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Abstract: With the widespread use of emotion recognition, cross-subject emotion recognition based
on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can
be used to detect the brain’s electrical activity associated with different emotions. The aim of this
research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier
Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is
proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing
32 EEG channels and multiple other physiological signals. First, high-dimensional features are
extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI
and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM),
k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative
emotions to obtain the output probabilities of classifiers as weighted features for further classification.
To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject
classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers,
respectively. The results demonstrate the feasibility of the model by splicing different classifiers’
output probabilities as a portion of the weighted features.

Keywords: emotion recognition; Multi-Classifier Fusion; mutual information; SFFS; cross-subject

1. Introduction

Emotions are a person’s comprehensive expression of external stimuli. In our daily
life, emotions play a vital role in communication, decision making, perception and ar-
tificial intelligence. Emotion recognition has received extensive attention, especially in
human–computer interaction (HCI) [1,2]. This is because people’s needs for interpersonal
communication are increasing. The main purpose of emotion recognition is to detect and
simulate human emotions during HCI [3]. Emotions can be recognized in many ways,
including facial expressions, speech and some physiological signals [4,5]. Facial expressions
can be used for emotion recognition mainly because the muscle movements and expression
patterns of the human face change due to different emotions [6]. For example, when people
are happy, their faces are mostly smiling, and the corners of their mouths tend to rise [7].
When people are angry, they open their eyes subconsciously. Some researchers have also
used thermal images for facial expression recognition [8,9]. This is mainly because the
infrared heat map can reflect the distribution of the surface temperature of the object.
Emotion recognition using speech is mainly based on the language expression in different
emotional states. For example, people generally speak faster when they are in a good
mood. Facial expression and speech recognition have the advantages of simple operation
and a low cost. However, facial expressions and speech can very easily be deliberately
concealed and do not always accurately express real emotions [10,11]. Compared with
facial expressions and speech signals, physiological signals can obtain real data and cannot
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be faked. Physiological signals mainly include electrocardiogram (ECG), electromyogram
(EMG), electroencephalogram (EEG) signals. However, compared with EEG signals, other
physiological signals produce fewer differences and change at a slower rate under different
emotions. As a result, they are greatly limited in real-time emotion recognition. An EEG
is a medical imaging technique that reads the electrical activity produced by brain struc-
tures. It can better express the differences between various emotions and has a higher time
resolution. In addition, multi-modal information can also be applied to identify emotions,
and this method can achieve high accuracy. However, it is greatly restricted in practical
applications because the effect in an open environment is not stable. Therefore, most
researchers use EEG signals for emotion recognition.

However, in the process of research, most researchers focus on subject-specific situa-
tions. This kind of system has poor generalizability, because different people respond dif-
ferently to the same stimulus. This problem was raised for the first time by Picard et al. [12].
Therefore, we need to build a specific model for each person to determine the user’s
emotional state in HCI. Obviously, this is very time-consuming and requires a great com-
putational cost. Then, we hope to find the commonalities between the emotions of different
people, so as to realize a general model to predict emotions. This is also a problem that
researchers urgently need to solve—cross-subject emotion recognition [13,14]. It has always
been very difficult to identify cross-subject emotions based on EEG signals, because the
generalizability of features among different subjects is very poor.

In previous studies, many scientists have compared the results of cross-subject ex-
periments with the results of subject-specific experiments. For example, Kim et al. used
a bimodal data fusion method and apply linear discriminant analysis (LDA) for emotion
classification. LDA is a supervised algorithm that can be used not only for dimensionality
reduction, but also for classification. In this way, an accuracy of 92% in subject-specific
experiments could be achieved, but the best recognition accuracy among the three subjects
was only 55% [15]. Zhu et al. extracted and smoothed the differential entropy features.
The average classification accuracy rate across subjects was 64.82%, but the subject-specific
accuracy rate could reach 90.97% [16]. Later researchers have used many methods to
improve the detection accuracy of cross-subject emotions. For example, Zhuang et al.
proposed a method of feature extraction based on empirical mode decomposition (EMD),
which decomposes EEG signals into several intrinsic modal functions. The final classifi-
cation accuracy rate was 70.41% [17]. However, some researchers have discovered that
EMD is prone to mode mixing. Thus, ensemble empirical mode decomposition (EEMD)
and a succession of other methods were subsequently proposed. Candra et al. used the
wavelet entropy of the signal segment with a period of 3–12 s and achieved an average
accuracy of 65% for valence and arousal [18]. Later, Mert and Akan et al. proved that using
Hjorth parameters and correlation coefficients as features achieved better classification
performance [19]. Li and Lu et al. tested the recognition performance of event-related
desynchronization (ERD)/event-related synchronization (ERS) features extracted from
different frequency bands and found that the best frequency band for identifying positive
and negative emotions was 43.5–94.5 Hz, which is the higher gamma frequency band [20].
Lin et al. extracted differential asymmetry features to prove that frontal lobe electrodes
and parietal lobe electrodes contain rich emotional information [21]. Rational asymmetry
(RASM) and differential asymmetry (DASM) features are used to represent differences
between the left and right hemispheres of the brain. RASM can be defined as the ratio
of left and right brain power, and DASM is the difference between left and right brain
power. Zheng et al. focused on finding stable cross-subject characteristics and fragments
of neural EEG patterns for emotion recognition [22]. They found that the lateral temporal
areas activated more for positive emotions than negative emotions in the beta and gamma
bands, and the cross-subjects EEG characteristics mainly came from these brain areas and
frequency bands. The accuracy of emotion classifiers based on EEG signals is still limited
due to the individual differences in EEG signal characteristics. Researchers have applied in-
formation theory to emotion recognition. Using this strategy, information can be measured
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via entropy and mutual information. Entropy is used to measure the amount of information
contained in things, while mutual information is used to measure the correlation between
two sets of events [23,24]. It is worth noting that information theory has begun to be applied
to computational biology. All kinds of information are continuously produced in the living
body, and normal physiological activities are realized under the control and regulation of
this information. Entropy can be used to measure the complexity of time series. With the
further development of concepts and theories, entropy features have been widely used
as new nonlinear dynamic parameters, such as sample entropy (SampEn), approximate
entropy (ApEn), differential entropy (DE) and wavelet entropy (WE) [25]. Furthermore,
since the mutual information can be used to evaluate the correlation between features and
labels in emotion recognition, researchers have tried to use mutual information for feature
selection [26].

Previous researchers mostly used machine learning methods. Later on, Zheng and
Lu et al. used the differential entropy feature of multi-channel EEG data to train deep
belief nets (DBNs), achieving an average accuracy of 86.08% [27]. Compared with machine
learning, deep learning can indeed achieve better classification results. However, it is also
accompanied by a series of problems, such as the need for a large amount of training data
and higher requirements for hardware devices. Later, Yang showed that the poor gener-
alizability of EEG signals between different subjects is due to the existence of redundant
features [28], and he aimed to find an effective feature set to improve generalizability. He
extracted a total of 10 linear and nonlinear features to form high-dimensional features and
adopted the cross-subject emotion recognition method of combining a significance test (ST)
and sequential backward selection (SBS) to select features. When the SBS algorithm selects
features, it starts from the feature set and removes one feature from the feature set at a time,
so that the evaluation function value is optimal after removing this feature. Finally, the
results of the cross-subject emotion recognition in DEAP reached 72%. However, Yang used
all 32 channels and all frequency bands of physiological signals in his experiments, which
also resulted in a huge amount of calculation.

