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Abstract: Interesting coherence and correlations appear between superpositions of two bosonic
modes when the modes are parametrically coupled to a third intermediate mode and are also coupled
to external modes which are in thermal states of unequal mean photon numbers. Under such
conditions, it is found that one of linear superpositions of the modes, which is effectively decoupled
from the other modes, can be perfectly coherent with the other orthogonal superposition of the modes
and can simultaneously exhibit anticoherence with the intermediate mode, which can give rise to
entanglement between the modes. It is shown that the coherence effects have a substantial effect on
the population distribution between the modes, which may result in lowering the population of the
intermediate mode. This shows that the system can be employed to cool modes to lower temperatures.
Furthermore, for appropriate thermal photon numbers and coupling strengths between the modes, it
is found that entanglement between the directly coupled superposition and the intermediate modes
may occur in a less restricted range of the number of the thermal photons such that the modes could
be strongly entangled, even at large numbers of the thermal photons.

Keywords: coherence; anticoherence; entanglement; nonlinear systems

1. Introduction

The problem of the creation of coherence and correlations between quantum systems
has attracted considerable interest over the years not only because of a basic desire to
understand how coherence and correlations could be created but also because of their
importance in determination of nonclassical states of quantum systems [1–4]. Various types
of correlations can exist between quantum systems, and their importance in understanding
properties of quantum systems is often discussed in connection with different phenomena.
For example, interference and quantum beats are among the simplest examples of phenom-
ena resulting from the presence of mutual coherence, the so-called first-order correlation
between quantum systems. Nonclassical phenomena, such as squeezing and entanglement,
result from the presence of a different kind of correlation, often referred to as anomalous
correlations [5,6]. The mutual coherence resulting from the first-order correlation is pro-
duced by a constant or nearly constant phase difference between quantum systems [3,4,7,8].
There are, however, coherence effects resulting from higher-order correlations, e.g., the
intensity correlations, which are possible even when the phase difference between systems
is random [9–12].

Anomalous and intensity correlations are the natural products of a range of two-
photon processes in which simultaneous or nearly simultaneous pairs of photons are
produced [13,14]. Because each photon in the pair has no definite phase, there is no con-
stant phase relation between them. Therefore, photons in the pair behave as mutually
incoherent. This property has been observed experimentally in the process of parametric
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down conversion where pairs of photons, called the signal and idler photons, are pro-
duced [15,16]. Although the signal and idler photons are mutually incoherent, they are
found in an entangled state which results from the anomalous correlation between the
photons [17,18]. This observation suggests that the first-order correlation, which is respon-
sible for the coherence and the anomalous correlation, are mutually exclusive. Following
this observation, Mandel [19] proposed to call quantum systems exhibiting anomalous
correlation as anticoherent.

The purpose of the present paper is to explore further possibilities to create coherence
and anticoherence in a multipartite system. We consider a tripartite system composed of
three coupled bosonic modes and investigate their coherence and anicoherence properties
in an example of a three-mode optomechanical system, which consists of two cavity modes
simultaneously coupled to the mode of a vibrating membrane. We assume that the cavity
modes are affected by external input modes, which are in thermal states of unequal mean
photon numbers. The difference in the mean number of photons of the input thermal
fields constitutes an important and essential aspect of the work presented here. We will
show how the populations of the modes and the correlations between them are sensitive
to the population of the external thermal modes. When the external modes are in thermal
states of different mean number of photons, we find that the steady-state populations of
the modes can be dramatically altered, even to the point of the complete transfer of the
population between the modes. Moreover, coherence and anticoherence, which may lead
to entanglement between modes, can be established between modes which are completely
decoupled from each other. This is certainly a surprising result since one would expect no
correlations between decoupled modes affected by external thermal fields.

The paper is organized as follows. In Section 2, we introduce our model and the
method of the evaluation of the dynamics of the systemś modes using an optomechanical
system as an illustration. In Section 3, we study the properties of the steady-state population
distribution between the modes. Section 4 is devoted to studying the correlations between
the modes. We finish in Section 5 with the conclusion. In Appendix A, we present, as an
illustration, a detailed derivation of the analytical expression for the steady-state population
of the membrane mode.

2. Three-Mode System

The system we study consists of three parts; two modes whose fields are described by
annihilation operators a1 and a2, coupled to a third mode whose field is described by an
annihilation operator b. The modes a1 and a2 are coupled to mode b through the nonlinear
(parametric) squeezing-type interactions. There is no direct coupling between modes a1
and a2. The Hamiltonian interaction for the three coupled modes is taken to be

H = h̄g1

(
a†

1b† + a1b
)
+ h̄g2

(
a†

2b† + a2b
)

, (1)

where g1 and g2 are the coupling constants between modes a1 and b, and a2 and b, re-
spectively. The nonlinear squeezing-type interactions, as described by the Hamiltonian (1)
can be created in a variety of systems. For example, squeezing-type interactions between
several modes have been realized in linear optical schemes involving external source of
squeezed light and networks of beamsplitters [20]. Another example where this type
of interaction can be created is a ring cavity containing an atomic ensemble coupled to
counter-propagating modes of the cavity [21,22].

