under Test

Based on the obtained information on �(i), �(u), η, and ρ obtained by CUIS, we
consider the performance of the following recommenders:

• the CU-recommender and the CI-recommender (cf. Section 3.1.1);
• the CU-kMCL-recommender and the CI-kMCL-recommender (cf. Section 3.1.2);
• the WUS-PAF-recommender and the WIS-PAF-recommender (cf. Section 3.1.3).

In particular, each recommender can be performed either by using traditional non-
weighted similarity measures (cf. (2)) or through the proposed weighted similarity mea-
sures given in (3) and (5). When the traditional similarity measure is used, the recommender
will be labeled with an extra subscript R. When the weighted similarity measure is used,
the recommender will be labeled with an extra subscript η or ρ.

4.2. Convergence

To show the convergence of CUIS, we evaluate the change in the total weighted
similarity ˆ̂S(l)

u (cf. (16)) in adjacent iterations for each user. We calculate the ratio between
| ˆ̂S(l)

u − ˆ̂S(l−1)
u | and maxu{ ˆ̂S(l)

u } for each user and sort them in ascending order. From the
result on the ML100k dataset as shown in Figure 3a, we see that ˆ̂S(l)

u becomes stable for
most users in only four iterations. Similar conclusion can also be drawn from the result for
ML1m dataset, i.e., Figure 3b. Thus, it is clear that CUIS yields fast convergence.

1 200 400 600 800 942
10

-8

10
-6

10
-4

10
-2

10
-1

(a) ML100k

1 1000 2000 3000 4000 5000 6038

10
-8

10
-6

10
-4

10
-2

10
-1

(b) ML1m

Figure 3. Convergence of CUIS.

Entropy 2022, 24, 609 19 of 28

4.3. Recommendation Error Rate

To show the effectiveness of the proposed weighted similarity, we shall compare the
error performances of each recommender when the traditional similarity (cf. (2)) and the
weighted similarity ((3) or (5)) are used.

Figure 4 presents the error rate of the CU-recommender and the CI-recommender,
in which we recommend each item to top-K similar users with its core user or recom-
mend top-K similar items with the core item to each user. First, it is observed that the
error is much smaller when weighted similarity (curves labeled by ∗ and �) is used than
when the traditional similarity is used (curves labeled by5 and4). Thus, the proposed
weighted similarity is reasonable and useful. Second, it is seen that the core item based
CI-recommender performs better than the core user based CU-recommender. This is due
to the structure of the data sets, in which each user has at least 20 ratings, while some
items may have very small number of or even no users to like them. That is, the ratings
for an item are much sparser than the ratings of a user, and thus very few scores can be
exploited to find the core user of an item. Therefore, it would be more accurate to find the
core item of a user and then its similar items for this user; the recommendation matrix is
not so sufficient for looking for the core user of an item, as well as for looking for potential
users to recommend. Third, for the CU-recommender, when recommending more users
for items, since the ratings for items are more sparse, the estimated error rate shown in
Figure 4b does not vary widely.

1 20 40 60 80 100

0

0.05

0.1

0.15

(a) ML100k

1 100 200 300 400 500

0

0.05

0.1

0.15

(b) ML1m

Figure 4. Recommendation error rate vs. number of recommended items/users.

Figure 5 depicts the error rate of recommenders with k-means clustering. By clustering
users or items into k-clusters, searching the most similar user/item within each cluster,
and then making recommendations, the computational complexity of the recommender
would be largely reduced. In particular, we only need to run the clustering process once
and in an offline manner. It is observed in the figures that the recommendation error rate
is also smaller when the weighted similarity measures (with subscript η or ρ) are applied,
and the error rate does not change much as k is increased. Note that we did not run the

Entropy 2022, 24, 609 20 of 28

recommenders with too much clustering due to the complexity of the clustering process.
As the number k of clusters grows large, it is expected that the error rate would be larger,
since the searching space for the right item/user is small.