This research offers the following main improved features:

(1) Through studying the mechanisms of the human brain and drawing on the experience
of previous studies, only 15 EEG channels of the DEAP dataset and three frequency
bands (alpha, beta and gamma) were selected for research. This could reduce the
amount of calculation to a certain extent.

(2) The accuracy of cross-subject emotion recognition has always been affected by the poor
generalizability of features. We used a 10 s time window for data slicing to augment
the sample, which could better train the model. In order to better characterize the
EEG characteristics of each person, the high-dimensional features of the EEG signal in
the time domain, frequency domain and nonlinear domain were extracted.

(3) By drawing on the idea of the attention mechanism, we propose a Multi-Classifier
Fusion method based on traditional machine learning classification. Before using
multi-classifier fusion, the method of mutual information (MI) and sequential forward
floating selection (SFFS) was adopted to select optimal features, which can improve
the efficiency of the algorithm and reduce the impact of redundant features on the
classification accuracy. Multi-Classifier Fusion can make full use of the probability
outputs from classifiers and uses them as a weight feature for recursive prediction.
In order to verify the effectiveness of Multi-Classifier Fusion, the hold-out and leave-
one-out method were adopted to verify its performance based on the DEAP dataset.

2. Materials and Methods

The traditional EEG analysis process mainly includes EEG signal preprocessing, fea-
ture extraction, feature selection and emotion classification. In this paper, we combine
two different feature selection methods to modify the features, as shown in Figure 1;
this is the overall method proposed in our research. Furthermore, the proposed method
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(Multi-Classifier Fusion) is used to further improve the classification performance. Both
the hold-out and leave-one-out method are used for validation in this work.
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Figure 1. Picture of the overall proposed method. The research sequence of this paper is shown in
the figure. DEAP is a multi-modal open dataset containing 32 EEG channels and multiple other phys-
iological signals. We acquired the DEAP dataset; performed data preprocessing, feature extraction
and feature selection; and used the Multi-Classifier Fusion method. Finally, we used classifiers for
classification.

2.1. DEAP

In order to ensure that this work can be repeated and compared with other studies, we
used the public DEAP dataset and obtained EEG signals from it [29]. DEAP was established
by scholars such as Sander at Queen Mary University of London. This dataset is a multi-
modal open dataset. It is used for analyzing emotional states based on human physiological
signals. This is also a unique dataset that uses music videos as emotional stimuli. The
data collector uses the MP150 multi-channel physiological signal recorder to record. There
are a total of 40 channels of physiological signals, including 32 channels of EEG signals
and 8 channels of peripheral signals. After watching the music video for up to 1 min, the
participants evaluate self-assessment manikins (SAM) for five aspects: valence, arousal,
control, likeness and familiarity. Participants rate these four dimensions on a continuous
scale between 1 and 10. The preprocessed EEG samples were used for this research, with a
sampling frequency of 128 Hz and a frequency range of 4–45 Hz.

2.2. Data Preprocessing
2.2.1. Data Preprocessing

In the experimental data collection, each subject watched a 60 s video. Considering
that it takes a certain amount of time for a subject to enter an emotional state, the first part of
the collected physiological signals could not accurately represent specific emotions, so only
the last 40 s of EEG data were studied. In addition, considering that enough samples are
needed in cross-subject emotion recognition, we tended to cut data samples by selecting a
time window to amplify samples. In EEG-based emotion recognition, the width of the time
window affects the classification results. Candra et al. used the DEAP dataset to investigate
the effect of window size on emotion classification [18]. They experimented with time
windows of different widths. Studies have found that better results can be achieved with
window lengths of 3–12 s [30]. Based on their conclusion, the width of the time window was
set to 10 s in the current work. Following this time window determination, the 40 s of EEG
data were divided into four 10 s EEG sections. Hence, for each person, we could acquire
160 samples (40 videos*4 sections); with a total of 32 participants, a total of 32 × 160 = 5120
samples were obtained.
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2.2.2. Label Processing

For the DEAP dataset, we could obtain 5120 (32*160) experimental samples. In this
study, we determined the label according to the score of the participant. It was initially
decided that if the participant’s score was less than or equal to 5, the label was set to 0.
If the score was greater than 5, the label was set to 1. In short, we considered a binary
classification for the valence dimension.

2.2.3. Channel Selection

DEAP contains 32 channels of signals, which are distributed across four areas of
the brain. These include the frontal lobe, parietal lobe, occipital lobe and temporal Lobe.
Different areas have different functions [31]. However, researchers have shown that not
all channels are indispensable in the process of emotion recognition. If all channels are
used, it will inevitably lead to the problem of feature redundancy and a large amount
of calculation [32].

In the study of emotion recognition, researchers have explored the optimal combi-
nation of EEG channels for feature recognition and have tried a variety of methods for
channel selection. However, so far, no uniform conclusion has been reached. We summa-
rized 10 articles about channel selection and found that the results for the optimal EEG
channel obtained by each article had certain differences. Some of the studies used automatic
feature selection methods such as relief, floating generalized sequential backward selection
(FGSBS), sequential forward selection (SFS) and evolutionary computation algorithms;
some used multiple experiments to verify channel performance; and some researchers
manually selected EEG channels based on previous experience. We confirmed the selected
EEG channels in this paper by summarizing their commonalities and the physiological
basis of the brain. It is worth noting that most of the EEG channels chosen in the literature
are located in the lower frontal lobe. There were more than five articles that selected F3, F4,
Fp1, Fp2, F7 and F8 [19,33–37]; some articles chose AF3 and AF4 [30,34–36]; seven papers
selected the T7 and T8 channels located in the temporal lobe; and three papers selected
the P7 and P8 channels located in the parietal lobe [10,19,30,33,35,36,38]. In this paper, we
manually selected the EEG channel based on previous experience and certain theoretical
knowledge. Furthermore, according to the literature [39], it is known that the degree of
activity of the left and right frontal lobe can indicate the degree of positivity. This can
achieve a high recognition accuracy rate, so this experiment used 8 frontal lobe electrodes
(F3, F4, Fp1, Fp2, F7, F8, AF3 and AF4). The alpha wave in the parietal lobe has a strong
relationship with people’s relaxation and tension, so two parietal electrodes (P7 and P8)
were used in this experiment. Since the sample was a music video, human vision and
hearing were both stimulated and affected. Thus, it was necessary to choose the electrodes
of the temporal lobe auditory cortex and the occipital lobe visual cortex [40]. Therefore, we
chose not only T7 and T8, but also O1 and O2. In addition, the CZ central electrode was
selected for our experiments. In summary, 15 channels were selected in total. The specific
names of the channel electrodes are shown in Table 1.