A good example of such a system is an optomechanical system consisting of two
single-mode cavities sharing an oscillating mirror [23], or a single-mode optical cavity
coupled to two mechanical modes of a vibrating membrane [24–26]. The method of how to
achieve the parametric-type interaction between cavity modes and mechanical (mirror or
membrane) mode has been discussed in several review papers [27–29]. In what follows,
we consider an optomechanical system similar to that considered by Paternostro et al. [23]
where entanglement properties between the modes were studied, assuming that only
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the mirror mode is affected by external thermal fluctuations, i.e., the cavity modes were
assumed to be in the ordinary vacuum states. This a a common practice in the study of
the dynamics of optomechanical systems to assume that only the oscillating mirror or
membrane is in contact with external modes (reservoir), being in a thermal state [30–35].
The ordinary vacuum states of the cavity modes are achieved by the coupling of the modes
to an input (external) zero temperature modes. In practice, external modes are not in the
ordinary vacuum but rather in non-zero temperature thermal states. Therefore, in what
follows, we explore some correlation properties of a three-mode system, illustrated in
Figure 1, assuming that the input modes to each of the cavities are in thermal states of
unequal mean numbers of photons. The correlation properties of the modes affected by
input thermal fields of unequal number of photons is the key point of the present work.

a1 a2 a2ina1in
b

Figure 1. Schematic diagram of the system composed of two single-mode cavities sharing a vibrating
membrane. The input fields to the cavities are in thermal states of unequal mean photon numbers.

2.1. Time Evolution of the Modes

We start by writing a complete set of the quantum Langevin equations for the system
which can be easily obtained from the Hamiltonian (1) when taking into account dissipation
(damping) of the modes and coupling of the modes to external input modes. In the rotating
frame, the equations are of the form

ḃ = −γ b +
1
2

i
(

g1a†
1 + g2a†

2

)
+
√

2γ bin,

ȧ1 = −κa1 +
1
2

ig1b† +
√

2κ ain
1 , (2)

ȧ2 = −κa2 +
1
2

ig2b† +
√

2κ ain
2 ,

where γ is the decay rate of the membrane mode, and we have assumed the same decay rate
κ for both cavity modes. Throughout Equation (3), operators ain

1 , ain
2 and bin are the input

noise operators arising from the coupling of the modes to external modes (reservoirs). Here,
we assume that the external modes are statistically independent, δ correlated, Gaussian,
and in thermal states with

〈ain
i (t)ain†

i (t′)〉 = (ni + 1)δ(t− t′),
〈ain†

i (t)ain
i (t′)〉 = niδ(t− t′),

〈bin(t)bin†(t′)〉 = (nb + 1)δ(t− t′),
〈bin†(t)bin(t′)〉 = nbδ(t− t′),

(3)

where ni = (exp{h̄ω/kBTi} − 1)−1 is the average number of photons in the external modes
coupled to the i-th cavity mode of frequency ω and temperature Ti, and
nb = (exp{h̄ω/kBTb} − 1)−1 is the average number of photons in the external modes
of temperature Tb coupled to the membrane mode. Thus, in the absence of coupling to
the membrane mode the cavity modes, a1 and a2 are in thermal states with mean numbers
of photons n1 and n2, respectively, whereas the membrane is in thermal state with mean
number of photons nb.
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2.2. Linear Superpositions of the Modes

It is seen from Equation (3) that mode b interacts simultaneously with both cavity
modes. When a mode interacts simultaneously with two other modes, they may act
collectively on the given mode. Therefore, it is more convenient to describe the dynamics
of the system under consideration in terms of linear superpositions of the cavity modes.
Thus, we can transform cavity annihilation operators to linear superpositions aw and au of
the form

aw = a1 cos θ + a2 sin θ,
au = a1 sin θ − a2 cos θ,

(4)

and similarly, for the annihilation operators of the external input fields

ain
w = ain

1 cos θ + ain
2 sin θ,

ain
u = ain

1 sin θ − ain
2 cos θ,

(5)

where the mixing angle θ is given by tan θ = g2/g1. Hence in terms of the superposition
modes, Equation (3) assumes the simplified form

ḃ = −γb +
1
2

iga†
w +

√
2γ bin,

ȧw = −κaw +
1
2

igb† +
√

2κ ain
w , (6)