1 5 10 15 20 25

0

0.05

0.1

0.15

0.2

(a) ML100k

1 10 20 30 40 50

0

0.02

0.04

0.06

0.08

(b) ML1m

Figure 5. Recommendation error rate with k-means clustering.

The performance of CUIS plus PAF recommenders, i.e., the WUS-PAF-recommender
and the WIS-PAF-recommender are presented in Figure 6. We denote the non-weighted
user similarity and the non-weighted item similarity based PAF recommenders as US-
PAF-Rec and IS-PAF-Rec respectively. First, we observe that recommenders using the
weighted similarity measure (with subscript η or ρ) outperform recommenders using
the non-weighted similarity measure (with subscript R). Second, we observe that WIS-
PAF-recommender outperforms WUS-PAF-recommender, since each user has at least
20 favorable items while most items are probably liked by only a few users. Thus, it
would be more accurate to find the most popular users than to find the most popular
items. Third, it is seen that the error rate is large when F is too small or too large for
US-PAF-recommender at the non-weighted similarity. In fact, too few neighbors do not
ensure including most of good neighbors while too many neighbors bring in bad neighbors.
This phenomenon is caused by the inaccuracy of the similarity, and we see that under the
weighted similarity, the recommended error rate gradually increases with the introduction
of neighbors with worse and worse similarity.

Entropy 2022, 24, 609 21 of 28

1 100 200 300 400

0

0.05

0.1

0.15

(a) ML100k

1 300 600 900 1200 1500

0

0.05

0.1

0.15

(b) ML1m

Figure 6. Recommendation error rate when PAF scheme is used.

4.4. Recommendation Right Rate

We have studied the three kinds of recommenders in terms of the recommendation
error rate. In this section, we evaluate the performance of the PAF recommenders from the
perspective of the recommendation right rate. The comparison of the recommendation right
rates between the traditional PAF recommenders and the weighted PAF recommenders is
shown in Figure 7. In Figure 7a, we first observe that recommenders using the weighted
similarity measure (with subscript η or ρ) outperform the recommenders using the non-
weighted similarity measure (with subscript R). Second, the recommendation right rate of
the weighted PAF recommenders decreases gradually when more and more neighbors that
are not very similar are used and found. Third, we observe that the recommendation right
rate γ̂ is very high in a small number of neighbors when the weighted PAF recommenders
are used. In addition, the true recommendation right rate γ is higher than the estimated
value γ̂. Therefore, it is observed that the weighted PAF recommenders improve the
recommendation performance significantly. This also verifies the rationality and validity
of the proposed weighting coefficients and weighted similarity measures. Similar results
are also obtained in Figure 7b. We do not present the performance of the other two
types of weighted recommenders (cf. Sections 3.1.1 and 3.1.2) since the corresponding
improvement over corresponding traditional recommenders is not very significant. One
possible explanation might be that the core user or core item based recommendations
inevitably limit the diversity of recommendations while the sparsity of the rating matrix R
makes it difficult to determine the correctness of all the recommendations.

Entropy 2022, 24, 609 22 of 28

1 100 200 300 400

0

0.2

0.4

0.6

0.8

1

(a) ML100k

1 300 600 900 1200 1500

0

0.2

0.4

0.6

0.8

1

(b) ML1m

Figure 7. Recommendation right rate when PAF scheme is used.

4.5. Performance Comparison with Existing Weighting Schemes

We compare the proposed weighting schemes to two commonly used weighting
schemes, i.e., the variance weighting (VW) [7] and the inverse user frequency (IUF) [6], in
terms of the following four metrics: Precision, Recall, NDCG and MRR.

