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Abstract: A computational technique for the determination of optimal hiding conditions of a dig-
ital image in a self-organizing pattern is presented in this paper. Three statistical features of the
developing pattern (the Wada index based on the weighted and truncated Shannon entropy, the
mean of the brightness of the pattern, and the p-value of the Kolmogorov-Smirnov criterion for the
normality testing of the distribution function) are used for that purpose. The transition from the
small-scale chaos of the initial conditions to the large-scale chaos of the developed pattern is observed
during the evolution of the self-organizing system. Computational experiments are performed with
the stripe-type patterns, spot-type patterns, and unstable patterns. It appears that optimal image
hiding conditions are secured when the Wada index stabilizes after the initial decline, the mean of the
brightness of the pattern remains stable before dropping down significantly below the average, and
the p-value indicates that the distribution becomes Gaussian.

Keywords: predator-prey model; self-organizing pattern; Shannon entropy; image hiding

1. Introduction

Steganography is the art of hiding a secret information in non-secret media such as a
digital image, an audio or video recording, a printed document, etc. [1]. The purpose of
steganography is not only to conceal the secret message, but also to hide the fact of secret
communication itself. Different types of digital images (including natural and artificial
patterns and textures) has been exploited for the secret communication. Although numer-
ous steganographic techniques employ conventional grayscale or colour photographs for
the encoding of the secret information [1–3], different options for a carrier image can be
found in the scientific literature. For example, the investigation proposed in [4] suggests to
embed the secret data in complex blocks of digital photographs using block patterns. The
steganographic technique concealing the secret information in printed bicolor documents
is presented in [5]. A novel image steganography scheme based on a color assimilation
illusion is proposed in [6], where a synthesized image containing a grayscale background
and a saturated color line grid can be perceived as a color image. The authors of [7] suggest
to choose the most suitable candidates for the cover image from the whole set of images
based on a relative entropy and a histogram.

Pattern formation has been attracting the attention of researchers in different branches
of science since the middle of the twentieth century [8]. Self-organisation can be observed
on all scales of biological life (biological networks, animal patterns, spatial vegetation pat-
terns, microbial communities, cells communication) [9–13], in chemistry (reaction–diffusion
systems, Turing patterns, electrochemical synthesis) [14–16], in physics (plasmas, crys-
tals, magnetic granular media, semiconductor resonators, solitons) [17–20], in computers
and engineering (cellular automata, control of multirobot swarms and self-assembling
microrobots, etc.) [21–23].
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Moreover, self-organizing patterns are used for hiding and communicating secret
visual images. For example, a digital fingerprint image is employed as the initial input
for the evolution of a pattern using a model of reaction–diffusion cellular automata [24].
Schemes for the concealing of the secret visual information in self-organizing patterns
can be implemented employing different models of dynamical systems. For example, a
communication scheme based on evolutionary spatial 2 × 2 games is introduced in [25],
where self-organizing patterns are induced by complex interactions between competing
individuals. Similar digital image communication schemes employ self-organizing patterns
emerging from arrays of competitively coupled nonlinear maps [26] or from the breakup of
spiral waves [27]. Models described by the systems of partial differential equations can also
be used for the secret communication task. A typical example is a steganographic algorithm
based on the patterns evolving from the Beddington-deAngelis-type (BDA) predator-prey
model with self- and cross-diffusion [28], introduced in [29]. This algorithm is designed
for hiding dichotomous secret images in the self-organizing pattern developed from the
perturbed initial conditions [29].

The initial conditions of the coupled fields of preys and predators in the BDA predator-
prey model are perturbed around their stationary states in order to induce the unstable
breaking waves of Turing instability. In other words, the small-scale spatial chaos in
the initial conditions (predetermined by the random number generator) is evolving into
the large-scale spatial chaos (predetermined by the type of the self-organizing pattern).
However, this transition is far from being trivial. Nonlinear processes of self- and cross-
diffusion in the BDA predator-prey model do result into long and complex transient
processes until the fully developed patterns can be clearly observed in the distribution of
preys and predators [28].

On the other hand, it appears that the difference image between the self-organizing
pattern originated from the perturbed and non-perturbed initial conditions becomes non-
interpretable after long transients [29]. Therefore, an efficient and coherent application of
these image hiding algorithms based on self-organizing patterns does require a clear and
comprehensible strategy for choosing the stopping criterion in the evolution of those patterns.

The main objective of this paper is to propose a statistical indicator which could be
related to the optimal information hiding features in self-organizing patterns. The paper
is organized as follows. The BDA predator-prey model with self- and cross-diffusion, the
secure communication system based on self-organizing patterns and statistical indicators
for the evaluation of the image complexity are presented in Section 2. Optimal information
hiding in different types of self-organizing patterns is discussed in Section 3. Concluding
remarks are given in the final section.