ȧu = −κau +
√

2κ ain
u ,

where g is the effective coupling strength between the modes, g =
√

g2
1 + g2

2.
For both analytical and numerical analyses, it is convenient to write the set of differen-

tial Equation (7) in a matrix form

v̇ = Av + fin, (7)

where vT = [b, a†
w, au], fT

in = [
√

2γbin,
√

2κ(ain
w )†,
√

2κain
u ], and the drift matrix A is given by

A =

 −γ 1
2 ig 0

− 1
2 ig −κ 0
0 0 −κ

. (8)

From Equation (4) we see that the superpositions of the modes can be controlled
through θ by changing the relationship between coupling constants g1 and g2. However, the
most important property seen from Equation (7) is that the superposition mode determined
by the annihilation operator au is effectively decoupled from modes aw and b. On the
other hand, the mode aw is coupled to the membrane mode b with the effective coupling
constant g. Despite the lack of the coupling of the au mode to the remaining modes, we will
show that the mode au can exhibit first-order coherence with the mode aw and the so-called
anticoherence with the mode b. The coupling configurations between different modes is
shown in Figure 2.

Although the time-dependent solution of Equation (7) is complicated, see Appendix A,
the steady-state solution is simple and easily obtained. Therefore, we will focus on the
steady-state populations of the modes and correlations between them. We note that
the solutions for the populations and correlation functions can be obtained from Equa-
tion (7) without approximations by a direct integration of the equations of motion. In
the Appendix A, we present a detailed derivation of the steady-state population of the
membrane mode.
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b

a1

g1 g2

a2

(a)

b

(b)

aw au

g

(c)

b

aw au

g

coherent

anticoherent

Figure 2. Coupling configurations between modes of the system. (a) Couplings between the mirror
mode b and the cavity modes a1 and a2. (b) Couplings between the mode b and the superposition
modes aw and au. (c) Illustration that the decoupled mode au can be coherent with mode aw and
anticoherent with mode b.

3. Populations of the Modes

Let us first examine how different modes are populated in the presence of thermal
fields of different mean photon numbers ni. Solving Equation (7) for the steady-state, we
find that the populations of the modes are

〈b†b〉 = nb +
κ(nb + 1)g2

(κ + γ)(4κγ− g2)
+

κg2

(κ + γ)(4κγ− g2)
(n + δn cos 2θ),

〈a†
waw〉 =

γ(nb + 1)g2

(κ + γ)(4κγ− g2)
+

[
1 +

γg2

(κ + γ)(4κγ− g2)

]
(n + δn cos 2θ), (9)

〈a†
uau〉 = n− δn cos 2θ,

where n = (n1 + n2)/2 is the average number of photons, and δn = (n1 − n2)/2 is a differ-
ence between the average number of photons in the thermal fields coupled to the cavity
modes. Note that δn can vary from−n to +n. The populations depend also on the coupling
constant g, which cannot be arbitrarily large. The values of g are restricted to those at which
the steady-state solutions for the populations are stable, i.e., are positive. It is easily seen
from Equation (10) that the positivity of the populations requires g <

√
4κγ. Alternatively,

conditions for the stability of the steady-state solutions (10) can be determined by applying
the Routh–Hurwitz criterion [36] to Equation (7), which says that the components of vector
v decay to stable steady-state values when the determinant of the drift matrix A is negative.
It is easily verified from Equation (8) that det (A) < 0 when g <

√
4κγ.

The first important fact we can derive from Equation (10) is that in the case of δn = 0,
the populations depend only on the effective coupling constant g. The difference δn 6= 0
induces a variation of the populations with the ratio of the coupling constants g1 and g2,
determined by the mixing angle θ. This means that in the case of δn 6= 0, by changing the
ratio g2/g1, i.e., by varying the mixing angle θ, one can change the population of the mode
au which is decoupled from the remaining modes aw and b. The transfer rate is proportional
to δn, the difference of the thermal occupation of the modes a1 and a2. Thus, if only one of
the cavity modes is subjected to thermal excitation and the other mode is in a vacuum state,
then δn = ±n, indicating that the thermal excitation of the cavity mode can be completely
and reversibly transferred from modes b and aw to mode au.