The obtained results are listed in Tables 8 and 9, together with the results for traditional
method without using any weighting scheme, and the metrics are compared using the
proposed recommenders for recommending 5 and 20 items (or users) on the ML100k dataset,
respectively. For the PAF-based recommenders, we fix the number of neighbors to 20. The
legends “NO”, “VW”, “IUF” and “CUIS” refer to the no weighting scheme, the variance
weighting scheme, the inverse user frequency for weighting scheme and our proposed
new weighting scheme CUIS. First, it is observed that the performance of the proposed
CUIS weighting scheme is superior to the other three weighting schemes for all evaluation
metrics, which verifies that the proposed weighting scheme can improve the accuracy of
similarity and improve the quality of recommendation. Second, the variance weighting and
the inverse user frequency weighting perform even worse than the non-weighted scheme
under some metrics. This is actually consistent with the findings in [5,7]. Third, we observe
that the metrics of CU-Rec and CI-Rec are significantly lower than those of WUS-PAF-Rec
and WIS-PAF-Rec. This is because the CU-Rec and CI-Rec generate recommendations based
on core users and core items. That is, only similar neighbors to core users and core items are
recommended, which inevitably results in a single recommendation, and thus the system
may not have many users or items similar to specific core users and core items, resulting in
lower actual recommendation accuracy. Since CU-kMCL-Rec and CI-kMCL-Rec need to
cluster users and items to narrow down the search range. Although some computational
complexity is reduced, it leads to a decrease in recommendation accuracy. Considering
that the recommended accuracy of CU-Rec and CI-Rec is moderate and the recommended
accuracy of CU-kMCL-Rec and CI-kMCL-Rec is worse, they are not presented in the table.

Entropy 2022, 24, 609 23 of 28

Table 8. Comparison of the Recommendation Performance of Using Different Weighting Scheme to
Recommend 5 Users or Items in the Proposed Recommenders on ML100k.

Recommenders CU-Rec CI-Rec WUS-PAF-Rec WIS-PAF-Rec

Precision@5

NO 0.0207 0.0011 0.1398 0.0934

VW 0.0143 0.0088 0.1769 0.1345

IUF 0.0224 0.0176 0.2242 0.1565

CUIS 0.0231 0.0187 0.2278 0.1570

Recall@5

NO 0.0069 0.0028 0.0260 0.0925

VW 0.0070 0.0020 0.0368 0.1104

IUF 0.0069 0.0035 0.0737 0.1446

CUIS 0.0101 0.0040 0.0764 0.1475

NDCG@5

NO 0.0197 0.0097 0.1426 0.1109

VW 0.0135 0.0074 0.1863 0.1477

IUF 0.0223 0.0167 0.2418 0.1739

CUIS 0.0223 0.0190 0.2439 0.1742

MRR@5

NO 0.0406 0.0019 0.2255 0.2409

VW 0.0388 0.0079 0.3041 0.2864

IUF 0.0458 0.0343 0.4219 0.3447

CUIS 0.0460 0.0421 0.4245 0.3514

Table 9. Comparison of the Recommendation Performance of Using Different Weighting Scheme to
Recommend 20 Users or Items in the Proposed Recommenders on ML100k.