2. Preliminaries
2.1. Beddington-DeAngelis-Type Predator-Prey Model with Self- and Cross-Diffusion

Governing equations of the BDA predator-prey model with self- and cross-diffusion
read [28]:

∂N
∂t

= r
(

1− N
K

)
N − βN

B + N + wP
P + D11∇2N + D12∇2P,

∂P
∂t

=
εβN

B + N + wP
P− ηP + D21∇2N + D22∇2P, (1)

where t denotes time; N and P denotes the densities of preys and predators respectively;
β stands for a maximum consumption rate; B is a saturation constant; w is a predator
interference parameter; η is a per capita predator death rate; ε represents the conver-
sion efficiency of food into offspring. D11 and D22 denote self-diffusion coefficients. The
cross-diffusion coefficient D12 represents the tendency of a prey to keep away from a
predator while D21 represents the tendency of a predator to chase its prey. The operator
∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator in the two-dimensional space. D11∇2N and
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D22∇2P are self-diffusion terms, which imply the movements of individuals from a higher
to lower concentration region; D12∇2P and D21∇2N are cross-diffusion terms that biologi-
cally imply the counter-transport [28].

Model in Equation (1) is analysed under non-zero initial conditions and Neumann
boundary conditions. Densities of preys and predators

N(x, y, 0) > 0; P(x, y, 0) > 0 (2)

are set in a rectangular domain (x, y) ∈ Ω = [0, Lx]×
[
0, Ly

]
, where Lx and Ly is the size of

the system in the directions of x- and y-axis.
Neumann, or zero-flux, conditions are set on the boundary:

∂N
∂n

=
∂P
∂n

= 0; (x, y) ∈ ∂Ω, (3)

where n is the outward unit normal vector of the smooth boundary ∂Ω.
In the absence of diffusion, the model has a single non-trivial stationary state (N∗, P∗)

(coexistence of preys and predators), where [28]:

N∗ =
1

2rwε
K(rwε− εβ + η) +

1
2rwε

√
K2(rwε− εβ + η)2 + 4rKwεηB;

P∗ =
(βε− η)

wη
N∗ − B

w
. (4)

2.2. The Numerical Model and Types of Self-Organizing Patterns

Standard five-point approximation for 2D Laplacian with the zero-flux boundary
conditions is used to find the solution of Equation (1). The densities of preys and predators(

Nn+1
ij , Pn+1

ij

)
at the time moment (n + 1)τ at grid position

(
xi, yj

)
read [28]:

Nn+1
ij = Nn

ij + τD11∆hNn
ij + τD12∆hNn

ij + τ f
(

Nn
ij , Pn

ij

)
,

Pn+1
ij = Pn

ij + τD21∆hNn
ij + τD22∆hPn

ij + τg
(

Nn
ij , Pn

ij

)
, (5)

where the Laplacian is

∆hNn
ij =

Nn
i+1,j + Nn

i−1,j + Nn
i,j+1 + Nn

i,j−1 − 4Nn
i,j

h2 . (6)

At time moment t = 0, the system is placed into the stationary state (N∗, P∗) perturbed
by a random perturbation

[
Ñ
]

(induced by a random number generator or a logistic
map) [29]. A long transient process is required for the system to evolve into a steady or
time-dependent state. Different sets of the model parameters lead to the distinct types of
the evolved patterns: stripe-type patterns, spotted patterns, the mixture of spotted and
stripe-type patterns or the unstable spiral wave patterns [28]. Note that different initial
perturbations of the stationary states of preys and/or predators do result into the patterns of
the same type (stripes, spots, stripes–spots or spiral wave) but with a different distribution
of stripes, spots or waves [28].

2.3. A Secure Communication System Based on Self-Organizing Patterns

A secure communication system based on the formation of self-organizing patterns
introduced in [29] can be described by the schematic diagram depicted in Figure 1.
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Figure 1. A schematic representation of the secure communication system based on the formation of
self-organizing patterns. The encoding process: the Sender constructs the dot skeleton representation
of the secret image [M] and generates the random distribution of preys [N]|t=0. The plus sign corre-
sponds to the perturbation of the initial random distribution; the arrow marked by SOP represents
the evolution of the self-organizing pattern. The decoding process: the dashed line indicates that the

Receiver must generate an exact copy of the random distribution of preys
[

Ñ
]
. The arrow marked

with SOP represents the evolution of the self-organizing pattern. The secret image is decoded by
computing the difference between the evolved and the received patterns (what is represented by the
minus sign in the diagram).

The schematic representation of the encoding process is presented at the upper part of
Figure 1. Initially, the model parameters (the number of time steps n, values of parameters
ε� 1 and δ� ε� 1, the set of random numbers

[
Ñ
]

distributed on the interval
[
− ε

2 ; ε
2
]
)

should be selected and fixed between the Sender and the Receiver. Then, the Sender
generates the dot-skeleton representation of the secret image and constructs the mask
matrix [M] [29]. The next step is the perturbation of the initial density of preys [N]|t=0
according to the following rule [29]:

[N]|t=0 = N∗ · [1] +
[

Ñ
]
+ δ · [M], (7)

where δ is a small constant that guarantees that the mask perturbation is smaller than
the noise used for the perturbation of initial conditions (δ � ε); [M] is the mask matrix
comprising ones at those positions where the initial random density of preys

[
Ñ
]

is

increased by δ – and zeros where the random density of preys
[

Ñ
]

is kept unchanged. The
numerical scheme presented in Equations (5) and (6) is used to evolve the perturbed initial
density of preys [N]|t=0 for n time steps. Finally, the digital image of the evolved pattern is
sent to the Receiver. As mentioned previously, the initial perturbation

[
Ñ
]