The results of our discussion of variations of the populations with θ when the difference
δn 6= 0 are illustrated in Figure 3. We present here variations of the populations with θ
for two different values of the effective coupling constant g. As it is seen, for a weak
coupling g� κ, the transfer of the population occurs between modes aw and au only. The
population of the mode b remains constant. Note the symmetry of the transfer process
about θ = π/4 corresponding to g1 = g2. For a strong coupling g, the transfer of the
populations between the superposition modes is asymmetric about θ = π/4 (g1 = g2)
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and is seen to be accompanied by a reduction of the population of mode b. In this case,
the population is transferred to mode au not only from mode aw, but also from mode b.
Lowering the population of the mode b implies that the system can be employed to cool
the mode to a lower temperature. Thus, when δn 6= 0, it is possible to obtain dramatically
reduced populations of the modes. In other words, keeping modes a1 and a2 at levels of
different thermal occupations (n1 6= n2) can work as a mechanism for the cooling of the
membrane mode.
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Figure 3. Populations of the modes plotted as a function of θ for γ = κ, n = 1, δn = 1, nb = 0.1 and
two different values of the coupling strength g: (a) g = 0.1κ, and (b) g = 1.5κ. Black solid line shows
〈b†b〉, dashed red line 〈a†

waw〉, and dashed-dotted blue line 〈a†
uau〉.

4. Correlations between the Modes

We now investigate the coherence and correlation effects between the modes when the
modes are influenced by thermal fields. We assume that the thermal fields coupled to the
cavity modes are of unequal numbers of thermal photons n1 6= n2, and the mirror mode is
coupled a thermal state with the mean number of phonons nb.

Different kinds of correlations can exist between the modes. Since the modes are
in Gaussian states, which arises from the fact that the Hamiltonian (1) is quadratic, we
consider only correlation functions up to a second order only. The correlation functions are
expectation values of any combination of operators of two different modes. It is not difficult
to show, using Equation (7), that in the steady state, there are the following non-zero
correlation functions

〈a†
uaw〉 =

[
1 +

g2

8κ(κ + γ)− g2

]
δn sin 2θ,

〈awb〉 =
2iκγg

(κ + γ)(4κγ− g2)
(n + nb + 1 + δn cos 2θ), (10)

〈aub〉 =
4iκg

8κ(κ + γ)− g2 δn sin 2θ.

and 〈a†
wb〉 = 〈a†

ub〉 = 〈awau〉 = 0. It is seen that the thermal fields of unequal photon
numbers δn 6= 0 induce the first-order coherence between the superposition modes au and
aw determined by the function 〈a†

uaw〉, and a correlation between between au and b modes
determined by the function 〈aub〉, usually called an anomalous correlation function [5,6],
or, after Mandel, called anticoherence [19]. As we already mentioned, the nonvanishing
correlation function 〈a†

uaw〉 is the signature of the first-order coherence, which may lead
to interference effects between the modes. It is well known that the nonvanishing anti-
coherence correlation functions 〈awb〉 and 〈aub〉 may lead to entanglement between the
involved modes.

It is interesting that the mode au which is decoupled from the other modes can exhibit
first-order coherence with the mode aw and anticoherence with mode b. According to
Equation (11), this can happen only when δn 6= 0. To demonstrate this, we examine in
detail measures of the degree of coherence and anticoherence.
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4.1. Degree of Coherence and Visibility

We already saw that the cross-correlation or mutual coherence function 〈a†
uaw〉 is dif-

ferent from zero when δn 6= 0. Therefore, the modes can be described as mutually coherent.
The degree of coherence of the modes au and aw is defined by the normalized quantity

γ
(1)
uw =

|〈a†
uaw〉|√

〈a†
uau〉〈a†

waw〉
, (11)

whose values lie between 0 and 1.
In Figure 4, we plot the degree of coherence as a function of δn and θ. Notice that at

δn = 0, the modes are mutually incoherent, regardless of the value of θ. When δn 6= 0, the
modes become mutually coherent. It is clearly seen that for a weak coupling between the
modes g/κ � 1, illustrated in Figure 4a, the first-order coherence function is symmetric
about θ = π/4, and becomes asymmetric when g/κ > 1, the case corresponding to a strong
coupling between modes, illustrated in Figure 4b. In this case, the degree of coherence is
reduced in magnitude as θ increases. In the case of a weak coupling, an interesting situation
is reached where the coherence attains its maximal value, i.e., the modes become mutually
perfectly coherent when δn = n, i.e., when either n1 or n2 is equal to zero. On the other
hand, in the strong coupling regime, the degree of coherence is always less than unity.
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θ/π
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δn

γ(1
)

u
w

Figure 4. Variation of the degree of coherence between modes au and aw with δn and θ for γ = κ,
n = 1, nb = 0.1 and two different values of the coupling strength g: (a) g = 0.1κ, and (b) g = 1.5κ.

One can notice from Figure 4a that in the limit of δn = n, the modes are perfectly
coherent when θ = 0, but are completely incoherent when θ = π/2. The perfect coherence
arises because the definite phase relationship between the modes a1 and a2 through the
common coupling to the mode b.

Comparing the variation of γ
(1)
uw with the variation of the populations of the modes,

shown in Figure 3, we see that γ
(1)
uw can be of equal unity regardless of the distribution

of the population between the modes. This surprising behavior has been noticed before
in systems of couple parametric downconverters [15,16,37–40], where interference effects
were observed between the signal fields of the two downconverters with the degree of
coherence γ

(1)
ij = 1.