Recommenders CU-Rec CI-Rec WUS-PAF-Rec WIS-PAF-Rec

Precision@5

NO 0.0279 0.0073 0.1590 0.0598

VW 0.0263 0.0066 0.1378 0.0971

IUF 0.0272 0.0239 0.1565 0.1053

CUIS 0.0282 0.0247 0.1609 0.1080

Recall@5

NO 0.0337 0.0109 0.1924 0.1283

VW 0.0258 0.0178 0.1114 0.1864

IUF 0.0328 0.0200 0.1842 0.2376

CUIS 0.0339 0.0217 0.1959 0.2554

NDCG@5

NO 0.0264 0.0055 0.1823 0.0750

VW 0.0254 0.0042 0.1515 0.1117

IUF 0.0258 0.0222 0.1814 0.1256

CUIS 0.0265 0.0235 0.1840 0.1272

MRR@5

NO 0.0642 0.0089 0.4440 0.2541

VW 0.0604 0.0081 0.3247 0.3049

IUF 0.0639 0.0584 0.4463 0.3721

CUIS 0.0647 0.0661 0.4471 0.3759

Entropy 2022, 24, 609 24 of 28

4.6. CUIS with Continuous Ratings
4.6.1. Weighted Similarity Measure

In this section, we extend the the weighted similarity measure and the CUIS algorithm
to recommendation systems with continuous ratings. In this case, the available sets Ui and
Iu are defined, respectively, as the set of users who has rated item i and the set of items
rated by user u. Although the computational time will increase due to more refined scores,
the weighted similarities among users and items would also be more precise. To show the
generality and efficiency of CUIS, we combine the weighting coefficients with the adjusted
cosine similarity [12]. The adjusted cosine similarity between items i and j is given by

sij =

∑
u∈Uij

(riu − ru)(rju − ru)√
∑

u∈Uij

(riu − ru)
2
√

∑
u∈Uij

(rju − ru)
2

, (43)

in which Uij is the set of users who have rated both i and j, ru is the average rating score of
user u. Due to the different preferences of users (to items) and the different biases of items
(to users), we shall combine the weighting coefficients {ρ}iu obtained by CUIS with (43),
and express ŝij as

ŝij =

∑
u∈Uij

(ρu→iriu − ρuru)(ρu→jrju − ρuru)√
∑

u∈Uij

(ρu→iriu − ρuru)
2
√

∑
u∈Uij

(ρu→jrju − ρuru)
2

, (44)

in which ρu→i is the importance of user u to item i, ρuru represents the average weighted
ratings of user u.

For the CUIS with continuous scores, we shall calculate | ˆ̂S(l)
u − ˆ̂S(l−1)

u | for each user
and sort them in ascending order. From the result on the ML100k dataset as shown in
Figure 8, we observe that the ˆ̂S(l)

u of all of the users become stable in only 4 iterations. That
is, CUIS also converges quickly for systems with continuous ratings.

1 200 400 600 800 943
10

-6

10
-4

10
-2

10
0

Figure 8. Convergence of CUIS with continuous scores.

Entropy 2022, 24, 609 25 of 28

4.6.2. Rating Prediction

In some scenarios, the users also want to know how much they will like the items we
are planning to recommend. Thus, it is necessary to make rating prediction for the users
rather than directly recommend items to them and tell them that “you will be interested in
these items”. In item-based CF (Item CF) method [12], the prediction on an item i for a user
u is defined as the weighted sum of the rating scores of the items similar to i, in which the
weighting coefficients are chosen as the corresponding similarity sij between items i and
j. In this paper, we shall replace the weighting coefficients by the weighted similarity ŝij
(cf. (44)) proposed in this paper. To be specific, the predicted rating r̂iu is defined as

r̂iu =

∑
j∈Ni

ŝijrju

∑
j∈Ni

ŝij
, (45)

in which Ni is the set of neighboring items similar to i.
For the rating prediction with continuous ratings, we verify the effectiveness of the

proposed weighted similarity measure with the following two widely used evaluation
metrics, i.e., the mean absolute error (MAE) and the root mean square error (RMSE),

MAE =
1

|Dtest| ∑
(i,u)∈Dtest

|riu − r̂iu|, (46)

RMSE =

√√√√ 1
|Dtest| ∑

(i,u)∈Dtest

(riu − r̂iu)
2, (47)

where Dtest is the data of the test set.
We set the training set ratio to be β = 0.8. That is, 80 percent of data are used as the

training set and 20 percent of data are used as the test data. We evaluate the prediction
performance of both the traditional similarity and the proposed weighted similarity (cf. (43)
and (44)) on the ML100k dataset in Figure 9.

In Figure 9a, we observe that the MAE under the weighted similarity is always smaller
than that of the traditional similarity, which demonstrates that the proposed weighted
similarity is more accurate and reasonable. As the number |Ni| of neighbors of each item is
increased, the MAE would decrease gradually and tend to some constant as the number
of neighbors reaches about 10. In Figure 9b, similar conclusions can be obtained from the
result on RMSE, which also shows the superiority of the proposed weighted similarity.