(Equation (7))

does not change the type of the pattern. However, the initial perturbation
[

Ñ
]

does change
the local distribution of stripes, spots, or spiral waves [28]. The mask representation δ · [M]
(Equation (7)) does not change the local distribution of stripes, spots, or spiral waves unless
δ is smaller than the noise used for the perturbation of initial conditions (δ� ε) [29]. Local
deformations of the elements of the pattern help to hide the secret image. However, a
different distribution of stripes, spots, or spiral waves would compromise the image hiding
algorithm [29]. Therefore, it is important to ensure that the initial perturbation

[
Ñ
]

must
be kept identical for both patterns generated by the Sender and the Receiver [29].
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The decoding process is depicted at the lower part of the schematic diagram in Figure 1.
Initially, the Receiver sets the values of the model parameters (the number of time steps n,
parameters ε� 1 and δ� ε� 1, generates the set of random numbers

[
Ñ
]

distributed on

the interval
[
− ε

2 ; ε
2
]
). Then, the initial densities of preys are perturbed

[N]|t=0 = N∗ · [1] +
[

Ñ
]

(8)

and the numerical scheme in Equations (5) and (6) is used to evolve the pattern for n time
steps. Note that the random noise perturbations

[
Ñ
]

in Equations (7) and (8) are the same.
The secret image is revealed in the form of the difference image between the evolved and
the received patterns. Image enhancement techniques can be applied to the difference
image in order to obtain the dichotomous representation of the secret image.

The information hiding capacity is predetermined by the dot-skeleton representation
of the secret image [29]. A thorough computational analysis has shown that a clearance
of 7 pixels between two adjacent pixels ensures the development of a well-interpretable
line in the difference image [29]. Two separate lines can be clearly interpreted in the
difference image when the distance between those lines is 20 pixels [29]. Thus, the maximal
information hiding capacity of the scheme based on the BDA model is predetermined by
the maximal distance between pixels constituting a line, and the minimal distance between
two separable lines (7 and 20 pixels). Of course, the hiding capacity also depends on the
shape of the dichotomous secret image represented by a pattern of lines. The distances
between pixels in the dot-skeleton representation of the secret image just determine the
maximal resolution of the secret image [29].

As mentioned previously, the main objective of this paper is to design statistical
indicators revealing the optimal time lag (the number of time steps) between the initial
conditions and the evolved pattern. Clearly, the criteria for the optimality, and the structure
of statistical indicators must be predetermined before any further decisions could be taken.

2.4. The Wada Index for the Evaluation of the Image Complexity

One of the statistical indicators used for the evaluation of the complexity of the
self-organizing patterns in this paper is the Wada index. The Wada index is originally
proposed to detect the existence of Wada boundaries in phase plots of nonlinear dynamical
systems [30]. The Wada index is based on the truncated and weighted Shannon entropy [30].
And though the Shannon entropy is commonly used to evaluate the randomness of a digital
grayscale image [31,32], it is shown in [30] that the Wada index is also capable to evaluate
the complexity of the basin boundary—what makes it applicable for numerous problems
in nonlinear dynamics and image processing in general.

The lakes of Wada are three (or more) disjoint connected open sets of the plane with
the counterintuitive property that they all have the same boundary [33–36]. The Wada
basins of a nonlinear system possessing several coexisting attractors can be visualised
as a colormap where the color of the point in the phase space of the initial conditions
corresponds to the attractor to which the system evolves from this initial condition. The
Wada index introduced in [30] helps not only to distinguish fractal and Wada basins of
attraction but also measure the randomness of the distribution of different colors in a phase
plot represented as a color or grayscale digital image [30].

Let us list the following notations required for the introduction of the Wada index:

• s—the size of the border of a s× s square observation window measured in the number
of pixels; s ≥ 2.

• m—the number of different colors in the observation window; m ≥ 1.
• νk, k = 1, 2, . . . , m—the number of the k-th color pixels in the observation window.
• pk = νk

s2 , k = 1, 2, . . . , m – the discrete probability of the k-th color in the observa-
tion window.
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• The indicator function 1(s)2 is equal to 1 if the number of colors in the observation

window is greater or equal than 2: 1(s)2 =

{
1, m ≥ 2,
0, m = 1.

• The indicator function 1(s)3 is equal to 1 if the number of colors in the observation

window is greater or equal than 3: 1(s)3 =

{
1, m ≥ 3,
0, m ≤ 2.

• The Shannon entropy of different colors in the observation window:

e(s)(p1, p2, . . . , pm) = −
m

∑
k=1

pklog (pk). (9)

The Wada index ω(s) in the s× s observation window reads [30]:

ω(s)(p1, p2, . . . , pm) =
m

log (m)
1(s)3 e(s) =

{
0, m < 3,
− m

log (m) ∑m
k=1 pklog (pk), m ≥ 3. (10)

The Wada index W(s) for the whole digital digital image reads [30]:

W(s) =
∑N

k=1 ω
(s)
k

∑N
k=1 1(s)2,k

, (11)

where ω
(s)
k and 1(s)2,k is the Wada index ω(s) and the indicator function 1(s)2 in the k-th

observation window. The size of the observation window s is set to 16 in all further
computations because 16× 16 = 256 results exactly into the total number of different levels
of brightness in a grayscale image.

2.5. Other Statistical Indicators for the Evaluation of the Image Complexity

It is interesting to observe that the mean of the brightness of pixels in the self-
organizing pattern does not necessarily coincide with 127.5 (the average between black (0)
and white (255)). Thus, the second statistical indicator used in this study N is the mean of
the brightness of pixels in the pattern of preys.

