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Abstract: In this paper, we summarize some recent advances related to the energetic variational
approach (EnVarA), a general variational framework of building thermodynamically consistent
models for complex fluids, by some examples. Particular focus will be placed on how to model
systems involving chemo-mechanical couplings and non-isothermal effects.
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1. Introduction

Complex fluids comprise a large class of soft materials, such as polymeric solutions,
liquid crystals, ionic solutions, and fiber suspensions. These are fluids with complicated
rheological phenomena, arising from different “elastic” effects, such as the elasticity of
deformable particles, interaction between charged ions, and bulk elasticity endowed by
polymer molecules [1,2]. Due to their strong nonlinear and non-equilibrium nature, build-
ing thermodynamically consistent models for complex fluids has been an interesting and
challenging problem. The difficulty arises from complicated coupling and competition of
different electro-chemo-mechanic mechanisms, such as long-range interaction and thermal
fluctuation, in different spatio-temporal scales.

Motivated by the non-equilibrium thermodynamics, especially the seminal works of
Rayleigh [3] and Onsager [4,5], the energetic variational approach (EnVarA) has proven to
be a powerful tool in studying numerous complex fluids systems in physics, chemistry, and
biochemistry [6,7], including liquid crystals [8,9], viscoelastic fluids [10], multiple-phase
flows [11,12], ionic solutions [13], etc. The idea of EnVarA is to describe a complex system
by an energy–dissipation law

d
dt

Etotal = −4 ≤ 0, (1)

where Etotal is the sum of the kinetic energy K and the Helmholtz free energy F ,4 is the
rate of energy dissipation. The energy–dissipation law (1) can be obtained by combining
the first and second laws of thermodynamics for an isothermal and mechanically isolated
system [14]. Indeed, the first law of thermodynamics states that

d
dt

(K+ U ) = Ẇ + Q̇, (2)

where K is the kinetic energy, U is the internal energy, Q̇ is the rate at which heat absorbed
from the environment, and Ẇ is the rate of the external work done by the environment. To
analyze heat, one introduces the second law of thermodynamics

T
dS
dt

= Q̇ +4, (3)

where T is the absolute temperature, S is the entropy, and 4 ≥ 0 is the rate of entropy
production. By subtracting the first law (2) and the second law (3), we obtain an energy–
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dissipation law (1) for an isothermal ( d
dt T = 0) and mechanically isolated (Ẇ = 0) system

with F = U − TS being the Helmholtz free energy. So, in this case, the rate of energy
dissipation equals the rate of entropy production.

Starting with an energy–dissipation law (1), EnVarA derives the dynamics of the
systems through the least action principle (LAP) and the maximum dissipation principle
(MDP). The LAP, which states the equation of motion for a Hamiltonian system can be
derived by taking variation of the action functional A =

∫ T
0 K−Fdt with respect to the

trajectory x, gives a unique procedure to derive the conservative force in the system. The
MDP, variation of the dissipation potentialD with respect to xt, i.e., the velocity, derives the
dissipation force in the system. In turn, the force balance condition leads to the underlying
evolution equation of the system

δD
δxt

=
δA
δx

. (4)

According to the Onsager theory [4,5], the rate of entropy production 4 is quadratic in
terms of xt in the linear response regime, and the dissipation potential D = 1

24 in this case.
There are other forms of variational principles, such as the general equation for non-

equilibrium reversible–irreversible coupling (GENERIC) [1,15,16], Onsager’s variational
principle [17–20], and conservation–dissipation formalism [21,22], that have also been
helpful in studying complex fluids. Although these variational principles are equivalent
to EnVarA in most cases, these approaches are based on the principle of virtual work
(PVW), in which the variation is often taken with respect to the state variables directly. The
state variables are defined in Eulerian coordinates in many cases, and can be viewed as
generalized coordinates in these systems [17].

In contract to other variable principles, the classical EnVarA formulation is rooted in
the continuum mechanics [23–25] and a Lagrangian formulation of an underlying system.
Continuum mechanics is a generalization of Newtonian particle mechanics. In continuum
mechanics, it is assumed that there are infinite many particles form a continuum body. The
motion of these particles is described by a flow map x(X, t), where X is the Lagrangian
coordinate and x is the Eulerian coordinate. More importantly, in the context of continuum
mechanics, all dynamics of the employed variables are determined by the flow map x(X, t)
and its derivatives (the velocity and the deformation tensor) through their kinematics. The
energy–dissipation law, together with the kinematics of the employed variables, describes
all the physics and assumptions in the system. It is important to realize that systems derived
by the LAP can also be derived by the PVW, but not vice versa. In fact, the discrepancy
between the LAP the PVW is of great interest in the mathematical theory of weak solutions
and the theory of singularities [8,11].