Since the proposed CUIS based recommendations are developed under the framework
of collaborative filtering, it is necessary to mine the users’ preferences by capturing their
interaction behaviors with items. At the time a user or an item first enters the system, there is
no behavior or no purchase (i.e., cold start problems) recordings available, the system cannot
explore users’ preferences through sufficient log information, and thus the recommendation
quality would be poor. To solve this problem, therefore, the method in this paper should
be combined with other types of algorithms (such as content-based recommendation), i.e.,
using hybrid approaches to provide more accurate recommendations.

Entropy 2022, 24, 609 26 of 28

1 10 20 30 40 50

0.8

0.85

0.9

0.95

1

1.05

(a)

1 10 20 30 40 50

1

1.1

1.2

1.3

1.4

1.45

(b)

Figure 9. When the training set ratio is β = 0.8, for non-weighted cosine similarity and weighted
cosine similarity, compare the value of MAE and RMSE with different number |Ni| of neighbors for
each item, in which (a) is MAE and (b) is RMSE.

5. Conclusions

In this paper, we try to improve the accuracy of recommendations by exploiting the
difference among items and users. Based on the weighted similarity measure, we proposed
a CUIS algorithm and the corresponding recommenders, which are shown to be effective.
We mathematically proved that CUIS converges to the optimal solution. We also showed
that recommenders based on the weighted similarity outperform recommenders using
traditional non-weighted similarity. In our future work, we shall further investigate how a
user likes items (how an item is liked by users) differently and design efficient schemes to
calculate the corresponding weighting coefficients. Moreover, considering users’ drifting
interests or user multi-interest modeling are also of interest.

6. Patents

Part of this work has been approved by Chinese invention patent “An efficient search-
ing method for core-users and core-items in large-scale on-line merchandising”, with
the authorization announcement number CN 113204713 B. The patent has also been
submitted as an international PCT patent, with the international application number
PCT/CN2021/143476.

Author Contributions: Conceptualization, Y.D.; methodology, Z.Z. and Y.D.; writing—original
draft preparation, Z.Z.; writing—review and editing, Y.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC)
under Grants 62071237 and the open research fund of National Mobile Communications Research
Laboratory, Southeast University, under grant No. 2020D09.

Institutional Review Board Statement: Not applicable.

Entropy 2022, 24, 609 27 of 28

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and the reviewers for their insightful
comments and suggestions, which resulted in substantial improvements to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]
2. Shi, Y.; Larson, M.; Hanjalic, A. Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future

challenges. ACM Comput. Surv. 2014, 47, 1–45. [CrossRef]
3. Karydi, E.; Margaritis, K. Parallel and distributed collaborative filtering: A survey. ACM Comput. Surv. 2016, 49, 1–41. [CrossRef]
4. Al-bashiri, H.; Abdulgabber, M.A.; Romli, A.; Hujainah, F. Collaborative Filtering Similarity Measures: Revisiting. In Proceedings

of the International Conference on Advances in Image Processing (ICAIP’17), Bangkok, Thailand, 25–27 August 2017; pp. 195–200.
5. Yu, K.; Wen, Z.; Xu, X.W.; Ester, M. Feature weighting and instance selection for collaborative filtering. In Proceedings of the 12th

International Workshop on Database and Expert Systems Applications, Munich, Germany, 3–7 September 2001; pp. 285–290.
6. Breese, J.S.; Heckerman, D.; Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the

14th Conference Uncertainty in Artificial Intelligence (UAI), Madison WI, USA, 24–26 July 1998; pp. 43–52.
7. Herlocker, J.L.; Konstan, J.A.; Borchers, A.; Riedl, J. An Algorithmic Framework for Performing Collaborative Filtering. In

Proceedings of the 22nd Annual International Conference Research and Development Information Retrieval (SIGIR ’99), Berkeley,
CA, USA, 15–19 August 1999; pp. 230–237.