Initial computational experiments with the evolution of self-organizing patterns
(Figure 2) show that the distribution of the grayscale brightness of pixels does experi-
ence radical transformations from a uniform distribution to an arc-sine type distribution.
The distribution becomes almost a normal distribution in the middle of the transient pro-
cesses (Figure 2). Therefore, the third statistical indicator used in this paper is the p-value
of the Kolmogorov-Smirnov criterion for the normality testing of the distribution function.

Finally, the similarity between the original dichotomous secret image and the recon-
structed dichotomous secret image can be computed as a correlation coefficient ρ between
these two binary images. Note that the values of Pearson, Spearman and Kendall’s tau
correlation coefficients coincide if both variables are dichotomous. The phi coefficient,
which is a measure of association for two binary variables, also yields the same value as
Pearson, Spearman and Kendall’s tau correlation coefficients [37].
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Figure 2. The evolution of the self-organizing pattern of preys. The snapshots of the partially
developed patterns at 14 different time steps n =1, 100, 200, 300, 1000, 5000, 10,000, 18,000, 40,000,
45,000, 50,000, 60,000, 100,000, 150,000 are enumerated from 1 to 14 (the 1st and the 3rd rows). The
distribution histogram of each individual snapshot is shown in blue (the 2nd and the 4th rows). The
best approximating Gaussian distribution curve is plotted in red line on top of the histogram. Vertical
red dashed lines correspond to the center point between black and white.

3. Results and Discussion
3.1. Optimal Information Hiding in Stripe-Type Patterns

The set of the parameters r = 0.5, ε = 1, β = 0.6, K = 2.6, η = 0.25, w = 0.4,
B = 0.3846, D11 = 0.01, D12 = 0.0788, D21 = 0.01, D22 = 1, Lx = Ly = 80, h = 0.25,
τ = 0.01 in the BDA predator-prey model results in a stripe-type pattern of preys [28].
Partially developed patterns of preys are shown at 14 different time steps (the 1st and the
3rd rows in Figure 2). The distribution histogram of the brightness for each individual
snapshot is shown in blue (the 2nd and the 4th rows in Figure 2). The best approximating
Gaussian distribution curve is plotted in overlapping red lines on top of the histograms.
The vertical red dashed lines correspond to the center point between black and white. Note
that the center point 127.5 does not necessarily coincide with the mean of the brightness of
the pattern N.

As mentioned previously, the small scale spatial chaos at the first snapshot is evolving
to the large scale spatial chaos at the end of the computational experiment. At the beginning,
the distribution of the self-organizing pattern is uniform on the interval [0, 255] (Figure 2).
It is interesting to observe that this distribution gradually becomes similar to the Gaussian
distribution, and finally it evolves into an arcsine-type distribution. The similarity to the
arcsine-type distribution can be explained by the fact that fully evolved pattern of stripes
consists of two dominating colors–black and white. Therefore, the distribution histogram
has two peaks located near the ends of the interval.

The complexity of the self-organizing pattern of preys is evaluated at each time step of
the evolution process by computing the Wada index W(16). Also, the mean of the brightness
of the pattern N, and the p-value of the Kolmogorov-Smirnov criterion for the normality
testing of the distribution function are computed during the whole evolution process
(Figure 3).
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Figure 3. Statistical characteristics of the evolution of the self-organizing pattern of preys. The
complexity of the self-organizing pattern is evaluated at each time step by computing the Wada
index W(16) (panel (a)). The mean of the brightness of the pattern N is shown in panel (b). The red
horizontal dotted line in panel (b) denotes the average between black and white. The p-value of the
Kolmogorov-Smirnov criterion for the normality testing of the distribution function is depicted in
panel (c). The red horizontal dotted line in panel (c) denotes the significance level equal to 0.05. Red
squares enumerated from 1 to 14 correspond to the appropriate snapshots of the pattern during its
evolution (Figure 2). PSNR and SSIM computed for the patterns with and without the embedded
secret information are depicted respectively in panels (d,e). The scale of the x-axis is set to log3 n; one
interval marked by a gray vertical line corresponds to 5000 discrete time steps.

Starting from the beginning, we see that the Wada index W(16) is relatively high
(Figure 3a). Then W(16) drops down and rises again when the stripe-type pattern gets fully
developed. After the initial drop, a quasi-stationary state can be observed between the 5th
and the 9th snapshots.

Note that N drops below 127.5 in the middle of the self-organization process (Figure 3b).
Figure 3c depicts the variation of the p-value of the Kolmogorov-Smirnov criteria which
is used to test if the brightness of the self-organizing pattern is normally distributed. The
null hypothesis states that the data comes from a standard normal distribution, against
the alternative hypothesis that it does not come from such a distribution. The red dotted
horizontal line in Figure 3c stands for the significance level of 0.05. Red squares (enumerated
from 1 to 14) in Figure 3c denote the appropriate snapshots in the evolution of the self-
organizing pattern (Figure 2). When the p-value is less than the significance level at the
beginning and at the end of the evolution (snapshots 1–3 and 10–14) the null hypothesis is
rejected and the data favors the alternative hypothesis. When the p-value is greater than
the significance level (the middle part of the evolution including snapshots 4–9), we fail to
reject the null hypothesis that data comes from the normal distribution.