We saw that the modes can be perfectly mutually coherent regardless of the distribu-
tion of the population between them. However, the distribution of the population between
the modes has an effect on the visibility of the interference pattern and distinguishability of
the modes. The visibility V is determined by the coherence function

|V| = 2|〈a†
uaw〉|

〈a†
uau〉+ 〈a†

waw〉
, (12)
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whereas distinguishability is determined by the populations of the modes

|D| = |〈a
†
uau〉 − 〈a†

waw〉|
〈a†

uau〉+ 〈a†
waw〉

, (13)

The visibility and distinguishability obey the complementarity relation |V|2 + |D|2 ≤ 1,
in which the equality holds when the system is described by a pure state. When |D| = 0,
the modes are indistinguishable. On the other hand, when |D| = 1, the modes are per-
fectly distinguished.

The distinguishability |D| is plotted in Figure 5 as a function of δn and θ. For δn = 0,
the distinguishability |D| = 0 for all values of θ, indicating that in the case the cavity modes
are affected by thermal fields of the same number of photons, and the superposition modes
aw and au are undistinguishable independent of the ratio g2/g1. For a weak coupling
and δn 6= 0, illustrated in Figure 5a, the distinguishability varies between its minimal
value |D| = 0 at θ = π/4 to its maximal values at θ = 0 and θ = π/2. In the completely
asymmetric case where δn = ±n, the distinguishability |D| = 1. More precisely, the modes
can be perfectly distinguishable (|D| = 1) only if δn = n and either g1 or g2 is equal to zero.
Thus, in the case of weak and equal coupling constants, θ = π/4, the modes are completely
non-distinguishable, independent of δn. It is easy to understand if we refer to the fact that
in the case of θ = π/4, the superpositions aw and au are equally weighted, so that one can
not predict from which mode a detected photon came from.
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Figure 5. Dependence of the distinguishability |D| on δn and θ for γ = κ, n = 1, nb = 0.1 and
two different values of the coupling strength g: (a) g = 0.1κ, and (b) g = 1.5κ.

In the case of a strong coupling g, illustrated in Figure 5b, the distinguishability is
strongly dependent on the relationship between g1 and g2. We see that the modes are
always at least partly indistinguishable, except for δn = n and θ = 0 at which |D| = 1.
Moreover, the modes are perfectly indistinguishable at θ 6= π/4, i.e., when the modes are
coupled to the membrane mode with unequal coupling strengths, g1 6= g2.

A close-up view of the variation of the distinguishability |D| with θ at δn = n is
shown in Figure 6. We also plot the visibility |V| and the complementarity S = |V|2 + |D|2.
The visibility vanishes only when g1 = 0 or g2 = 0, i.e., when one of the cavity modes
is decoupled from the membrane mode. In the limit of a weak coupling, g � κ, the
visibility and distinguishability are perfectly mutually exclusive, and S = 1 for all values
of θ, indicating that independent of the ratio g2/g1, the system is in a pure state. On the
other hand, in the limit of a strong coupling g > κ, they are no longer perfectly mutually
exclusive, i.e., the visibility is greatest for g1 6= g2 and the maximum of the visibility
does not correspond to the minimum of the distinguishability. Additionally, in this case,
V2 + |D|2 < 1, except θ = 0 at which the modes are perfectly distinguishable. Thus, except
θ = 0, the system is in a mixed state. The mixed state results from the fact that in the strong
coupling regime, not only the population from mode aw, but also a population from the
membrane mode b is transferred to mode au, as it is seen in Figure 3b.
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Figure 6. Close-up view of the variation of the distinguishability |D| (red dashed line) with θ at
δn = n shown in Figure 5 together with the visibility |V| (blue solid line) and complementarity
S = |V|2 + |D|2 (black dashed-dotted line) for γ = κ, n = 1, nb = 0.1 and two different values of the
coupling g: (a) g = 0.1κ, and (b) g = 1.5κ.

4.2. Degree of Anticoherence and Entanglement

For the uncoupled modes au and b, mutual coherence function 〈a†
ub〉 is equal zero,

and therefore the modes are mutually incoherent. Although the mutual coherence between
the modes is equal to zero, it must not be thought that all correlations between the modes
are zero. In fact, there are correlations present, but they are reflected by nonzero values
of the correlation function 〈aub〉. This happens when δn 6= 0. Note that 〈aub〉 6= 0 is
accompanied by 〈a†

ub〉 = 0. Following Mandel [19], the correlation function 〈aub〉 is called
the anticoherence function, and to quantify the degree of anticoherence, he introduced the
measure of anticoherence

γ
(2)
ub =

|〈aub〉|√
〈a†

ub†aub〉
. (14)

The values of γ
(2)
ub lie between 0 and 1.