8. Jin, R.; Chai, J.Y.; Si, L. An automatic weighting scheme for collaborative filtering. In Proceedings of the 27nd Annual International
Conference Research and Development Information Retrieval (SIGIR ’04), Sheffield, UK, 25–29 July 2004; pp. 337–344.

9. Lops, P.; Jannach, D.; Musto, C.; Bogers, T.; Koolen, M. Trends in content-based recommendation. User Model. User Adapt. Interact.
2019, 29, 239–249. [CrossRef]

10. Das, D.; Sahoo, L.; Datta, S. A survey on recommendation system. Int. J. Comput. Appl. 2017, 160, 6–10. [CrossRef]
11. Albatayneh, N.A.; Ghauth, K.I.; Chua, F.F. Discriminate2rec: Negation-based dynamic discriminative interest-based preference

learning for semantics-aware content-based recommendation. Expert Syst. Appl. 2022, 199, 116988. [CrossRef]
12. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the

10th International Conference World Wide Web (WWW ’01), Hong Kong, China, 1–5 May 2001; pp. 285–295.
13. Wang, J.; De Vries, A.P.; Reinders, M.J. Unifying user-based and item-based collaborative filtering approaches by similarity fusion.

In Proceedings of the 29th Annual International Conference Research and Development Information Retrieval (SIGIR ’06), Seattle,
WA, USA, 6–11 August 2006; pp. 501–508.

14. Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. IEEE Comput. 2009, 42, 30–37.
[CrossRef]

15. Tatiya, R.V.; Vaidya, A.S. A survey of recommendation algorithms. IOSR J. Comput. Eng. 2014, 16, 16–19. [CrossRef]
16. Patil, K.; Jadhav, N. Multi-layer perceptron classifier and paillier encryption scheme for friend recommendation system. In

Proceedings of the 2017 International Conference Computing, Communication, Control and Automation (ICCUBEA), Pune,
India, 12–13 August 2017; pp. 1–5.

17. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 111–112.

18. Yan, A.; Cheng, S.; Kang, W.C.; Wan, M.; McAuley, J. CosRec: 2D convolutional neural networks for sequential recommendation.
In Proceedings of the 28th ACM International Conference Information and Knowledge Management (CIKM ’19), Beijing, China,
3–7 November 2019; pp. 2173–2176.

19. Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-based recommendations with recurrent neural networks. arXiv 2015,
arXiv:1511.06939.

20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9.

21. Wang, J.; Yu, L.; Zhang, W.; Gong, Y.; Xu, Y.; Wang, B.; Zhang, P.; Zhang, D. Irgan: A minimax game for unifying generative and
discriminative information retrieval models. In Proceedings of the 24th 40th International Conference Research and Development
Information Retrieval (SIGIR ’17), Tokyo, Japan, 7–11 August 2017; pp. 515–524.

22. Azeroual, O.; Koltay, T. RecSys Pertaining to Research Information with Collaborative Filtering Methods: Characteristics and
Challenges. Publications 2022, 10, 17. [CrossRef]

23. Linden, G.; Smith, B.; York, J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 2003, 7,
76–80. [CrossRef]

24. Verstrepen, K.; Goethals, B. Unifying nearest neighbors collaborative filtering. In Proceedings of the 8th ACM Conference
Recommender Systems (RecSys ’14), Foster City, CA, USA, 6–10 October 2014; pp. 177–184.

http://doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1145/2556270
http://dx.doi.org/10.1145/2951952
http://dx.doi.org/10.1007/s11257-019-09231-w
http://dx.doi.org/10.5120/ijca2017913081
http://dx.doi.org/10.1016/j.eswa.2022.116988
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.9790/0661-16651619
http://dx.doi.org/10.3390/publications10020017
http://dx.doi.org/10.1109/MIC.2003.1167344