The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are com-
puted for the patterns with and without the embedded secret information during the whole
evolution process of the patterns (Figure 3d–e). Values of the PSNR reaching approximately
40 dB (for the snapshots 4–8) and the values of the SSIM approaching 1 (snapshots 2–5)
indicate that the perturbation of the initial conditions by the dot skeleton mask of the secret
information do not significantly change the developed self-organizing pattern.
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We seek to find out the time interval where the information hiding algorithms do
perform in the optimal way. In other words, the target function describing the optimality
of the image hiding algorithm must be defined.

The contrast enhanced difference images revealing the reconstructed secret informa-
tion are depicted on the 1st and on the 3rd rows of Figure 4. The below counterparts depict
the dichotomous representation of each difference image (the 2nd and 4th rows of Figure 4).
The correlation coefficient ρ serves as a similarity indicator between the original secret
image and the reconstructed dichotomous secret image. If ρ > 0.5 then a human eye is still
capable to interpret the secret image (the last row of Figure 4).

0.2

0.4

0.6

0.8

1

1

2

3 4 5

6
7

8
9 10 11

12
13 14

,

, , , , , , ,

Figure 4. Difference images at different times steps n (1st and 3rd rows) and the corresponding
dichotomous images (2nd and 4th rows). The correlation coefficient ρ reveals the statistical similarity
between the original secret image and a dichotomous decoded secret image at time step n. Value
ρ > 0.5 corresponds to the clear interpretability of the decoded secret. The scale of the x-axis is set to
log3 n; one interval marked by a gray vertical line corresponds to 5000 discrete time steps.

The presented results in Figures 2 and 3 help to reach the following conclusion. The
image hiding algorithm based on the difference between the self-organizing pattern started
from random initial conditions and the pattern started from the same initial conditions
perturbed by the dot-skeleton representation of the secret image does not work well if the
stopping criterion for the evolution is not clearly defined.

If the set of the parameters defining the evolution of the pattern yield the pattern of
stripes (Figure 2), then the stopping criterion must be selected according to the following
three conditions:

• The Wada index W(16) should drop down from the initial value and should get
stabilized before growing back again.

• The mean of the brightness of the pattern N should remain around the average
between black and white before dropping down significantly below the average.

• The p-value of the Kolmogorov-Smirnov criterion should grow above 0.05 what
indicates that the distribution becomes Gaussian.
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3.2. Optimal Information Hiding in Patterns of Spots

Computational experiments are continued with the BDA predator-prey model, but
with a different set of the parameters. For example, r = 0.5, ε = 1, β = 0.6, K = 2.6, η = 0.25,
w = 0.4, B = 0.4846, D11 = 0.01, D12 = −0.0269, D21 = 0.01, D22 = 1, Lx = Ly = 80,
h = 0.25, τ = 0.01 yield the pattern of spots instead of the stripe-type pattern [28].

Partially developed self-organizing patterns of preys are presented at 14 different time
steps (the 1st and the 3rd rows in Figure 5). The distribution histogram of the brightness
for each individual snapshot is shown in blue (the 2nd and the 4th rows in Figure 5). The
best approximating Gaussian distribution curve is plotted in red. The vertical red dashed
lines correspond to the center point between black and white (which does not necessarily
coincide with the mean of the brightness of the pattern N).

0 128 255 0 128 255 0 128 255 0 128 255 0 128 255 0 128 255 0 128 255

0 128 255 0 128 255 0 128 255 0 128 255 0 128 255

0

0 128 255 0 128 255

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

0

5

10

15

20

✕10
–3

,

, , , , , , ,

Figure 5. Information hiding in patterns of spots. The evolution of the self-organizing pattern of
preys. The snapshots of the partially developed patterns at 14 different time steps n =1, 100, 200, 300,
1000, 3000, 12,000, 30,000, 50,000, 60,000, 70,000, 90,000, 100,000, 150,000 are enumerated from 1 to
14 (the 1st and the 3rd rows). The distribution histogram of each individual snapshot is shown in
blue (the 2nd and the 4th rows). The best approximating Gaussian distribution curve is plotted in red
line on top of the histogram. Vertical red dashed lines correspond to the center point between black
and white.

At the beginning, the distribution of the pattern of preys is uniform on the interval
[0, 255], then it gradually becomes similar to the Gaussian distribution, and finally this
distribution evolves into a left-skewed distribution (Figure 5). The negative skewness can
be explained by the fact that the bright background dominates over the dark spots in the
fully evolved pattern of preys.

The Wada index W(16), the mean of the brightness of the pattern N, the p-value of the
Kolmogorov-Smirnov criterion for the normality testing of the distribution function, the
peak signal-to-noise ratio and the structural similarity index during the whole evolution
process are shown in Figure 6.

The reconstructed secret images and their dichotomous representations are depicted
on the 1st–4th rows of Figure 7. The correlation coefficient ρ (the last graph in Figure 7)
reveals the level of the similarity between the original secret image and the reconstructed
dichotomous secret image. A human eye is still capable to interpret the secret image when
ρ > 0.5 (Figure 7).
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It is possible to conclude that the stopping criterion for the information hiding algo-
rithm based on the generation of patterns of spots does meet the same conditions as listed
in Section 3.1 for the stripe-type patterns.
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Figure 6. Information hiding in patterns of spots. Statistical characteristics of the evolution of the
self-organizing pattern of preys. The complexity of the self-organizing pattern is evaluated at each
time step by computing the Wada index W(16) (panel (a)). The mean of the brightness of the pattern
N is shown in panel (b). The red horizontal dotted line in panel (b) denotes the average between
black and white. The p-value of the Kolmogorov-Smirnov criterion for the normality testing of the
distribution function is depicted in panel (c). The red horizontal dotted line in panel (c) denotes the
significance level equal to 0.05. Red squares enumerated from 1 to 14 correspond to the appropriate
snapshots of the pattern during its evolution (Figure 5). PSNR and SSIM computed for the patterns
with and without the embedded secret information are depicted respectively in panels (d,e). The scale
of the x-axis is set to log3 n; one interval marked by a gray vertical line corresponds to 5000 discrete
time steps.