When the modes obey the Gaussian statistics, then [41]

〈a†
ub†aub〉 = 〈a†

ub†〉〈aub〉+ 〈a†
ub〉〈b†au〉+ 〈a†

uau〉〈b†b〉. (15)

Since 〈a†
ub〉 = 0, Equation (14) then gives

γ
(2)
ub =

ηub√
η2

ub + 1
, (16)

where

ηub =
|〈aub〉|√
〈a†

uau〉〈b†b〉
. (17)

is the normalized anomalous correlation function. Thus, the
The nonvanishing anticoherence corresponds to a situation in which the modes could

be entangled. In order to connect anticoherence to entanglement, we consider the Cauchy–
Schwarz inequality, which is often used to identify entanglement [3]. The Cauchy–Schwarz
inequality for the modes au and b is verified by reference to the so-called Cauchy–Schwartz
parameter χub involving the second-order correlation functions

χub =
g(2)u g(2)b(

g(2)ub

)2 , (18)
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where

g(2)ub =
〈a†

ub†aub〉
〈a†

uau〉〈b†b〉 (19)

is the normalized second-order cross correlation function, and

g(2)u =
〈a†2

u a2
u〉

〈a†
uau〉2

, g(2)b =
〈b†2b2〉
〈b†b〉2 , (20)

are the normalized intensity autocorrelation functions of the modes au and b, respectively.
Using the Gaussian-mode decomposition (15), the correlation functions can be readily

related to the coherence functions

g(2)i = 2 + η2
ii, i = u, b,

g(2)ub = 1 +
(

γ
(1)
ub

)2
+ η2

ub.
(21)

Since in our case, ηuu = ηbb = γ
(1)
ub = 0, the Cauchy–Schwarz parameter takes the form

χub =
4(

1 + η2
ub
)2 , (22)

which can be expressed in terms of the degree of the anticoherence as

χub = 4
[

1−
(

γ
(2)
ub

)2
]2

. (23)

To examine the occurrence of entanglement, we must check whether the Cauchy–
Schwarz inequality (χub > 1) is violated. From Equation (23), we see that the condition
that the modes are anticoherent, i.e., γ

(2)
ub is a necessary but not sufficient condition for

entanglement between the modes. In other words, the modes could be anticoherent but not
enough to obtain χub < 1. It is easily verified that for the Cauchy–Schwarz inequality to
be violated, it is necessary that γ

(2)
ub > 1/

√
2. Thus, for two modes to be entangled, they

should be anticoherent to a degree about 71%.
Figure 7a shows the Cauchy–Schwarz parameter χub as a function of δn and θ. It

is clearly seen that the parameter χub is reduced below its maximal value χub = 4 when
δn 6= 0. The parameter χub decreases to a minimum value at δn = n, but unfortunately the
minimal value is not smaller than the threshold for entanglement (χub = 1). This indicates
that the anticoherence between the modes is not strong enough for the modes au and b to
be entangled.
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Figure 7. Variation of the Cauchy–Schwarz parameters (a) χub and (b) χwb with δn and θ for γ = κ,
n = 3, nb = 0.1 and g = κ.
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Although modes au and b are not entangled, there could be entanglement between
modes aw and b, which are directly coupled to each other. The results for the Cauchy–
Schwarz parameter χwb are shown in Figure 7b. It is seen that for certain values of δn and
θ, the parameter χwb can be reduced below the threshold for entanglement. It was noticed
before that in the case when the cavity modes are affected by thermal fields of the same
photon numbers (n1 = n2 = n), entanglement between cavity mode and the membrane
mode is restricted to very small values of n < 1/2. The results shown in Figure 7b are in
sharp contrast to the case of equal number of thermal excitations, where entanglement is
restricted to very small values of n and indicate quite clearly that in the case of unequal
photon numbers (n1 6= n2), entanglement between the modes can be observed, even for
large values of n.

In physical terms, we may attribute the appearance of entanglement between modes
aw and b when n1 6= n2 to the fact that a part of the population of the modes, which has a
destructive effect on entanglement, is transferred and stored in the decoupled mode au.

Before concluding, we note that although we have discussed and graphically illus-
trated the coherence and anticoherence properties of the modes only for the case of equal
damping rates of the modes, γ = κ, analogous results are obtained in the experimentally
realistic case of γ� κ [27–29].