Entropy 2022, 24, 609 28 of 28

25. Jeyasekar, A.; Akshay, K. Collaborative filtering using euclidean distance in recommendation engine. Indian J. Sci. Technol. 2016, 9,
1–5. [CrossRef]

26. Xiang, S.; Nie, F.; Zhang, C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognit. 2008,
41, 3600–3612. [CrossRef]

27. Singh, R.H.; Maurya, S.; Tripathi, T.; Narula, T.; Srivastav, G. Movie recommendation system using cosine similarity and KNN.
Int. J. Eng. Adv. Technol. 2020, 9, 556–559. [CrossRef]

28. Feng, W.; Zhu, Q.; Zhuang, J.; Yu, S. An expert recommendation algorithm based on Pearson correlation coefficient and FP-growth.
Clust. Comput. 2019, 22, 7401–7412. [CrossRef]

29. Musa, J.M.; Xu, Z. Item based collaborative filtering approach in movie recommendation system using different similarity
measures. In Proceedings of the 2020 6th International Conference Computer and Technology Applications (ICCTA ’20), Antalya,
Turkey, 14–16 April 2020; pp. 31–34.

30. Singh, P.K.; Setta, S.; Rajput, I.S. A Modified Spearman’s Rank Correlation Coefficient for an Efficient Method of Similarity
Calculation in Collaborative Filtering-based Recommendation. In Proceedings of the 2nd International Conference Advanced
Computing and Software Engineering (ICACSE ’19), Sultanpur, India, 8–9 February 2019; pp. 270–273.

31. Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S. Using of Jaccard coefficient for keywords similarity. In Proceedings
of the International Multiconference of Engineers and Computer Scientists (IMECS ’13), Hong Kong, China, 13–15 March 2013;
pp. 380–384.

32. Bag, S.; Kumar, S.K.; Tiwari, M.K. An efficient recommendation generation using relevant Jaccard similarity. Inf. Sci. 2019, 483,
53–64. [CrossRef]

33. Howe, A.E.; Forbes, R.D. Re-considering neighborhood-based collaborative filtering parameters in the context of new data. In
Proceedings of the 17th ACM International Conference Information and Knowledge Management (CIKM ’08), Napa Valley, CA,
USA, 26–30 October 2008; pp. 1481–1482.

34. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3,
133–181. [CrossRef]

35. Barman, K.; Dabeer, O. Analysis of a Collaborative Filter Based on Popularity Amongst Neighbors. IEEE Trans. Inf. Theory 2012,
58, 7110–7134. [CrossRef]

36. Harper, F.M.; Konstan, J.A. The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–19.
[CrossRef]

http://dx.doi.org/10.17485/ijst/2016/v9i37/102074
http://dx.doi.org/10.1016/j.patcog.2008.05.018
http://dx.doi.org/10.35940/ijeat.E9666.069520
http://dx.doi.org/10.1007/s10586-017-1576-y
http://dx.doi.org/10.1016/j.ins.2019.01.023
http://dx.doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1109/TIT.2012.2216980
http://dx.doi.org/10.1145/2827872

	Introduction
	Related Work
	Organizations

	The CUIS Algorithm
	Weighting Coefficients and Weighted Similarity
	Recommendation Model and Problem Formulation
	Algorithm Initialization
	Update Process
	Updating ui(l)
	Updating Core Items
	Updating iu(l)
	Updating Core Users

	Convergence Analysis

	CUIS Based Recommenders
	Recommendation Methods
	Core User and Core Item Based Recommenders
	Core User and Core Item Based k-Means Clustering Recommenders
	Weighted Similarity Based PAF Recommenders

	Computational Complexity

	Experiments
	Experiment Setup
	Datasets
	Evaluation Metrics
	Recommenders under Test

	Convergence
	Recommendation Error Rate
	Recommendation Right Rate
	Performance Comparison with Existing Weighting Schemes
	CUIS with Continuous Ratings
	Weighted Similarity Measure
	Rating Prediction

	Conclusions
	Patents
	References