3.3. Optimal Information Hiding in Unstable Patterns

When cross-diffusion coefficients satisfy the conditions D21 = 0 and D12 6= 0 or,
biologically speaking, when preys move towards the higher concentration of predators,
and the predators move along their own concentration gradient, the equilibrium state
becomes unstable [28]. Such a situation can be illustrated by computational experiments
with a following set of parameters: r = 0.5, ε = 1, β = 0.6, K = 2.6, η = 0.25, w = 0.4,
B = 0.2769, D11 = 0.01, D12 = 0.1920, D21 = 0, D22 = 1, Lx = Ly = 80, h = 0.25,
τ = 0.01 [28]. Partially developed self-organizing patterns of preys are presented at
14 different time steps (the 1st and the 3rd rows in Figure 8). Snapshots 7–9 reveal the
competition between spots and stripes, then the pattern of spots begins to settle down
(snapshots 10–12) and, finally, the wave pattern emerges (snapshots 13–14). The distribution
histogram of the brightness of each individual snapshot is shown in blue (the 2nd and the
4th rows in Figure 8). The best approximating Gaussian distribution curve is plotted in red.
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Figure 7. Information hiding in patterns of spots. Difference images at different times steps n (1st and
3rd rows) and the corresponding dichotomous images (2nd and 4th rows). The correlation coefficient
ρ reveals the statistical similarity between the original secret image and a dichotomous decoded
secret image at time step n. Value ρ > 0.5 corresponds to the clear interpretability of the decoded
secret. The scale of the x-axis is set to log3 n; one interval marked by a gray vertical line corresponds
to 5000 discrete time steps.
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Figure 8. Information hiding in unstable patterns. The evolution of the self-organizing pattern of
preys. The snapshots of the partially developed patterns at 14 different time steps n =1, 100, 200, 300,
1000, 5000, 10,000, 30,000, 40,000, 50,000, 75,000, 100,000, 150,000, 200,000 are enumerated from 1 to
14 (the 1st and the 3rd rows). The distribution histogram of each individual snapshot is shown in
blue (the 2nd and the 4th rows). The best approximating Gaussian distribution curve is plotted in red
line on top of the histogram. Vertical red dashed lines correspond to the center point between black
and white.

At the beginning of the evolution, the distribution of the pattern of preys is uniform
on the interval [0, 255] (Figure 8). Then it gradually becomes similar to the Gaussian
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distribution, and finally evolves into an right-skewed distribution. The positive skewness
is a result of the dark background, which dominates over white spots.

The Wada index W(16), the mean of the brightness of the pattern N, and the p-value of
the Kolmogorov-Smirnov criterion for the normality testing of the distribution function
during the whole evolution process are shown in Figure 9. At the beginnig of the evolution,
the Wada index W(16) is relatively high, then it drops down and reaches quasi-stationary
state, then rises again, but begins to oscillate and finally drops almost down to zero. The
mean of the brightness of the pattern N at the end of the demonstrated evolution also
exhibits oscillations with an increasing amplitude. The values of PSNR and SSIM computed
for the patterns with and without the embedded secret information indicate that these
patterns do not differ significantly until n = 30, 000 (Figure 9d–e).
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Figure 9. Information hiding in unstable patterns. Statistical characteristics of the evolution of the
self-organizing pattern of preys. The complexity of the self-organizing pattern is evaluated at each
time step by computing the Wada index W(16) (panel (a)). The mean of the brightness of the pattern
N is shown in panel (b). The red horizontal dotted line in panel (b) denotes the average between
black and white. The p-value of the Kolmogorov-Smirnov criterion for the normality testing of the
distribution function is depicted in panel (c). The red horizontal dotted line in panel (c) denotes the
significance level equal to 0.05. Red squares enumerated from 1 to 14 correspond to the appropriate
snapshots of the pattern during its evolution (Figure 8). PSNR and SSIM computed for the patterns
with and without the embedded secret information are depicted respectively in panels (d,e). The scale
of the x-axis is set to log3 n; one interval marked by a gray vertical line corresponds to 5000 discrete
time steps.

The reconstructed secret images and their dichotomous representations are depicted
on the 1st–4th rows of Figure 10, the correlation coefficient ρ is given in the last graph
in Figure 10. Variation of W(16), N, p-value and ρ during the evolution of the unsta-
ble pattern of white spots leads to the same conditions for the stopping criterion as in
Sections 3.1 and 3.2.