The purpose of this paper is to provide a brief overview of some recent develop-
ments of the energetic variational approach, especially for the systems involving chemo-
mechanical couplings and non-isothermal effects, through examples. We refer interested
readers to [6,7] for more details of the classical energetic variational approach. The rest
of the paper is organized as follows. In Section 2, we briefly review the EnVarA in con-
tinuum mechanics, and show its applications in modeling generalized diffusion, a dilute
polymeric fluids, and the kinetic Fokker–Planck equation. The EnVarA formulation for
reaction kinetics and its applications in modeling chemo-mechanical systems, such as
reaction–diffusion systems, the dynamical boundary conditions, the Boltzmann equation
and the reaction/active fluids, are given in Section 3. In Section 4, we discuss the extension
of the EnVarA to non-isothermal systems. Some applications of the EnVarA in developing
structure-preserving numerical schemes and thermodynamically consistent coarse-grained
model are reviewed in Section 5.

2. EnVarA in Continuum Mechanics

As mentioned in the introduction, the classical energetic variational approaches are
variational principles for continuum mechanics [7], and the variable x in (4) should be
understood as the flow map x(X, t) from a reference domain Ω0 to a physical domain Ωt.
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Here X ∈ Ω0 is the Lagrangian coordinate and x ∈ Ωt is the Eulerian coordinate. For a
fixed X, x(X, t) describes a trajectory of a particle (or a material point) labeled by X, while
for a fixed t, x(X, t) is a diffeomorphism from Ω0 to Ωt (see Figure 1 for an illustration).

Figure 1. An illustration of the flow map.

An important feature of a continuum mechanical system is that the evolution of
physical variables, such as the density function, are determined by the evolution of the flow
map x(X, t) through kinematics. All the kinematic transport information of these variables
is carried by the deformation tensor F. For a given flow map x(X, t), the deformation tensor
F is defined by

F̃(x(X, t), t) = F(X, t) = ∇Xx(X, t). (5)

A direct computation shows that F̃ satisfies a transport equation [7]

F̃t + u · ∇F̃ = ∇uF̃.

Without ambiguity, we will not distinguish F and F̃ throughout this paper. Due to the
conservation of mass,

∫
Ωt

ρ(x, t)dx =
∫

Ω0
ρ0(X)dX, the kinematics of a density function

ρ(x, t) can be written as
ρ(x, t) = ρ0(X)/ detF(X, t) (6)

in Lagrangian coordinates, where ρ0(X) is the initial density. The kinematics (6) is equiv-
alent to the continuity equation ρt +∇ · (ρu) = 0 in Eulerian coordinates. For a scalar
variable that is purely transported by the flow map, the kinematics is given by

ϕ(x(X, t), t) = ϕ0(X) or ϕt +∇ϕ · u = 0

in Eulerian coordinates. For a nematic liquid crystal that consists of rod–like molecule, the
kinematics of the nematic order parameter d ∈ Rd can be written as

d(x(X, t), t) = Fd0(X) or ∂td + (u · ∇)d− (∇u)d = 0.

2.1. Generalized Diffusion

One of the simplest classes of mechanical processes is generalized diffusion. General-
ized diffusion is concerned with a conserved quantity ρ(x, t) satisfying the kinematics

∂tρ +∇ · (ρu) = 0, (7)

where u is the average velocity. In the framework of EnVarA, a generalized diffusion can
be described an energy–dissipation law

d
dt
F [ρ] = −

∫
η(ρ)|u|2 dx, F [ρ] =

∫
ω(ρ)dx, (8)

where ω(ρ) is the free energy density, η(ρ) > 0 is the friction coefficient. Due to the
kinematics (7), the free energy can be reformulated as a functional of x(X, t) in Lagrangian
coordinates. A direct computation shows that
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δA = −δ
∫ T

0

∫
Ω0

ω(ρ0(X)/ detF)detFdXdt

= −
∫ T

0

∫
Ω0

(
−∂ω

∂ρ

(
ρ0(X)
detF

)
· ρ0(X)

detF
+ ω

(
ρ0(X)
detF

))
× (F−T : ∇Xδx)detF dXdt,

where δx is the test function satisfying δx · n = 0 with n being the outer normal of Ω in
Eulerian coordinates (Here we will not distinguish δ̃x(x(X, t), t) = δx(X, t) and δx(X, t)
without ambiguity). Pushing forward to Eulerian coordinates, we have