Table 1. 15 selected EEG channels.

Brain Area Selected Electrodes

Frontal lobe AF3, AF4, F3, F4, F7, F8, FP1, FP2
Parietal lobe P7, P8

Temporal lobe T7, T8
Occipital lobe O1, O2
Central lobe CZ

2.3. Z-Score Normalization

Normally, we need to standardize data to eliminate the influence of dimensions before
modeling. If the unstandardized data are directly trained, they may cause the model
performance to not be ideal [41]. This is because the model learns too much for variables
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with large values and not enough for variables with small values. Data standardization
methods include min–max normalization and z-score normalization. The z-score method
can handle outliers, in contrast to the other methods. As a result, z-score normalization
was used in this paper. The specific formulas are:

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)

2

(1)

z =
x− µ

σ
(2)

2.4. Feature Extraction

The main purpose of feature extraction is to extract the information from EEG signals
that can significantly reflect the emotional state. The features were extracted from the
15 selected channels. In the process of frequency domain feature extraction, the authors
of [42] mentioned that high-frequency channels provide a greater contribution to emotion
recognition. We only selected the alpha, beta and gamma bands to extract features, which
greatly reduced the amount of calculation. The features are shown in Table 2. A total of
249 dimensional features were extracted.

Table 2. List of features.

Feature Type Extracted Features

Time domain

1. Mean
2. Standard deviation
3. First difference mean (1ST mean)
4. First difference standard deviation (1ST std)

Frequency domain

1. Band energy of alpha, beta and gamma
2. Beta/alpha of CH4, beta/alpha of CH27,
beta/alpha of CH2, beta/alpha of CH4
3. CH4/CH27′s alpha, CH4/CH27′s beta,
CH2/CH29′s alpha, CH2/CH29′s beta
4. Sum of channel powers (CH7, CH11, CH15,
CH17, CH20, CH24, CH32)

Nonlinear dynamic

1. Sample entropy
2. Approximate entropy
3. Differential entropy
4. Wavelet entropy
5. Lyapunov exponent
6. Fractal dimension
7. Hurst exponent
8. Hjorth parameter (mobility, complexity)

2.4.1. Time-Domain Analysis

Because the time-domain waveform contains all EEG information without any loss of
information [12], the time-domain features were extracted, such as the mean, the standard
deviation for the original signal and the signal after the first difference (1ST). The formulas
involved are shown below, where x is the EEG time-domain signal data, and T is the length
of the signal. In this study, the value of T was 1280.

µx =
1
T

T

∑
t=1

x(t)
√

b2 − 4ac (3)
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σx =

√√√√√ T
∑

t=1
(x(t)− µx)

T
(4)

δx =
1

T − 1

T−1

∑
t=1
|x(t + 1)− x(t)| (5)

γx =
1

T − 2

T−2

∑
t=1
|x(t + 2)− x(t)| (6)

2.4.2. Frequency-Domain Analysis

The differences between EEG components are mainly reflected in the frequency-
domain features, which are indispensable parts of signal analysis. The EEG signal is
composed of 5 different frequency bands, including delta (1–4 Hz), theta (4–8 Hz), alpha
(8–14 Hz), beta (14–30 Hz) and gamma (30–47 Hz) [43]. However, researchers have shown
that low-frequency bands contribute less to emotion recognition and that alpha, beta and
gamma bands are more representative [44]. As a result, we extracted the frequency-domain
features of these three frequency bands. The Butterworth filter was used to limit the
frequency band to alpha, beta and gamma frequency bands [45]. Then, we used Fourier
transform (FT) to transform the filtered signal into the frequency domain and extracted the
features [43]. The frequency spectra of the three frequency bands after filtering are shown
in Figure 2. After Butterworth filtering, this experiment calculated the frequency band
energies of the alpha, beta and gamma bands as frequency-domain features [46].
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Figure 2. The frequency spectra of the three frequency bands after filtering. The frequency spectra of
the alpha, beta and gamma frequency bands after Butterworth filtering are shown in Figure 2. In this
study, only three frequency bands were used to extract frequency-domain features.

In addition, studies have shown that asymmetric ratios play an important role in emo-
tion classification because these ratios can reflect changes in the left and right hemispheres
of the brain [47,48]. In particular, some emotions affect only the left side of the brain, while
others affect only the right hemisphere [49]. We extracted some rational features from the
power of the alpha and gamma bands. We used the F3, F4, AF3 and AF4 channels for
RASM, because differences are obvious in these channels. The following formula was used
to calculate the RASM [50].

RASM =
Ple f t

Pright
(7)

where Ple f t and Pright represent the power of the channels on the left and right hemispheres
of the brain. In addition, we are unsure as to whether emotions may cause differences in
power across large areas of the brain. We also extracted the total power of the features
of channels outside the frontal lobe region, including P7, T7, O1, P8, T8, O2 and CZ. The
results of our feature selection may be able to determine whether a particular feature is
beneficial to emotion recognition. The detailed feature names are shown in Table 2.
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2.4.3. Nonlinear Dynamics

Some studies have shown that the human brain is a complex nonlinear dynamic system.
Later on, researchers tried to use nonlinear dynamics to analyze EEG signals [51]. There
are two common methods, namely chaos theory and information theory. The following
features were extracted in this paper.

Entropy Features

The human brain is an extremely complex system, and EEG signals are random and
nonlinear. Therefore, we needed to conduct not only linear research on EEG signals, but
also nonlinear analysis [30]. With the development of nonlinear dynamics, the entropy
feature has become an object of concern, as it describes the nonlinear characteristics of EEG
signals [52,53]. Entropy is usually used to show the complexity of objects and has been
widely used by researchers in recent years. Many entropy features were extracted from
the selected channels, such as the sample entropy [54], approximate entropy, differential
entropy [46] and wavelet entropy [55]. The relevant formulas for the entropy features are
as follows:

SampEn(m, r, N) = − ln( Am(r)
Bm(r) )

ApEn = Φm(r)−Φm+1(r)
DE = 1

2 log(2πeσ2
i )

WE = −∑
j

pj ln(Pj)

(8)

Lyapunov Exponent

In the process of information extraction, it is very important to analyze and distinguish
the working state of a system [56]. Determining the maximum Lyapunov exponent is
considered to be the most effective method to identify the state of a system. Therefore, in
this experiment, we obtained the value of the Lyapunov exponent for the nonlinear time
series of EEG signals. The relevant formula is as follows:

λ = lim
1
n

n−1

∑
k=0

ln
∣∣∣∣d f (xk, α)

dx

∣∣∣∣, n→ ∞ (9)

Fractal Dimension

The fractal dimension (FD) can directly evaluate the complexity of time series in the
time domain [57]. It has received extensive attention as a successful feature. In EEG signals,
various algorithms are used to calculate the FD value. For example, Sevcik’s method, fractal
Brownian motion, box counting and the Higuchi algorithm have been employed. As we
all know, the result of the latter is closer to the theoretical FD value. Finally, the Higuchi
algorithm was used to calculate the FD value, and the formula is as follows:

FDx =
(L(k))
− ln k

(10)

Hurst Exponent

The Hurst exponent is used as an indicator to judge whether the time series data
follow a random-walk or a biased random-walk process. There are many methods used to
calculate the Hurst exponent. We used the R/S method, and the formulas are as follows:

RS = 1
g

g
∑

i=1
RSi

sRS =

√
1

g−1

g
∑

i=1
(RSi − RS)

2 (11)
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The slope of the straight line obtained after calculating a linear regression for the
corresponding data is the Hurst exponent, denoted by H. The final calculated value of the
Hurst exponent mainly displayed the following characteristics:

(1) When 0 < H < 0.5, it indicates that the time series has long-term correlation, but the
general trend in the future is opposite to the past, that is, anti-persistence.