As an illustration, in Figure 8, we plot γ
(1)
uw and χwb for γ = 0.01κ. Comparing the

results with those presented in Figures 4b and 7b we saw that γ
(1)
uw and χwb behave in

qualitatively the same manner as for γ = κ. While the maximal value of the coherence
γ
(1)
uw between uncoupled modes is reduced for γ � κ compared with Figure 4b, it is still

nonzero over the entire range of δn 6= 0. Similarly, although the parameter χwb has risen
for γ � κ compared with Figure 7b, the region near δn = n still shows reduction of χwb
below the threshold for entanglement.
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Figure 8. (a) Variation of the degree of coherence γ
(1)
uw with δn and θ for γ = 0.01κ, n = 1, nb = 0.1

and g = 0.19κ. (b) Variation of the Cauchy-Schwarz parameter χwb with δn and θ for γ = 0.01κ,
n = 3, nb = 0.1 and g = 0.19κ.

5. Conclusions

We considered coherence properties between modes of a three-mode optomechanical
system composed of two cavity modes simultaneously coupled to a membrane mode. We
obtained analytical solutions for the steady-state populations of the modes and correlation
functions describing coherence effects between the modes. Working in terms of linear
superpositions of the cavity modes, we showed that one of the linear superpositions
can be completely decoupled from the remaining modes. In spite of this, we found that
the decoupled superposition can be completely coherent with the other superposition
modes and can simultaneously exhibit anticoherence with the membrane mode. A detailed
analysis showed that these correlation effects can happen only when the cavity modes are
affected by the external input modes being in thermal states of unequal average photon
numbers. In particular, we found that the coherences have a substantial effect on population
distribution between the modes such that the population can be reversibly transferred
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between the superposition modes. The transfer of the population can lead to lowering
of the population of the membrane mode. Therefore, the system can be considered as an
alternative way to cool modes to lower temperatures. We also showed that a difference of
the average numbers of photons in the thermal fields may affect entanglement between the
superposition mode directly coupled to the membrane mode such that it may occur in a
less restricted range of the number of thermal photons. In other words, the modes could be
entangled, even with large numbers of thermal photons.
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Appendix A. Evaluation of the Steady-State Population of the Membrane Mode

In this Appendix, we provide some details of the derivation of the analytical expression
for the steady-state population of the mode b. Using Equation (7), we find that a former
integration of the equations for b and aw leads to

b(t) = b(0)e−γt +
1
2

ige−γt
∫ t

0
dt′a†

w(t
′)eγt′ +

√
2γe−γt

∫ t

0
dt′bin(t′)eγt′ , (A1)

aw(t) = aw(0)e−κt +
1
2

ige−κt
∫ t

0
dt′b†(t′)eκt′ +

√
2κ e−κt

∫ t

0
dt′ain

w (t′)eκt′ . (A2)

Substituting the expression for a†
w into Equation (A1) and using the double integra-

tion rule ∫ t

0
dt′A(t′)

∫ t

0
dt′′B(t′′) =

∫ t′

0
dt′B(t′)

∫ t

t′
dt′′A(t′′) (A3)

we find that the expression for b(t) can be written as

b(t) = y(t) +
∫ t

0
dt′K(t, t′)b(t′), (A4)

where K(t, t′) is the kernel of the integral of the form

K(t, t′) =
g2

4(γ− κ)

(
e−κ(t−t′) − e−γ(t−t′)

)
, (A5)

and the term y(t) has the form

y(t) = b(0)e−γt − ga†
w(0)

2(γ−κ)

[
e−κt − e−γt]+√2γ

∫ t
0 dt′bin†(t′)e−γ(t−t′)

+ i
√

2κg
2(γ−κ)

∫ t
0 dt′ain†

w (t′)
[
e−κ(t−t′) − e−γ(t−t′)

]
.

(A6)

It is seen that the kernel K(t, t′) depends only on the time difference t− t′, and may be
written in the form

K(t, t′) =
g2

4(γ− κ)
H(t, t′) = λH(t, t′), (A7)
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where λ = g2/4(γ− κ).
The integral Equation (A4) can be solved using the Laplace transformation. Thus if∫ t

0
dt′H(t′)e−pt′ = H(p),∫ t

0
dt′y(t′)e−pt′ = y(p), (A8)∫ t

0
dt′b(t′)e−pt′ = b(p),

we obtain from Equation (A4)

b(p) =
y(p)

1− λ H(p)
, (A9)

where

H(p) =
1

p + κ
− 1

p + γ
, (A10)

and y(p) is

y(p) =
{

b(0) +
√

2γB(p) + g
2(γ−κ)

[
a†

w(0)− i
√

2κA†
w(p)

]}
1

p+γ

− g
2(γ−κ)

[
a†

w(0) + i
√

2κA†
w(p)

]
1

p+κ ,
(A11)

with

B(p) =
∫ t

0 dt′bin(t′)e−pt′ ,
A†(p) =

∫ t
0 dt′ain†

w (t′)e−pt′ .
(A12)