δA = −
∫ T

0

∫
Ω

(
−∂ω

∂ρ
ρ + ω

)
∇ · (δx)dxdt =

∫ T

0

∫
Ω
−∇

(
∂ω

∂ρ
ρ−ω

)
· δxdxdt, (9)

which indicates that
δA
δx

= −∇
(

∂ω

∂ρ
ρ−ω

)
= −ρ∇µ,

where µ = δF
δρ is the chemical potential. In the notion of the principle of virtual work [24],

one can obtain (9) by using the relation δρ = ∇ · (ρδx)
For the dissipation part, since D = 1

2

∫
η(ρ)|u|2dx, it is easy to compute that δD

δu =
η(ρ)u. As a consequence, we have the force balance equation

η(ρ)u = −ρ∇µ. (10)

Combining the force balance Equation (10) with the kinematics (7), one can obtain a
generalized diffusion equation

ρt = ∇ ·
(

ρ2

η(ρ)
∇µ

)
. (11)

It is worth mentioning that the above derivation is rather formal. A certain analysis is
needed to show the existence of the flow map x(X, t). We refer interested readers to [26,27]
for some related discussions.

Many classical models can be viewed as generalized diffusions with different forms of
the free energy F [ρ] and the dissipation. For example, the porous medium equation (PME)
ρ = ∆ρm can be obtained by taking F [ρ] =

∫ 1
m−1 ρmdx and η(ρ) = ρ, the Cahn–Hilliard

equations ϕt = ∆(−∆ϕ + f ′(ϕ)) can be obtained by taking F [ϕ] =
∫

f (ϕ) + 1
2 |∇ϕ|2dx

and η(ϕ) = ϕ2 [28], and the Poisson–Nernst–Planck (PNP) equations for ion transport
nt = ∆n−∇ · (∇φn),
pt = ∆p +∇ · (∇φp),
∇(ε∇φ) = n− p.

can be obtained from the energy–dissipation law

d
dt

∫
n ln n + p ln p +

ε

2
|∇φ|2dx = −

∫
n|un|2 + p|up|2dx, (12)

along with the Poisson equation ∇(ε∇φ) = n− p [13].
Another interesting example of generalized diffusions is the nonlinear Fokker–Planck

equation associated with a random process

dXt = a(Xt)dt + σ(Xt)dWt. (13)

It is well known that different definitions of stochastic integrals can lead to different
diffusion equations. For the stochastic process (13), Itô calculus leads to a diffusion equation
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ρt +∇ · (aρ) =
1
2

∆(σ2ρ),

which corresponds to the energy–dissipation law

d
dt

∫
ρ ln(σ2ρ/2) + ψρdx = −

∫
ρ

σ2/2
|u|2dx

if a = 1
2 σ2∇ψ [29]. Meanwhile, the Stratonovich integral yields

ρt +∇ · (aρ) =
1
2
∇ · (σ∇(σρ)),

which corresponds to the energy–dissipation law

d
dt

∫
ρ ln(σ f ρ) + ψρdx = −

∫ f
σ2/2

|u|2dx

if a = 1
2 σ2∇ψ. In both cases, the condition a = 1

2 σ2∇ψ, known as the fluctuation–
dissipation theorem in statistical physics [30], is crucial for the existence of the energy–
dissipation law, as well as the existence of an equilibrium state [7].

In the case that η(ρ) = ρ, generalized diffusions can be viewed as Wasserstein gradi-
ent flows in space of all probability densities having finite second moments P2(Ω) [31].
Formally, the Wasserstein gradient flow can be defined as a continuous time limit (τ → 0)
of the semi-discrete scheme, known as the JKO scheme,

ρk+1 = arg min
ρ∈P2(Ω)

1
2τ

W2(ρ, ρk) +F [ρ], k = 0, 1, 2 . . . , (14)

where P2(Ω) = {ρ : Ω → [0, ∞) |
∫

Ω ρdx = 0,
∫

Ω |x|
2ρ(x)dx < ∞} and W2(ρ, ρk) is the

Wasserstein distance between ρ and ρk. The Wasserstein distance between two probability
densities ρ1 and ρ2 can be computed through a Benamou–Brenier formulation [32]