3.4. The Robustness of the Proposed Scheme

The self-organizing pattern generated by the BDA model using the set of the parame-
ters listed in Section 3.1 after n = 1000 iterations (Figure 2, n = 1000) is used to demonstrate
the robustness of the proposed image hiding scheme to the rotation and cropping, partial
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destruction, contamination by noise, and steganalysis algorithms. Self-organizing patterns
with and without the embedded secret information at n = 1000 iterations are presented in
Figure 11a,b. The dichotomous representation of the difference between patterns in panels
(a) and (b) reveals the secret image (panel (c)).

Patterns rotated by 0.1◦ and 1◦ and cropped are shown in Figure 12a,b (the images
on the left). It is clear that the information decoded from the rotated images (even rotated
by small angles) is fully destroyed (Figure 12a,b). Figure 12c,d reveals that the addition of
the salt and pepper noise to the pattern with the embedded secret information partially
destroys the decoded image. Note that 5% of pixels of the pattern with the embedded secret
information are affected by the salt and pepper noise in panel (c) and 50% of pixels—in
panel (d). However, the decoded secret image is still interpretable (Figure 12c,d). The
contamination of the pattern by the Gaussian noise with zero mean and standard deviation
equal to 0.0001 affects approximately 85% of pixels of the pattern but does not fully destroy
the decoded image (Figure 12e). Note that a partial destruction of the pattern (Figure 12f)
enables to retrieve the secret information only within the undamaged part of the image.
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Figure 10. Information hiding in unstable patterns. Difference images at different times steps n
(1st and 3rd rows) and the corresponding dichotomous images (2nd and 4th rows). The correlation
coefficient ρ reveals the statistical similarity between the original secret image and a dichotomous
decoded secret image at time step n. Value ρ > 0.5 corresponds to the clear interpretability of the
decoded secret. The scale of the x-axis is set to log3 n; one interval marked by a gray vertical line
corresponds to 5000 discrete time steps.

It is important to ensure that the secret information embedded into the self-organising
pattern would not be discoverable by the eavesdropper by means of a straightforward
analysis of the transmitted pattern. We demonstrate that the bit plane analysis and the RS
analysis algorithms (standard steganalysis techniques) are unable to reveal the fact that
any secret information is concealed in the self-organizing pattern.

Figure 13 demonstrates that the bit planes of the pattern with the embedded image
(depicted in Figure 11a) reveal no secret information.
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(a) (b) (c)

Figure 11. Self-organizing patterns with and without the embedded secret information at n = 1000
iterations are depicted in panels (a,b) respectively. Dichotomous representation of the difference
between patterns in panels (a,b) reveals the secret image in panel (c).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 12. The robustness of the proposed scheme to the rotation and cropping, the contamination
by noise and partial destruction of the image is demonstrated for the pattern with the embedded
secret information at n = 1000 iterations (Figure 11a). The rotation of the pattern by 0.1◦ and 1◦

and cropping (panels (a,b) on the left) destroy the secret information (panels (a,b) on the right).
Contamination of the pattern by the salt and pepper noise partially destroys the decoded image
in panels (c,d) (5% of pixels of the pattern are affected in panel (c) and 50% of pixels–in panel (d))
Contamination of the pattern by Gaussian noise with zero mean and standard deviation equal to
0.0001 affects approximately 85% of pixels of the pattern (panel (e) on the left). A partial destruction of
the pattern (panel (f) on the left) enables to retrieve the secret information only within the undamaged
part (panel (f) on the right).

The RS analysis algorithm tests the robustness of the proposed algorithm to the statis-
tical steganalysis [38]. The number of regular groups for mask M is RM (the percentage of
all groups). Similarly, SM is the relative number of singular groups. R−M and S−M reveal
the numbers of regular and singular groups respectively for the negative mask −M. The
statistical hypothesis of the RS analysis implies that a typical image without the embedded
information (corresponding to the zero point on the x-axis) does produce approximately
equal expected values of RM and R−M (the same holds for SM and S−M) [38]. The RS
diagram computed for the pattern with the embedded secret information is presented in
Figure 14. The x-axis is the percentage of pixels with flipped LSBs; the y-axis is the relative
number of regular and singular groups with masks M and −M respectively. Note that
RM ∼= R−M and RS ∼= R−S at x = 0 . The RS diagram indicates that the proposed image
hiding algorithm based on the self-organising patterns is robust to the RS steganalysis.
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Bit plane 0 Bit plane 1 Bit plane 2 Bit plane 3

Bit plane 4 Bit plane 5 Bit plane 6 Bit plane 7

Figure 13. Bit planes of the pattern with the embedded secret information in Figure 11a do not reveal
the secret information.
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Figure 14. The RS diagram computed for the pattern with the embedded secret information in
Figure 11a shows that the proposed image hiding algorithm is robust to the RS steganalysis. The
x-axis is the percentage of pixels with flipped LSBs; the y-axis is the relative number of regular and
singular groups with masks M and −M). Note that RM ∼= R−M and RS ∼= R−S at x = 0.

3.5. More Examples of Different Carrier Patterns and Hidden Images

The proposed steganography algorithm based on the BDA model with the self- and
cross-diffusion is demonstrated for different secret images. Three different sets of param-
eters of the BDA model are used to hide each secret image. Modelling results are given
in Figures 15 and 16. All self-organizing patterns with the embedded secret information
in Figures 15 and 16 look rather similar, in spite of the fact that these patterns are gener-
ated by the BDA model with the different sets of the parameters. Note that the further
evolution of these patterns would result into the distinct patterns of stripes, dots or un-
stable patterns (the BDA model with the self- and cross-diffusion cannot produce other
types of patterns [28]). This similarity is predetermined by the derived stopping criterion
(Section 3.1) which does not allow the patterns to become fully-developed. The reconstructed
secret image becomes distorted if the stopping condition exceeds the optimal stopping criterion
(Figures 15d and 16d).
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(c)

(b)

(d)

(a)

Figure 15. Hiding alphanumerical symbols in the patterns generated by the BDA model: the set of the
parameters defined in Section 3.1 with n = 4900 is used in panel (a); the set of the parameters defined
in Section 3.2 with n = 2700 is used in panel (b); the set of the parameters defined in Section 3.3 with
n = 5700 is used in panel (c); the set of the parameters defined in Section 3.2 with n = 13, 900 is used in
panel (d). Self-organizing patterns with and without the embedded secret information are depicted in
the 1st and the 2nd columns; the decoded secret images and their dichotomous counterparts are shown
in the 3rd and the 4th columns.
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(b)

(a)

(c)

(d)

Figure 16. Hiding the radiation sign in the patterns generated by the BDA model: the set of the
parameters defined in Section 3.1 with n = 2600 is used in panel (a); the set of the parameters defined
in Section 3.2 with n = 2500 is used in panel (b); the set of the parameters defined in Section 3.3 with
n = 2700 is used in panel (c); the set of the parameters defined in Section 3.2 with n = 18, 400 is used
in panel (d). Self-organizing patterns with and without the embedded secret information are depicted
in the 1st and the 2nd columns; the decoded secret images and their dichotomous counterparts are
shown in the 3rd and the 4th columns.

4. Concluding Remarks

Information hiding in self-organizing patterns is discussed in this paper. The hiding
scheme is implemented in the form of a difference image between two patterns. The
first pattern is allowed to evolve from random initial conditions. The second pattern
is started to evolve from the same random initial conditions but perturbed by the dot-
skeleton representation of the secret image. Nonlinear self- and cross-diffusion effects in
the BDA model are exploited to generate smooth representations of the secret image in the
difference image.

However, the quality of the reconstructed secret image does depend on the stopping
criterion which defines the duration of the evolution of two patterns. The main objective
of this paper is to experimentally define the statistical features of self-organizing patterns
which can yield optimal representations of the secret image. Moreover, it is well known in
the scientific literature that the BDA model is capable to generate different patterns. Patterns
of stripes, patterns of spots, or even unstable patterns are typical patterns generated by the
BDA model at different values of its parameters.

It appears that the optimal duration of the pattern evolution does not depend on the
type of the pattern. Three main conditions must be satisfied before the evolution of the
pattern could be stopped. The Wada index of the evolving pattern must drop from the
initial higher values–the small scale chaos represented by the random initial conditions
should be transformed into a smoother image. The mean brightness of the image should
remain around the middle of the brightness interval before dropping down significantly
below the average. Finally, the distribution function should remain Gaussian.

All three conditions must hold true simultaneously. Those conditions do specify the
state of the developing pattern when the small scale chaos of the initial random distribution
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is gradually transforming into the large scale chaos of the primitives (stripes or spots) in
the fully developed pattern. As mentioned previously, it is rather unexpected to observe
that the conditions do not depend on the type of the pattern in the BDA model.

Although the concept of image hiding in self-organizing patterns has been introduced
more than a decade ago, the discussion on the time required for the pattern to evolve
before the hidden image can be delivered to the recipient has been missing in the scientific
literature. It appears, that many important factors do contribute to the formulation of the
stopping conditions (the type of the distribution function, the Wada index, the mean of
the brightness). Moreover, it appears that the formulated stopping criteria do not depend
on the type of the pattern generated by the BDA predator-prey model (even if the self-
organizing pattern becomes unstable). These important aspects do constitute the novelty of
this work.

Clearly, the BDA model is only one of many models used to generate self-organizing
patterns. Experimental (computational) observation of the conditions yielding optimal
information hiding in self-organizing patterns generated by other types of models remains
a definite objective of future research.

The discussed image hiding algorithm is based on nonlinear physical interactions
during the formation of self-organizing patterns. The secret image is interpreted as a
dichotomous image comprised from relatively thick lines or spots. It is natural to compare
the functionality of this image hiding algorithm with other similar image hiding algorithms.
One of the closest algorithms (in terms of the structure of the secret image and the informa-
tion hiding capacity) is the image hiding scheme based on dynamic visual cryptography
(DVC) [39,40]. The DVC scheme is also based on nonlinear physical processes (the forma-
tion of time-averaged moiré fringes in the oscillating carrier image). The secret image is also
a dichotomous image. The information hiding capacity of the DVC scheme is comparable
to the one discussed in this paper (it is determined by the wavelength of the moiré grating).

A clear advantage of the DVC scheme is that the dichotomous secret is revealed in the
time-averaged carrier image (the computation of the difference image between two patterns
is not required) [39,40]. A serious disadvantage of the DVC scheme is the security of the
cover image (a naked human eye cannot see the secret image—but statistical algorithms
can reveal the embedded secret) [39,40]. This comparison is a good example of the well-
known “No free lunch” theorem [41,42]. It is very difficult to expect that a single scheme
would have all possible advantages, compared with other existing schemes. Anyway, the
development of an image hiding algorithm with the best features inherited from the BDA
model and the DVC scheme remains a definite objective of future research.
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