(2) When H = 0.5, it indicates that the time series is random and uncorrelated, and the
present will not affect the future.

(3) When H > 0.5, it indicates that the time series has long-term correlation characteristics,
i.e., there is continuity in the process.

(4) When H = 1, it means that the future can be predicted by the present.

Hjorth Parameters

The Hjorth parameters are a method to describe the general characteristics of an EEG
trace using several quantitative terms that can be used in EEG studies. In this experiment,
for example, only the mobility and complexity features were extracted [58]. The relevant
formulas are as follows:

Mobility : Mξ =

√
var(

.
ξ(t))

var(ξ(t))
(12)

Complexity : Cξ =
M(

.
ξ(t))

M(ξ(t))
(13)

2.5. Feature Selection

In emotion recognition, high-dimensional features may cause a dimensional disaster
and increase the amount of calculation. Therefore, the dimensionality reduction of EEG
features is an important step in emotion recognition. Selecting an effective feature reduction
and selection algorithm can not only increase the speed of model training, but also improve
the accuracy and generalization of the model. In this paper, we adopted the method
of combining mutual information and SFFS. SFFS is a feature-selection algorithm which
requires a large amount of calculation. Therefore, the mutual information feature-selection
algorithm was adopted before the SFFS algorithm to filter some features. The remaining
features were used for further feature selection through SFFS.

Mutual Information

The concept of mutual information originated from information theory and is used
to represent the relationship between information. Mutual information can calculate the
information shared between the independent variable and the dependent variable and
detect the nonlinear relationship between features [59]. Assuming that X and Y are discrete
random variables, the mutual information calculation formula is:

I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (14)

where p(x, y) is the joint probability distribution function of X and Y, and p(x) and p(y)
are the marginal probability distribution functions of X and Y, respectively.

2.6. Classifiers

The accuracy of emotion recognition depends largely on the classifier. In order to
ensure accuracy and verify the effectiveness of the dimensionality reduction algorithms,
we briefly introduced the following three classifiers, namely k-nearest neighbors (KNN),
support vector machine (SVM) and random forest (RF).
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2.6.1. KNN

The KNN algorithm is a relatively simple algorithm currently used in data classifica-
tion. When KNN is used for classification, the predicted result of the sample is the same
as the result of its closest sample [60]. The principle of KNN is that when we want to
determine the category of some unknown samples, we need to use some known sample
categories as a reference and calculate the distance between the unknown and known
samples. When predicting a sample’s category, we select k known samples that are closest
to this sample, and then the category of this sample is the same as the category with the
largest number of k known samples.

2.6.2. SVM

The SVM classifier is a model for binary classification. It distinguishes samples by
finding an optimal decision boundary. The decision boundary divides the linear samples so
that the interval between the divided samples is maximized [38]. The data samples in this
study comprised nonlinear data. In this work, polynomial and radial basis function (RBF)
kernels were used with the SVM classifier to evaluate the classification performance. Each
sample was mapped to an infinite-dimensional feature space, so that the original linearly
indivisible data became linearly separable.

2.6.3. RF

RF is an algorithm that integrates multiple trees through the idea of ensemble learning.
Its basic unit is the decision tree. Its essence belongs to a large branch of machine learning—
ensemble learning [61]. From an intuitive point of view, each decision tree is a classifier
(assuming that it is a classification problem). Then, for an input sample, N trees will
have N classification results. Random forest integrates all classification voting results and
designates the category with the most votes as the final output. This is the simplest bagging
concept. Compared with other classification algorithms, RF has excellent accuracy. It can
also process high-dimensional features and effectively process big data.

2.7. Multi-Classifier Fusion

The main idea of Multi-Classifier Fusion is to fuse the outputs of multiple classifiers
and use them as new features to improve the classification accuracy. Before explaining
the Multi-Classifier Fusion method in detail, let us briefly describe the idea of the atten-
tion mechanism, because the concept of Multi-Classifier Fusion stems from the attention
mechanism, which is widely used in deep learning.

Most studies have proven that the attention mechanism can improve the interpretabil-
ity of neural networks. The attention model was originally used for machine translation,
but later on it gained a large number of applications in the fields of natural language
processing, statistical learning, speech and computer science [62]. The attention mechanism
can give a neural network the ability to focus on a subset of its features, and it can select
specific inputs. Analogous to the human brain, it can filter out unimportant information
according to the every-day importance of the information—in fact, this ability is called at-
tention. At present, most attention models are attached to the encoder–decoder framework,
as shown in Figure 3 [63]. The left side is the encoder–decoder architecture. The signs h(1)
to h(3) and s1, s2 represent the hidden states of the encoder and decoder. The input x is
encoded to obtain the h vector and then decoded to obtain the corresponding y. On the
right is the attention model based on the encoder–decoder structure. The attention module
in the network structure is responsible for automatically learning the weight of attention
aij, which can automatically capture the correlation between h and s. Then, these attention
weights are used to construct the content vector c. The content vector is the weight sum
of all hidden states of the encoder and the corresponding attention weights. Finally, the
vector is passed to the decoder.

cj = ∑T
i=1 aij∗h(i) (15)
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Figure 3. Encoder–decoder architecture and attention model. The left side is the encoder–decoder
architecture. Assuming x is the input, after encoding and decoding, we can obtain the final output
value y. The right side is the attention model based on the encoder–decoder structure. It shows the
process of constructing the vector c.

In essence, the attention mechanism is designed to perform a weight summation. In
fact, the attention mechanism selects the important information from a large amount of
information and focuses on it by ignoring most unimportant information. The process of
focusing is reflected in the calculation of weight coefficients. The larger the weight, the
more focus is placed on its corresponding value. In addition, the weight represents the
importance of information.