W2(ρ1, ρ2) = arg min
(ρ,u)∈S

∫ 1

0

∫
ρ|u|2dxdt, (15)

where
S = {(ρ, u) | ρt +∇ · (ρu) = 0, ρ(x, 0) = ρ1, ρ(x, 1) = ρ2} (16)

is the admissible set.
The Wasserstein gradient flows are Eulerian descriptions to generalized diffu-

sions [33]. Other choices of dissipation can define other metrics in the space of probability
measures [34,35]. Within (15), the JKO scheme can be roughly approximated as

Φk+1 = arg min
Φ∈Di f f

1
2τ

∫
Ω
|Φ(x)− x|2ρk(x)dx +F [ρk◦̃Φ−1(x)]dx, (17)

under a constant velocity assumption, where ρk◦̃Φ−1(x) = ρk(Φ−1(x))/ detF(Φ−1(x)).
The scheme (17) can be viewed as an implicit Euler discretization to the flow map Equa-
tion (10) in (tk, tk+1). Mathematically, it is interesting to establish the equivalence or
discrepancy between (14) and (17).

2.2. Micro-Macro Model for Polymeric Fluids

One successful application of EnVarA is building thermodynamically consistent micro-
macro models for many complex fluids [36,37]. Compared with the macroscopic continuum
mechanics approach, micro–macro models couple the macroscopic hydrodynamic equa-
tions with a microscopic kinetic theory, which describes the origin of the macroscopic stress
tensor [38,39].
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In the simplest micro–macro models of complex fluids, the polymer molecules are
modeled as an elastic dumbbell consisting of two “beads” joined by a one-dimensional
spring [36,37]. The microscopic configuration of an elastic dumbbell is described by an
end-to-end vector between the two beads, q ∈ Rd. Let f (x, q, t) be the number density
distribution function of finding a molecule with end-to-end vector q at position x ∈ Ω at
time t. To build a micro–macro model by EnVarA, in addition to the macroscopic flow map
x(X, t) at the physical space, one also needs to introduce a flow map at the configurational
space, denoted by q(X, Q, t), where Q are Lagrangian coordinates in the configurational
space. For a given q(X, Q, t), the microscopic velocity V(x, q, t) can be defined as

V(x(X, t), q(X, Q, t), t) = qt(X, Q, t). (18)

Due to the conservation of mass, the density distribution function f (x, q, t) satisfies

d
dt

∫
Ω

∫
Rd

f (x, q, t)dqdx = 0, (19)

which leads to the kinematics

∂t f +∇ · ( f u) +∇q · ( f V) = 0 (20)

in Eulerian coordinates.
In the framework of EnVarA, the micro–macro system can be modeled through an

energy–dissipation law

d
dt

∫
Ω

(
1
2

ρ|u|2 + λp

∫
Rd

kBT f ln f + Ψ f dq
)

dx

= −
∫

Ω

(
ηs|∇u|2 +

∫
Rd

λpζ

2
f |V − Ṽ|2dq

)
dx,

(21)

where ρ is the constant density of the fluid, λp > 0 is a constant that represents the
polymer density, kB is the Boltzmann constant, T is the absolute temperature, ηs > 0 is the
solvent viscosity, the constant ζ is related to the polymer relaxation time, Ψ = Ψ(q) is the
microscopic elastic potential of the polymer molecules. For Hookean and FENE models,

the elastic potential Ψ(q) is given by Ψ(q) = 1
2 H|q|2 and Ψ(q) = −HQ2

0
2 ln(1− ( |q|Q0

)2)
respectively, where H > 0 is the elastic constant and Q0 is the maximum dumbbell extension
in FENE models. The second term of the dissipation accounts for the micro–macro coupling
with Ṽ being the macroscopic induced velocity. According to the Cauchy–Born rule,
q = FQ due to the macroscopic flow, which indicates

Ṽ =
d
dt

(
FQ
)
=

(
d
dt

F

)
Q = (∇uF)Q = ∇uq.

From the energy–dissipation law (21), one can derive the dynamics of the system
by performing EnVarA in both micro- and macro scales. First, we look at the dynamics
at the macroscopic scale. Due to the “separation of scale” [7], the second term in the
dissipation (21) vanishes when deriving the macroscopic force balance. Since detF = 1,
the action functional can be written as

A(x) =
∫ T

0

∫
Ω0

[
1
2

ρ|xt|2 − λp

∫
Rd

kBT f0 ln f0 + Ψ(FQ) f0dQ
]

dXdt (22)

in Lagrangian coordinates, where f0(X, Q) is the initial number distribution function, and
f (x,FQ, t) = f0(X, Q) due to detF = 1. By applying the LAP, i.e., taking the variation of
A(x) with respect to x, we obtain
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δA
δx

= −ρ(ut + u · ∇u) + λp∇ ·
( ∫

Rd
f∇qΨ⊗ qdq

)
(23)

in Eulerian coordinates. Indeed, consider a perturbation xε = x + εy, where y(X, t) =
ỹ(x(X, t), t) satisfying ỹ · n = 0. Then

d
dt
A(xε)

∣∣∣
ε=0

=
∫ T

0

∫
Ω0

[
−ρxtt · y− λp

∫
f0∇qΨ⊗Q : ∇XydQ

]
dXdt.