Substituting the solution (A10) for H(p) into Equation (A9), we readily find

b(p) =
y(p)(p + κ)(p + γ)

(p + κ)(p + γ)− λ (γ− κ)
. (A13)

Having available the Laplace transform b(p), we find b(t) simply by taking the inverse
of the Laplace transformation (A13). We then obtain

b(t) = ∑2
i=1(p− pi)b(pi)epit

= b(0)
[
(κ−γ)

∆ sinh
(

1
2 ∆t
)
+ cosh

(
1
2 ∆t
)]

e−
1
2 (κ+γ)t + a†

w(0)
ig
∆ sinh

(
1
2 ∆t
)

e−
1
2 (κ+γ)t

+ ig
√

2κ
2∆

[
A†(p1)e

1
2 ∆t − A†(p2)e−

1
2 ∆t
]
e−

1
2 (κ+γ)t

+
√

2γ
2∆

{
[(κ − γ) + ∆]B(p1)e

1
2 ∆t − [(κ − γ)− ∆]B(p2)e−

1
2 ∆t
}

e−
1
2 (κ+γ)t,

(A14)

where

p1,2 =
1
2
(κ + γ)± 1

2

√
(κ − γ)2 + g2 (A15)

are roots of the quadratic equation

(p + κ)(p + γ)− 1
4

g2 = 0, (A16)

and ∆ =
√
(κ − γ)2 + g2.

We can use the solution b(t) to find the population of the mode b simply multiplying
b(t) from the left by b†(t) and then taking the expectation value. We thus find
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〈b†(t)b(t)〉 = 〈b†(0)b(0)〉
[
(κ−γ)

∆ sinh
(

1
2 ∆t
)
+ cosh

(
1
2 ∆t
)]2

e−(κ+γ)t

+
[
〈a†

w(0)aw(0)〉+ 1
] g2

∆2 sinh2
(

1
2 ∆t
)

e−(κ+γ)t

+ κg2

2∆2

[
〈A(p1)A†(p1)〉e∆t + 〈A(p2)A†(p2)〉e−∆t

− 〈A(p1)A†(p2)〉 − 〈A(p2)A†(p1)〉
]
e−(κ+γ)t

+ γ
2∆2

{
[(κ − γ) + ∆]2〈B†(p1)B(p1)〉e∆t + [(κ − γ)− ∆]2〈B†(p2)B(p2)〉e−∆t

+ g2(〈B†(p1)B(p2)〉+ 〈B†(p2)B(p1)〉
)}

e−(κ+γ)t,

(A17)

where

〈A(pi)A†(pi)〉 =
∫ t

0
dt′
∫ t

0
dt′′〈ain

w (t′)ain†
w (t′′)〉e−pi(t′+t′′), i = 1, 2, (A18)

and

〈B†(pi)B(pi)〉 =
∫ t

0
dt′
∫ t

0
dt′′〈bin†(t′)bin(t′′)〉e−pi(t′+t′′), i = 1, 2. (A19)

Since 〈bin†(t′)bin(t′′)〉 = nbδ(t′ − t′′), we get

〈B†(pi)B(pi)〉 = nb

∫ t

0
dt′e−2pit′ =

nb
2pi

(
1− e−2pit

)
, i = 1, 2, (A20)

and

〈B†(p1)B(p2)〉 = 〈B†(p2)B(p1)〉 =
nb

p1 + p2

[
1− e−(p1+p2)t

]
. (A21)

Similarly, since

〈ain
w (t′)ain†

w (t′′)〉 = (nw + 1)δ(t′ − t′′), (A22)

where nw = (g2
1n1 + g2

2n2)/g2, we get

〈A(p1)A†(p1)〉 = (nw + 1)
∫ t

0
dt′e−2p1t′ =

(nw + 1)
(κ + γ)− ∆

(
e(κ+γ−∆)t − 1

)
, (A23)

and

〈A(p2)A†(p2)〉 =
(nw + 1)

(κ + γ) + ∆

(
e(κ+γ+∆)t − 1

)
,

〈A(p1)A†(p2)〉 = 〈A(p2)A†(p1)〉 =
(nw + 1)
(κ + γ)

(
e(κ+γ)t − 1

)
. (A24)

Substituting these results for the correlation functions into Equation (A17), and taking
the limit of t→ ∞, we obtain

lim
t→∞
〈b†(t)b(t)〉 = nb +

κ(nb + 1)g2

(κ + γ)(4κγ− g2)
+

κg2

(κ + γ)(4κγ− g2)
nw. (A25)

Writing nw in terms of n = (n1 + n2)/2, δn = (n1 − n2)/2, and tan θ = g2/g1, we
obtain the expression for the population of the mode b given in Equation (10).
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