In the emotion classification experiment in this paper, we referred to the idea of the
attention mechanism and applied it to our Multi-Classifier Fusion model in machine learn-
ing [64]. The specific process of Multi-Classifier Fusion in cross-subject emotion recognition
can be briefly represented by Figure 4. The label X_ori represents the 249 originally ex-
tracted dimensional features, and X_select represents the features retained after feature
selection. The selected features are input into the KNN, SVM and RF models for classi-
fication. This process is analogous to the encoding process in the attention mechanism.
After classification, the prediction result of each sample is given its corresponding proba-
bility. The output probability can be regarded as a kind of weight. We added the weight
outputs from the different classifiers as new weight features. This process is analogous
to the method of obtaining c, which is illustrated in Figure 3. In other words, the fusion
of the classifiers mainly uses the output probability of the result as the weight for the
corresponding processing. Finally, the new weight features and the original features (X_ori)
extracted from the selected channels were sent to the classifiers for classification.
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Figure 4. Emotion recognition system flow chart. The label X_ori represents the high-dimensional
features during feature extraction, and X_select represents the features selected by the feature selection
model. New weight features are obtained by fusing the outputs of KNN, SVM and RF, and then the
new weight features are used together with the original features for classification.

3. Results

In this experiment, we extracted the time domain, frequency domain, and nonlin-
earity features from 15 specific EEG channels. We combined different feature selection
algorithms for feature selection and retained the features that contributed better to using
Multi-Classifier Fusion for classification. In addition, we also paid attention to a problem in
the experiment. We extracted different features for different channels. However, the values
of these features often have different ranges, a situation which often affects the results of
data analysis. Therefore, we used z-score normalization for feature normalization before
feature selection.

3.1. Evaluation Indices

The data used in this experiment were from the DEAP dataset. We used the hold-out
method and leave-one-out cross-validation to conduct the experiments. For the hold-
out method, we selected the data of 27 individuals as a training set and the data of 5
individuals as a test set. We cut the EEG signals to expand the samples. The final training
set comprised 4320 samples, and the test set comprised 800. For the leave-one-out cross-
validation, only one individual’s data were used as a test set in each experiment, and the
average value was determined as the final result. In addition, the ultimate goal of this
experiment was to minimize the number of features used for classification while ensuring
as high a classification accuracy as possible. At the same time, the performance of the
optimal feature set and the Multi-Classifier Fusion method proposed in this paper could
be verified. Therefore, the classification accuracy was the evaluation index that could
intuitively evaluate the rationality and effectiveness of the optimal feature subset and
the Multi-Classifier Fusion method. Furthermore, for a more effective comparison, we
considered indicators such as accuracy, precision, F1-score and recall. The classification
indicators are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(16)
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Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1− score = 2× precision× recall
precision + recall

(19)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,
respectively.

3.2. Determination of Feature-Selection Method

In this paper, we extracted high-dimensional features in the time domain, frequency do-
main and nonlinear domain. However, high-dimensional features may cause dimensional
disasters. In this section, the feature-selection methods that were attempted include SBS,
SFS, SFFS, principal component analysis (PCA), correlation and mutual information. We
found the optimal feature-selection method by exploring the classification accuracy based
on a single feature-selection method and the combination of two feature-selection methods.

First, we determined the classification accuracy obtained by retaining different num-
bers of features. According to the results, the influence of the number of features on the
classification performance could be further verified. We used the SBS method that has
been previously implemented in the literature [28], which includes SVM as a classifier
for screening features. In addition, we used KNN for comparison. Figure 5 shows the
classification accuracy of different numbers of features.
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Figure 5. The relationship between feature dimensions and accuracy. When using KNN and SVM
for feature selection, the accuracy was affected by the feature dimension. The accuracy of SVM was
better than that of KNN, but it took a long time. (a) Using KNN as classifier for screening features;
(b) using SVM as classifier for screening features; (c) comparison of run time of KNN and SVM.

In Figure 5a,b, the accuracy rates of both methods are affected by the excessively high
feature dimensions, and SVM is better than KNN in terms of accuracy. However, it can
be clearly seen from Figure 5c that it took 52,108.322 s to use KNN for feature selection,
while it took 249,975.318 s to use SVM. In addition, there were two parameters that needed
to be adjusted in SVM, while KNN contained only one parameter. This also means that,
compared with KNN, the adjustment of parameters is a major problem when using SVM,
which requires a lot of time. Therefore, we planned to implement KNN as the classification
algorithm in the selector.

When SBS selects features it starts from the full set of features. It removes an unneces-
sary feature from the feature set each time, so that the evaluation function value reaches
the optimal value. Therefore, its disadvantage is that it can remove features but not add
features. Similarly, SFS can add features but not remove features. Both of these methods can
easily fall into local optimal values. Later on, SFFS was proposed in view of the shortcom-
ings of the two abovementioned algorithms. This method starts from an empty set, adds a
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subset, and then removes the subset from the selected features to optimize the evaluation
function. This algorithm makes up for the shortcomings of the first two algorithms.

Then, in order to verify the effectiveness of these three feature-selection algorithms,
we implemented them for feature selection. We applied SVM to train and classify the test
set according to the features selected by the different methods. Taking the retained feature
dimension of 100 as an example, the results were as shown in Table 3.

Table 3. Comparison of three feature-selection methods.

Feature-Selection
Method Accuracy Precision Recall F1-Score

SBS 0.6625 0.6093 0.9805 0.7516
SFS 0.6785 0.6205 0.9684 0.7563

SFFS 0.68 0.6211 0.9708 0.7575

Table 3 shows the classification accuracy of positive emotions and negative emotions
in three different feature sets. For these three feature-selection methods, SFFS had the
highest classification accuracy, indicating that the SFFS method is more effective than the
other methods. In addition, the precision and f1-score values of the SFFS method were
higher than the other methods. Therefore, we conducted further research based on the
SFFS method. However, SFFS adopts the technique of traversing every feature subset in
its feature selection, which leads to a large computational cost. In order to alleviate this
problem, we planned to adopt other feature selection methods to filter out most redundant
features before using SFFS.

In this section, we study the classification accuracy based on the SFFS method com-
bined with different feature-selection methods, including principal component analysis,
correlation feature selection and the mutual information method. Table 4 displays the
comparison of classification performance between the combined feature selection methods
and individual methods. Because the parameters of the different methods varied, the
retained features could not be consistent after the feature selection. We set up a similar
number of features for comparison.

Table 4. Comparison of the results of combining different feature-selection methods.

Feature-Selection
Method

Feature
Dimension Accuracy Precision Recall F1-Score

PCA 130 0.6775 0.6199 0.9660 0.7552
PCA + SFFS 80 0.67875 0.6205 0.9684 0.7563

Correlation (0.93) 131 0.6725 0.6160 0.9660 0.7523
Correlation (0.93) +

SFFS 80 0.6775 0.6296 0.9077 0.7435

MI (0.5) 124 0.68 0.6211 0.9708 0.7575
MI (0.5) + SFFS 80 0.68125 0.6217 0.9733 0.7587

Table 4 shows that, compared with a single feature-selection method, the combined
feature-selection method improved the classification accuracy, precision, recall and f1-score
to a certain extent. On the other hand, the combination of different methods will achieve
different classification effects.