Pushing forward to Eulerian coordinates, we have

d
dt
A(xε)

∣∣∣
ε=0

=
∫ T

0

∫
Ω

[
−ρ(ut + u · ∇u) · ỹ− λp

∫
f∇qΨ⊗ q : ∇xỹ)dq

]
dxdt

=
∫ T

0

∫
Ω

(
−ρ(ut + u · ∇u) + λp∇ · (

∫
f∇qΨ⊗ qdq)

)
· ỹdxdt,

which leads to (23). For the dissipation part, the MDP, i.e., taking the variation of D with
respect to xt, leads to

δD
δxt

= −ηs∆u +∇p, (24)

where p is the Lagrangian multiplier for the incompressible condition ∇ · u = 0. Hence,
the macroscopic force balance results in the momentum equation

ρ(ut + u · ∇u) +∇p = ηs∆u +∇ · τ, (25)

where
τ = λp

∫
Rd

f∇qΨ⊗ qdq (26)

is the induced stress from the configuration space, representing the microscopic contribu-
tions to the macroscopic level.

On the microscopic scale, similar to the generalized diffusions discussed in the last
subsection, by taking variations with respect to q(X, Q, t) and V(X, Q, t), we obtain

ζ

2
(V −∇uq) = −∇q(kBT ln f + 1 + Ψ).

Combining with Equation (20), we obtain the equation on the microscopic scale:

ft +∇ · (u f ) +∇q · (∇uq f ) =
2
ζ
∇q · ( f∇qΨ) +

2kBT
ζ

∆q f . (27)

In summary, the final micro–macro system reads as follows:
ρ(ut + u · ∇u) +∇p = ηs∆u +∇ · τ, ∇ · u = 0,

τ = λp

∫
Rd

f∇qΨ⊗ qdq,

ft +∇ · (u f ) +∇q · (∇uq f ) =
2
ζ
∇q · ( f∇qΨ) +

2kBT
ζ

∆q f ,

(28)

subject to a suitable boundary condition.

2.3. Kinetic Fokker–Planck Equation

Using a similar micro-macro approach, one can also formulate the kinetic Fokker–
Planck equation into an EnVarA formulation. The kinetic Fokker–Planck equation, given by

∂t f +∇x · (v f ) +∇v · ((−γv−∇Φ) f ) =
σ2

2
γ∆v f , (29)
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describes the evolution of the probability density function f (x, v, t) of a system of particles
that satisfies a Langevin dynamics{

dXt = Vtdt
dVt = (−∇Φ(Xt)− γVt)dt + σdWt,

(30)

where Wt is the standard Wiener process and Φ(x) is the potential function. Due to the
fluctuation–dissipation theorem (FDT), σ =

√
2kBTγ, which ensures that the system admits

an energy–dissipation law and can reach an equilibrium state [40].
The total energy of the system can be defined by

Etotal =
∫ ∫ 1

2
f |v|2 + f Φ + kBT f ln f dxdv. (31)

Then the kinetic Fokker–Planck equation can be written as two parts [41]

∂t f = LC(x, v) f + LD(x, v) f ,

where
LC = −∇x · (v f ) +∇v · (∇Φ f )

conserves the total energy Etotal, while

LD = ∇v · (γ f v +
σ2

2
∇v f )

dissipates Etotal. Indeed, a direct computation shows that

d
dt

∫∫ 1
2

f |v|2 + f Φ + kBT f ln f dxdv =
∫∫ [1

2
|v|2 + Φ + kBT ln f

]
ftdvdx

=
∫∫ [1

2
|v|2 + Φ + kBT ln f

]
(LC f + LD f )dvdx.

Since ∫∫ [1
2
|v|2 + Φ + kBT ln f

]
LC f dvdx

=
∫∫
∇x

[
1
2
|v|2 + Φ + kBT ln f

]
· v f −∇v

[
1
2
|v|2 + