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The free energy principle (FEP) is a formulation of the adaptive, belief-driven be-
haviour of self-organizing systems that gained prominence in the early 2000s as a unified
model of the brain [1,2]. Since then, the theory has been applied to a wide range of biotic
phenomena, extending from single cells and flora [3,4], the emergence of life and evolu-
tionary dynamics [5,6], and to the biosphere itself [7]. For our part, we have previously
proposed that the FEP can be integrated with Tinbergen’s seminal four questions in biology
to furnish a multiscale ontology of living systems [8]. We have also explored more specific
applications, e.g., to the evolution and development of human phenotypes [9–11], socio-
cultural cognition, behaviour, and learning [12,13], as well as the dynamic construction of
environmental niches by their denizens [14,15].

Despite such contributions, the capacity of the FEP to extend beyond the human
brain and behaviour, and to explain living systems more generally, has only begun to be
explored. This begs the following questions: Can the FEP be applied to any organism?
Does it allow us to explain the dynamics of all living systems, including large-scale social
behaviour? Does the FEP provide a formal, empirically tractable theory of any complex
adaptive system, living or not? With such questions in mind, the aim of this Special Issue
was to showcase the breadth of the FEP as a unified theory of complex adaptive systems,
biological or otherwise. Instead of concentrating on the human brain and behaviour, we
welcomed contributions that applied the FEP to other complex adaptive systems, with the
hope of exemplifying the extent of its explanatory scope.

For the uninitiated, it is worth briefly outlining what the FEP is. Variational free energy
refers to an information theoretic quantity that places an upper limit on the entropy of
a system’s observations, relative to a generative model instantiated by an agent. (In this
context, entropy is defined as the time-average of ‘surprise’ or the negative log probability
of the agent’s sensory data.) Generative models harness probabilistic mappings from
hidden causes in the environment to observed consequences (i.e., sensory data), and state
transitions inherent to the environment [2]. Under the FEP, an organism is modelled as
implicitly ‘expecting’ to find itself within a limited range of phenotypic states; as such,
deviations from these states elicit a type of ‘phenotypic surprise’ (i.e., the deviation between
actual and phenotypically preferred states). Consequently, organisms remain alive by acting
in ways that minimize this type of surprise (e.g., a fish avoiding the ‘state’ of being out of
water). In other words, and more heuristically, free energy scores the discrepancy between
desired and sensed data; and the FEP states that the imperative of all self-organizing
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systems is to keep this discrepancy at bay by bringing about preferred observations via
action (see Figure 1).
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Figure 1. The free energy principle. (A) Schematic of the quantities that characterise free energy, 
including a system’s internal states, μ (e.g., a brain), and quantities that describe the system’s ex-
changes with the environment; specifically, its sensory input, s  =  g(η,a) + ω, and actions, a, which 
alter the ways in which the system samples its environment. Environmental states are further de-
fined by equations of motion, η  = f(η,a) + ω, which describe the dynamics of (hidden) states extra-
neous to the system, η, whereas ω refers to random fluctuations. Under this scheme, internal states 
and action operate synergistically to reduce free energy, which reflects a function of sensory input 
and the probabilistic representation (variational density), q(η:μ), that internal states encode. Note 
that external and internal states are statistically separated by a Markov blanket, which possesses 
both ‘sensory’ and ‘active’ states. Internal states are influenced by, but cannot affect, sensory states, 
whereas external states are influenced by, but cannot affect, active states, creating a conditional in-
dependence between the system and its environment. (B) Alternative equations that describe the 
minimisation of free energy. With respect to action, free energy can only be suppressed by the sys-
tem’s selective sampling of (predicted) sensory input, which increases the accuracy of its predic-
tions. On the other hand, optimising internal states minimises divergence by making the represen-
tation an approximate conditional density on the hidden causes of sensory input. This optimisation 
reduces the free energy bound on surprise, which means that action allows the system to avoid 
surprising sensations. Reproduced from [8]. 

There are two main ways for a self-organizing system to minimize free energy. The first 
is by changing its perception of the world. Previously, this has been explored through ref-
erence to human neural processing. The FEP appeals to a view of the brain as a hierarchical 
“inference machine”, which instantiates a hierarchy of hypotheses about the world (i.e., a 
generative model) that enables an organism to minimize free energy (and therefore keep 
entropic dissipation at bay, at least locally) by reducing discrepancies between incoming 
sensory inputs and top-down predictions (i.e., prediction errors) [2]. Neurobiologically 
xpectations about sensory data are thought to be encoded by deep pyramidal cells (i.e., rep-
resentation units) at every level of the cortical hierarchy, which carry predictions downward 

Figure 1. The free energy principle. (A) Schematic of the quantities that characterise free energy,
including a system’s internal states, µ (e.g., a brain), and quantities that describe the system’s
exchanges with the environment; specifically, its sensory input, s = g(η,a) + ω, and actions, a, which
alter the ways in which the system samples its environment. Environmental states are further defined
by equations of motion,

.
η = f(η,a) + ω, which describe the dynamics of (hidden) states extraneous

to the system, η, whereas ω refers to random fluctuations. Under this scheme, internal states and
action operate synergistically to reduce free energy, which reflects a function of sensory input and
the probabilistic representation (variational density), q(η:µ), that internal states encode. Note that
external and internal states are statistically separated by a Markov blanket, which possesses both
‘sensory’ and ‘active’ states. Internal states are influenced by, but cannot affect, sensory states, whereas
external states are influenced by, but cannot affect, active states, creating a conditional independence
between the system and its environment. (B) Alternative equations that describe the minimisation
of free energy. With respect to action, free energy can only be suppressed by the system’s selective
sampling of (predicted) sensory input, which increases the accuracy of its predictions. On the other
hand, optimising internal states minimises divergence by making the representation an approximate
conditional density on the hidden causes of sensory input. This optimisation reduces the free
energy bound on surprise, which means that action allows the system to avoid surprising sensations.
Reproduced from [8].

There are two main ways for a self-organizing system to minimize free energy. The
first is by changing its perception of the world. Previously, this has been explored through
reference to human neural processing. The FEP appeals to a view of the brain as a hierarchi-
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cal “inference machine”, which instantiates a hierarchy of hypotheses about the world (i.e.,
a generative model) that enables an organism to minimize free energy (and therefore keep
entropic dissipation at bay, at least locally) by reducing discrepancies between incoming
sensory inputs and top-down predictions (i.e., prediction errors) [2]. Neurobiologically
xpectations about sensory data are thought to be encoded by deep pyramidal cells (i.e., rep-
resentation units) at every level of the cortical hierarchy, which carry predictions downward
to suppress errors at the level below, whereas prediction errors themselves are encoded
by superficial pyramidal cells and are carried forward to revise expectations at the level
above [16]. The relative influence of ascending (error) and descending (representation)
signals is weighted by their inverse variance or precision (e.g., a high precision on ascending
error signals lowers confidence in descending predictions), which is mediated by neuro-
modulation and reflected psychologically by attentional selection and sensory attenuation.
In short, the recursive neural dynamics described here enable us to minimise free energy
(resp. prediction error) by updating our internal models (i.e., perception).

Second, an organism can reduce surprise directly by acting upon the world in order
to fulfill its expectations and generate unsurprising sensations. This process of ‘active
inference’ describes how an organism reduces free energy through self-fulfilling cycles
of action and perception [17]. Active inference models implement action selection as the
minimization of expected free energy, which is the free energy expected under beliefs about
possible courses of action, or policies. By selecting actions that are expected to minimize
free energy, the organism can maintain itself within preferred, phenotypically unsurprising
states. Thus, survival mandates that an organism must not only reduce free energy from
moment to moment; it must also reduce the expected free energy associated with the future
outcomes of action [18,19].

Having briefly outlined the rudiments of the FEP, let us turn briefly to complex adap-
tive systems (CAS). This concept is synonymous with complexity science and has its roots
in evolutionary systems theory, which assumes a dynamic, inextricable relationship be-
tween generalised selection and self-organization [11]. Broadly speaking, a CAS refers
to any multi-component, self-organising system that adapts to it environment through
an autonomous process of selection, which recruits the outcomes of localised interac-
tions between its components to select a subset of those components for replication and
enhancement [20]. Holland [21] describes four key features of CAS: they consist of large
numbers of components that interact by sending and receiving signals (i.e., parallelism); the
actions of their components depend upon the signals they receive (i.e., conditional action);
groups of rules can form subroutines that can be combined to deal with environmental
novelties (i.e., modularity); and the components of the system change over time to adapt
to the environment and improve performance (i.e., adaptation). Applications of the CAS
framework have proliferated across the physical, human and computer sciences, but there
is not the scope to survey this literature here. However, to pre-empt the papers to follow, we
would note that this framework has already been applied to precisely the same systems that
are the foci of our contributors–ranging from metabolic and cellular processes, e.g., [22–26];
to the brain and social processes, e.g., [26–30]; and to artificial intelligence and robotics,
e.g., [31–33]. The articles presented in our Special Issue build upon such literature by
illustrating how the FEP can afford fresh insights into the dynamics of CAS.

Three of the contributions to our Special Issue leverage the FEP to cast new light
on processes intrinsic to biological agents. In Cancer Niches and their Kikuchi Free Energy,
Sajid, Convertino et al. [34] examine cancer morphogenetic fields as undesirable stable
attractors in the complex dynamics of homeostasis, self-renewal and differentiation, which
contributes to their deviation from regular autopoietic homeostasis (the internal molec-
ular dynamics that regulate the production and regeneration of a system’s components).
Sajid, Convertino et al. offer a computational model in silico to study communication and
information processing at a population level of cancer cell networks within their environ-
ment in vivo. By deploying the Kikuchi free energy approximation, which is a generali-
sation of the Bethe free energy for computing beliefs over large sets of cell clusters, they
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account for higher-order interactions and phase transitions between clusters of healthy
and oncogenic cells. Here, cancer niche construction can be construed as a Bayes-optimal
process for the transmission of information across different levels of cellular networks due
to its tendency to minimize the overall Kikuchi free energy over the whole system. Their
findings suggest that three distinct cancer trajectories–namely, proliferation (local growth),
metastasis and apoptosis–can emerge from the natural evolution of the state function
(i.e., free energy) in biological systems. These findings have important implications for our
understanding and study of cancer cell growth and apoptosis.

Next, Parr describes how biochemical networks in adaptive biological systems can be
recast in terms of an inferential message passing scheme that involves the gradient descent
on variational free energy towards the least surprising states, based on the organism’s
implicit (generative) model of these states. In Message Passing and Metabolism [35], he
points out that the biochemical regulation of metabolic processes relies on sparse interac-
tions (message-passing) between coupled reactions, with enzymes creating conditional
dependencies between reactants. He then extrapolates the law of mass action (the rate of
chemical reaction and the concentrations of reactants involved in this process) and the
Michaelis–Menten kinetics (which approximates the dynamics of irreversible enzymatic reac-
tions) from the FEP. Assuming the existence of a causal structure in biochemical (metabolic)
networks, one can build the sparse message passing scheme to capture the independence
of substrates and products, conditioned upon the enzyme and enzyme-substrate complex
within such networks. The temporal evolution of the categorical probability of each state
within this system can be described by a chemical master equation that takes into account
sparse network interactions. Parr describes how the steady state distribution of these
dynamics can be recast as a generative model, which suggests that the biochemistry that
underlies metabolism follows an inferential message-passing scheme that seeks to minimise
free energy. An important extension of Parr’s model is that metabolic disorder can emerge
when an enzymatic disconnection by thiamine depletion interrupts message passing and
incites aberrant prior beliefs, which gives rise to false (biochemical) inference.

The third contribution follows more traditional applications of the FEP by account-
ing for conscious, first-person experience. In The Radically Embodied Conscious Cybernetic
Bayesian Brain, Safron [36] proposes models of embodied conscious agency based on the
FEP, extending the Integrated World Modelling Theory of consciousness proposed else-
where [37] to explicitly account for aspects of intentional actions and agentic experiences.
According to the radically embodied account on offer, what we call attention and imagi-
nation emerge from the (sometimes liminal) activity of multimodal, action-oriented body
maps and representations, realized as neural attractors in the form of ‘embodied self-
models’ (ESMs), which conform to the FEP as cybernetic controllers. When functioning
online, ESMs allow for overt interactions with affordances, or structured possibilities for
environmental interactions. However, Safron suggests subthreshold activations of such
‘quasi-homuncular’ ESMs also underwrite our (affordance-structured) covert abilities to
imagine and pursue courses of action, as well as our ability to intentionally deploy at-
tentional resources. Thus, even seemingly abstract representational capacities may be
grounded in twin capacities for embodied action and counterfactual explorations of the
world. Safron then applies this radically embodied perspective to core aspects of conscious
experience. He attempts to chart a middle way between perspectives in the representa-
tion wars in cognitive science, describing brains as hybrid machine learning architectures
capable of supporting both symbolic and sub-symbolic processes for 4E agents (where
cognition is thought to be embodied, embedded, enacted and extended). Safron’s perspective is
ecumenical, deploying information-theoretic constructs and representationalist concepts
that would be rejected by hard-line proponents of both 4E cognition and more Cartesian
(representationalist) approaches. For example, to account for information flow in mam-
malian brains, Safron deploys constructs that are typically rejected by 4E theorists, such as
Cartesian theatres and quasi-homunculi. However, he does so from a radically embodied
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perspective, suggesting that such a “strange inversion of reasoning” follows from principles
of cognitive development and computational neuroscience.

Unlike the authors above, Goekoop and de Kleijn look beyond the phenotype to
consider how the FEP might apply to groups. In Permutation Entropy as a Universal Disorder
Criterion [38], they argue that living systems can be described as hierarchical problem-
solving machines that embody predictive models of their econiches, called a goal hierarchy,
which incorporates a set of lower-order econiches (goals) and corresponding subniches
(subgoals) that the system needs to pursue in order to achieve the global econiche (goal)
represented at the top of the hierarchy. Using this scheme to frame the rest of their argument,
they concentrate on stress responses in organisms, dyads and collectives. Equating stress
with free energy or ‘prediction error’, and stress responses with ‘action’, they suggest that
as free energy increases, there is a progressive collapse of (allostatic) hierarchical control,
eventually resulting in disordered states characterised by behavioural shifts from long-
term goal-directed behaviour (e.g., reproductive success) towards short-term goals and
habitual behaviours concentrated on self-preservation (e.g., survival). After introducing
permutation entropy as a universal measure of disordered states across such systems, they
briefly describe how their model can be used to explain disorder at an individual level,
before progressing to the transmission of disorder through interpersonal interactions, and
concluding with a brief discussion of population-level dynamics.

The idea that the FEP can be extended to social systems is also taken up by Kaufmann
and colleagues. In An Active Inference Model of Collective Intelligence [39], the authors
propose an active inference model of alignment, describing the manner in which within-
scale local interactions (e.g., individual agents’ behaviors) can align with cross-scale global
phenomena (e.g., collective behavior) in multi-scale systems. In so doing, they offer a
principled, agent-based model that has the potential to function as a workbench to simulate
collective intelligence as an emergent phenomenon, across many scales. Although one
obvious target for this modelling approach would be human behavior as an emergent
phenomenon that ties physiological, cognitive and cultural dynamics, nothing, in principle,
limits the application of Kaufmann and colleagues’ model to human phenomena.

In another paper that illustrates the broad scope of multiscale thinking under active
inference, Jesse Hoey, in Equality and Freedom as Uncertainty in Groups [40], shows how
agents attempting to align with other group members leads to a quasi-equilibrium, or
“sweet spot”, at which the group free energy is minimal and the agent’s predictive capacity
of higher order parameters, such as those attributed to the group, matches the group’s
capacity to predict an agent’s behavior. Hoey further discusses two intriguing trade-offs.
Higher agent model complexity leads to lower individual learning capacity with respect to
the complexity of the group, resulting in agents who are hobbled in the pursuit of their own
ends, but in a group that is more diverse, innovative, and open to change. On the other
hand, lower agent model complexity allows the expression of individual preference towards
the group, but the group becomes more homogeneous, secure, and closed, as otherwise the
pro-social behaviours of individual agents would be hampered. Hoey suggests that such
emergent social dynamics provides insights into concepts such as freedom and equality in
society, which correspond to changes in model uncertainties and complexities. Oscillation
between radical freedom, where no cooperation is possible, and radical equality, where no
discovery is possible, is an emergent phenomenon characteristic of Western society; akin to
what Karl Marx called historical materialism, which according to many is the main driver
of history itself. Could Hoey′s findings initiate research on an active inference model of
history as an emergent phenomenon of human societies?

So far, we have considered a range of applications of the FEP to living systems.
However, active inference–the process theory derived from the FEP–is increasingly being
applied to machine intelligence in practical settings. Use cases in robotics provide an
exciting opportunity to test the applicability of active inference to implement sensory
processes and motor control in real time. In their review for our Special Issue, How
Active Inference Could Help Revolutionise Robotics, Da Costa and colleagues [41] examine the
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usefulness of active inference for several core problems in robotics, such as state estimation
in artificial perception, motor control, learning, safety and explainability. They argue
that active inference may help advance robotics due to several of its core features: it
enables explainable artificial intelligence in a manner that operates in situations involving
uncertainty, volatility, and noise. This is especially relevant for human-centric applications,
such as human–robot interaction and healthcare.

In closing, it is worth recognising that the majority of submissions presented herein
focus chiefly on human systems, despite our call for more wide-ranging applications. Nev-
ertheless, it should be clear that the authors’ proposals can be readily extended to other com-
plex adaptive systems, including biological dynamics intrinsic to other lifeforms [34–36],
collective, group-level behaviour [39,40], and even non-living systems [41]. Taken together,
we hope that the collection of papers presented in our Special Issue motivate others to
consider how the FEP might be gainfully applied to their own systems of interest, living
or otherwise.
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