PCA is a feature dimensionality reduction algorithm. It can be used to extract the
main feature components of a dataset [60]. As shown in Table 4, the original features were
reduced to 130 dimensions and sent to the classifier, and the accuracy rate of the classifier
was 0.6775. When the 130 dimensional features were sent to SFFS for further feature
selection, reducing them to 80 features, the classification accuracy rate reached 0.67875.
This again verifies that effective feature selection can improve the classification accuracy.

Correlation feature selection is mainly intended to filter features by calculating the
correlation between the features and the targets. If the correlation between the features
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and the targets is 1, it means that there is a high degree of positive correlation between
them. If it is −1, there is a highly negative correlation. In this experiment, the parameter
was set to 0.93, which meant that the features with a correlation above 0.93 were retained.
One hundred and thirty-one dimensional features were finally retained. The classification
results are shown in Table 4.

The parameter of mutual information feature selection was set to 0.5, so as to retain half
of the original features. From the classification results, it can be seen that the 124 retained
dimensional features could be sent to the classifier to achieve a higher accuracy than PCA
and correlation feature selection. Combining MI and SFFS achieved the largest recall
and f1-score values compared to the other feature-selection methods. This verifies the
effectiveness of mutual information combined with SFFS feature selection.

3.3. Parameter Setting of Feature Selection

Table 4, above, verifies the effectiveness of mutual information combined with SFFS.
However, the parameter of mutual information and the number of features retained after
SFFS affect the performance of the classification. Different parameters will cause different
combinations of features to be retained. In addition, different numbers of features will
also lead to different classification effectiveness for emotion recognition. Therefore, in this
section, we try to set different parameters and retain a different number of features to
evaluate the accuracy of recognition.

As shown in Table 5, the highest accuracy rate achieved was 0.6825, when the param-
eter was set to 0.5 and the number of retained features was 70. These results show that
when the mutual information parameter was 0.5, the model was able to achieve the highest
classification accuracy. The values for the precision and f1-score reached 0.6230 and 0.7590,
respectively, which were higher than the results obtained by other parameters. When the
mutual information parameter was set to less than 0.5, such as when it was set to 0.38, 0.4
and 0.45, the highest accuracy rate was 0.68. This relatively poor accuracy may be caused
by the loss of features favorable for emotion recognition. In the end, we determined that the
parameter of mutual information should be set to 0.5. Our ultimate goal was to use as few
features as possible to achieve the highest accuracy. In order to obtain the optimal feature
set, KNN, SVM and RF were used individually for classification, and the classification
results are shown in Figure 6.

Table 5. Comparison of classification results for different parameters.

Parameter of
MI

Number of
Features after

MI

Number of
Features after

SFFS
Accuracy Precision Recall F1-Score

0.35 87 80 0.68 0.6211 0.9708 0.7575
0.4 100 80 0.68 0.6211 0.9708 0.7575
0.45 112 80 0.68 0.6211 0.9708 0.7575
0.5 124 80 0.68125 0.6217 0.9733 0.7587
0.5 124 70 0.6825 0.6230 0.9708 0.7590
0.5 124 65 0.68125 0.6217 0.9733 0.7587

As can be seen from Figure 6, when the number of selected features was 65, the
accuracy rate was better. The classification accuracy rate of RF reached 0.695. In addition,
there were common patterns across each group of features. RF showed the best classification
performance, followed by SVM, while KNN had no obvious advantage. Therefore, SVM
and RF were used for classification verification in the subsequent experiments.

3.4. Application of Multi-Classifier Fusion
3.4.1. Hold-Out Method

In order to further improve the accuracy of classification, we adopted the method
of Multi-Classifier Fusion introduced above. This method stems from the idea of using
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weights in the attention mechanism. Sixty-five features were kept and sent to SVM, KNN
and RF for classification. We output the probabilities of the classification results of SVM
and RF and added them together as a new set of weight features. The new features together
with the original features were sent to classifiers for further classification, and the results
are shown in Figure 7 and Table 6.
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Figure 6. Comparison of classification accuracy of different numbers of features. After feature
selection, we retained 60, 65, 70 and 80 EEG features and then sent them for SVM, RF and KNN
classification. The results show that the accuracy of the classifiers was optimal when 65 features
were retained.
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Figure 7. Comparison of the accuracy of original model and Multi-Classifier Fusion model. The
figure shows the result comparison between the original model and the Multi-Classifier Fusion model.
We selected SVM, KNN and RF for verification. The results show that the accuracy of the classifiers
was improved after using Multi-Classifier Fusion.
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Entropy 2022, 24, 705 17 of 26

As shown in Figure 7, the classification accuracy of KNN (k = 41) reached 0.68375
after applying the new model. The classification accuracy of SVM (C = 0.7, gamma = 0.015)
reached 0.69625 after applying the new model. The classification accuracy of RF reached
0.70375. The accuracy of these three classifiers was significantly improved. From Table 6, we
can see that there was no significant change in the results of KNN, but the indicators of RF
were improved. This conclusion verifies the effectiveness of this study to a certain extent.

3.4.2. Leave-One-Out Cross-Validation

However, because the hold-out method was adopted to verify performance in the
above experiments, the grouping of the original data had a certain influence on the final
classification accuracy, so the results obtained by this method are not authoritative.

In order to make the results more representative, we used leave-one-out cross-validation
to further verify the performance. During the experiment, we first used the single-subject
samples as the test set for feature selection to retain 65 optimal features. Then, each subject was
considered as a test set once, while the remaining subjects were considered for training. The
average of all iterations was used as the final result, and the model performance was evaluated
for accuracy. In addition, we originally included a total of 32 subjects. During the experiment,
we found that there were some problems with the data of 4 subjects, so we only conducted
experiments on the remaining 28 subjects.

In this experiment, four different Multi-Classifier Fusion methods were included,
namely KNN and RF, KNN and SVM, SVM and RF, and KNN and RF, SVM. The results
are shown in Figure 8. Figure 8a shows the accuracy comparison between the accuracy of
65 features and the result after adding the output probabilities of KNN and RF as a new
feature for classification. Figure 8b–d show similar comparisons, but for different classifiers.

The dotted line represents the accuracy of the original method. From the four figures,
we can conclude that combining the probabilities of different classifiers can improve the
classification performance to a certain extent. However, the effect of combining KNN and
SVM in this experiment was slightly worse than the other methods.

In order to reflect the classification performance more clearly, we obtained the average
of all the subjects’ classification results for comparison. The results are shown in Figure 9
and Table 7. From Figure 9, we can clearly see that the accuracies of all four kinds of
model were higher than the original model. After using the proposed Multi-Classifier
Fusion model, the classification accuracy of SVM was improved by 3%. Notably, when the
probability of KNN and RF was combined, the classification effect of RF reached 0.7361.
In Table 7, we averaged the results for each classification indicator for all subjects. We
compared the classification performance between the original model and the four kinds of
Multi-Classifier Fusion model. In the table, the selected methods are listed in the column
on the left side. For example, the label ‘Original’ represents the original method, and KNN
+ RF, KNN + SVM, RF + SVM and KNN + RF + SVM are the four Multi-Classifier Fusion
methods. The top indicators were the precision, recall and f1-score output by the SVM,
KNN and RF classifiers. We found that the highest values of the precision, recall and f1-
score indicators appeared with very high frequency in the results of the four Multi-Classifier
Fusion models.
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Figure 8. The comparison of the original method and four kinds of Multi-Classifier Fusion method,
which fused different classifiers to obtain new features to improve the accuracy. For example,
(a) shows the comparison of the classification results after fusion of KNN and RF with the original
classification results. The dotted yellow line represents the results obtained initially with SVM
classification. The solid yellow line represents the result of SVM classification after fusion of KNN
and RF. The dotted blue line represents the results obtained initially with KNN classification. The
solid blue line represents the result of KNN classification after fusion of KNN and RF. (b) shows the
comparison of the classification results after fusion of KNN and SVM with the original classification
results. The dotted yellow line represents the results obtained initially with SVM classification. The
solid yellow line represents the result of SVM classification after fusion of KNN and SVM. (c) shows
the comparison of the classification results after fusion of SVM and RF with the original classification
results. The dotted yellow line represents the results obtained initially with SVM classification. The
solid yellow line represents the result of SVM classification after fusion of SVM and RF. (d) shows
the comparison of the classification results after fusion of KNN, SVM and RF with the original
classification results. The dotted yellow line represents the results obtained initially with SVM
classification. The solid yellow line represents the result of SVM classification after fusion of KNN,
SVM and RF.
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Figure 9. Comparison of the average values of the four Multi-Classifier Fusion methods. The blue
lines represent the outputs of the three classifiers for the original model. The remaining four lines
are the results of the four Multi-Classifier Fusion methods. We found that the output results of the
Multi-Classifier Fusion method were all better than the results of the original method.

Table 7. Classification performance comparison between original model and Multi-Classifier Fusion
(leave-one-out) models.

SVM KNN RF

Precision Recall F1-
Score Precision Recall F1-Score Precision Recall F1-

Score

Original 0.6247 0.8867 0.7408 0.6121 0.9217 0.7459 0.6651 0.8887 0.7563
KNN + RF 0.6654 0.8707 0.7498 0.6199 0.9458 0.7475 0.705 0.8399 0.7616

KNN + SVM 0.6399 0.9045 0.7449 0.6125 0.9529 0.7447 0.6767 0.8462 0.7494
RF + SVM 0.6701 0.8478 0.7439 0.6205 0.9386 0.7456 0.694 0.8442 0.7584

KNN + RF + SVM 0.6677 0.8609 0.7469 0.6205 0.9387 0.7456 0.6929 0.8398 0.7547

4. Discussion

The Multi-Classifier Fusion model is proposed based on the output probabilities of
the classifiers in this paper. This method improves the accuracy of classification to a certain
extent. The dataset used in this paper was DEAP. EEG signals were recorded by 32 brain
electrodes while each subject watched a 60 s video. We only interpreted the last 40 s of the
data for processing. This prevented the first 20 s of data from interfering with the accuracy
of the emotion recognition, because the subjects had not yet entered the corresponding
emotional states in the first 20 s. In this paper, only 15 EEG channels are selected, which
greatly reduced the amount of calculation required. In addition, for this experiment we cut
the data every 10 s, which greatly expanded the amount of data. Therefore, the dimensions
of the final data used for feature extraction were 32 (subjects) * 15 (channels) * 5120 (EEG
data samples). The flow chart of this experiment is shown in Figure 10.



Entropy 2022, 24, 705 20 of 26Entropy 2022, 24, x FOR PEER REVIEW 21 of 26 
 

 

 
Figure 10. The process of emotion recognition across subjects in the DEAP dataset. The figure de-
scribes the specific methods used in the research process of this article. For data preprocessing, we 
cut the data and selected 15 EEG channels. Then, we extracted high-dimensional features. In feature 
selection, we used mutual information and SFFS methods to retain 65 EEG features. After using 
Multi-Classifier Fusion, the leave-one-out method and the hold-out method were used for classifi-
cation verification. The highest accuracy rate reached 0.7361. 

When using the MI method, we needed to manually adjust the parameters to initially 
filter the features. As shown in Table 5, we chose four different parameter values for se-
lection. The final results show that when the parameter was set to 0.5, the highest accuracy 
rate was 0.6825. We can infer that the smaller the parameter, the lower the number of 
features that are retained. This may also result in useful features being filtered out, thereby 
reducing the accuracy. After determining the parameters, we also needed to consider the 
number of features retained after using the SFFS feature-selection method. We used SVM 
and RF to conduct experiments at the same time, and the results are shown in Figure 6. 
The best accuracy appeared when the number of retained features was 65. Therefore, after 
a series of experiments, the effectiveness of the MI method combined with the SFFS 
method was verified. 

For a more intuitive analysis of the 65 selected features, we output and observed the 
selected features. The results of the analysis according to the number of features extracted 
from each channel are shown in Figure 11a. We found that each channel contained at least 
two retained features, which proves the validity of the originally manually selected chan-
nels. There were a total of 10 features from the CH4 channel, and the CH11 and CH28 
channels retained 6 and 7 features, respectively. There were obviously more features 

Figure 10. The process of emotion recognition across subjects in the DEAP dataset. The figure
describes the specific methods used in the research process of this article. For data preprocessing,
we cut the data and selected 15 EEG channels. Then, we extracted high-dimensional features. In
feature selection, we used mutual information and SFFS methods to retain 65 EEG features. After
using Multi-Classifier Fusion, the leave-one-out method and the hold-out method were used for
classification verification. The highest accuracy rate reached 0.7361.

This experiment included the stages of data preprocessing, feature extraction, feature
selection and classification. The feature extraction of EEG signals is an important part of
analyzing EEG characteristics. Most of the previous literature has verified the effectiveness
of a certain feature, but no research has clearly shown which feature combinations are
optimal for emotion recognition. Therefore, the way to improve the classification accuracy
in this paper was to extract as many favorable features as possible and then perform feature
selection. Ultimately, we expected to obtain the optimal feature set. When extracting the
frequency domain features, we only focused on the three high-frequency bands of alpha,
beta and gamma. In addition, we also obtained the RASM features of the EEG signals to
represent the difference between the left and right hemispheres of the brain. Besides the



Entropy 2022, 24, 705 21 of 26

time domain and frequency domain features, entropy features and other features such as FD
were also extracted to represent the nonlinear characteristics of EEG signals. The entropy
feature was mainly derived from information theory. In information theory, entropy is
thought to represent the amount of information. In EEG analysis, entropy can be used to
describe the complexity and regularity of EEG signals. In the end, a total of 249 dimensional
features were collected.

After feature extraction, we used the SBS feature-selection method mentioned in
the literature [28]. From the results shown in Figure 5, we found that the classification
accuracy was not directly proportional to the feature dimensions because of the existence
of redundant features. This phenomenon has been mentioned in the literature [65]. In the
process of feature selection, the idea of SBS is to continuously remove features to make the
evaluation function optimal. SFS is similar to SBS. However, both methods have certain
limitations. The SFFS method was proposed by a later study; this method can make up the
shortcomings of SBS and SFS. SFFS can eliminate and add features to make the evaluation
function optimal. This paper used all three methods to conduct simple experiments, and
the results are shown in Table 3. We can see that the feature classification performance of
SFFS was better, which is consistent with the idea proposed by [66]. However, although
the selected feature classification performance of SFFS was better, it took a long time. To
solve this problem, we chose a feature-selection method to reduce the feature dimensions
before employing SFFS. In this paper, the PCA, correlation and mutual information feature-
selection methods were chosen for comparative experiments. From Table 4, we can see that
the classification accuracy of the combined feature-selection methods was better than a
single feature-selection method. For example, the classification accuracy rate after using
PCA for dimensionality reduction alone was 0.6775, while the classification accuracy
rate after combining PCA and SFFS was slightly improved to 0.67875. What is more,
we found that the method of combining mutual information with SFFS achieved the
best classification effect. Mutual information performed better than PCA and correlation.
Table 4 demonstrates the effectiveness of mutual information feature selection compared
with the other feature selection methods. The concept of mutual information comes
from information theory. We applied information theory to emotion recognition and
demonstrated that it has certain advantages in computational biology. Therefore, the
method of combining MI and SFFS was chosen in this paper.

When using the MI method, we needed to manually adjust the parameters to initially
filter the features. As shown in Table 5, we chose four different parameter values for
selection. The final results show that when the parameter was set to 0.5, the highest
accuracy rate was 0.6825. We can infer that the smaller the parameter, the lower the
number of features that are retained. This may also result in useful features being filtered
out, thereby reducing the accuracy. After determining the parameters, we also needed to
consider the number of features retained after using the SFFS feature-selection method.
We used SVM and RF to conduct experiments at the same time, and the results are shown
in Figure 6. The best accuracy appeared when the number of retained features was 65.
Therefore, after a series of experiments, the effectiveness of the MI method combined with
the SFFS method was verified.

For a more intuitive analysis of the 65 selected features, we output and observed the
selected features. The results of the analysis according to the number of features extracted
from each channel are shown in Figure 11a. We found that each channel contained at
least two retained features, which proves the validity of the originally manually selected
channels. There were a total of 10 features from the CH4 channel, and the CH11 and
CH28 channels retained 6 and 7 features, respectively. There were obviously more features
extracted from these three channels than the other channels. This phenomenon shows that
these three channels play a necessary role in emotion recognition experiments. However,
this paper is focused on selecting the optimal feature set and verifying the effectiveness of
the Multi-Classifier Fusion method in the experimental process. Therefore, this study did
not use the channel selection algorithm to select the EEG channel. Instead, features were
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manually selected based on previous experience. This was also a shortcoming of this paper.
In the future, researchers could combine a certain channel selection algorithm for further
improvement.
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Figure 11. Classification of 65 retained features. (a) the distribution of the selected 65 features across
the 15 EEG channels. (b) the distribution of the selected 65 features across different kinds of features.

The results of the analysis carried out according to the number of extracted features
are shown in Figure 11b. A total of 25 statistical features were retained, which accounted
for a large proportion of all the retained features. Among them, the most preserved feature
of the EEG was the mean feature—there were 15 in total. The results are consistent with the
conclusions drawn in the literature [30], i.e., that statistical features are the most meaningful
features that characterize brain emotions. Secondly, the complexity and FD contributed
to the accuracy of emotion recognition, since they can both better describe the nonlinear
characteristics of EEG signals.

After the above series of experiments, the highest classification accuracy rate we
achieved was 0.695. In order to further improve the accuracy, a new idea was proposed,
which was to use the output probabilities of the classifiers as new features for classification.
This proposition was based on the weight idea in the attention mechanism. We can also
understand it in the following way: in a situation where one classifier is accurate and
the other classifier is incorrect when performing classification, adding the corresponding
probability weights of the two classifiers can reduce the probability of error to a certain
extent. As shown in Figures 7 and 9, the new method did show good performance, with
the classification accuracy reaching 0.73.

In addition, cross-subject research using the DEAP dataset has gradually increased in
recent years. Each new finding lays the groundwork for future research. Similar works are
as follows. In [58], the experimental results show that by using automatic feature-selection
methods in DEAP, the average accuracy reached 0.59. In [28], adopting the ST-SBSSVM
method and using 32 EEG channels improved the classification accuracy to 72%. As shown
in Figure 12, only 15 EEG channels were used in this paper, and the proposed method
showed a good performance. Its accuracy is comparable to the cross-subject emotion
recognition accuracy using the DEAP dataset in similar studies. In summary, the method
proposed in this research is effective for cross-subject emotion recognition.
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Figure 12. Comparison between this work and previous studies in DEAP. The figure shows the
accuracy results of our approach compared with four other research methods. Our classification
accuracy is higher than their results and reaches 0.7361.

With the development of deep learning, we find that more and more people are
turning their attention to deep learning applications. Although deep learning can indeed
achieve good results, it also requires a lot of data. In some research fields, there are not
sufficient data, which limits the application of deep learning. At this point, we should try
to focus on improving the accuracy of the traditional machine learning algorithm. To a
certain extent, traditional machine learning has the advantages of easy implementation and
a fast calculation speed. In this paper, we absorbed the idea of the attention mechanism
and proposed a Multi-Classifier Fusion model. Experiments were conducted based on
this model, and the results also verified the effectiveness of this model. In addition, the
model proposed in this paper is actually a new way of thinking. Future researchers could
consider trying this approach in their fields. Perhaps this approach could further improve
the classification accuracy of research in other fields.

5. Conclusions

In this study, we introduced the concept of weight coefficients from the attention
mechanism and proposed a Multi-Classifier Fusion model. This model contributed to
the improvement of cross-subject emotion recognition accuracy. We chose the DEAP
dataset to test the performance of the model. In the process of emotional recognition, data
cutting was employed to expand the samples, because sufficient samples were needed to
train the model more effectively. In addition, not all channels are beneficial to emotion
recognition. Selecting a subset of the channels can reduce the computational cost. When
extracting features to express the characteristics, the time domain, frequency domain and
nonlinear features were extracted. By comparing the results of combining different feature-
selection methods, we found that the performance of combining MI and SFFS was better
than the other methods. In the test process, SVM, KNN and RF were used as classifiers
to calculate the accuracy of emotional classification. The average emotion recognition
accuracies reached 0.6789, 0.688 and 0.7133. Finally, the classification performance was
optimized by applying a Multi-Classifier Fusion method. The best classification accuracy
was obtained by adding the output probabilities of different classifiers as weight features.
The average emotion recognition accuracies of the proposed scheme reached 0.7089, 0.7106
and 0.7361. This shows that the proposed method for cross-subject emotion recognition
improves performance when compared with existing methods. However, this study used
the idea of introducing weights only once in the experimental process. Better results may be
obtained if multiple iterations are performed or if multiple classifiers’ output probabilities
are stacked.
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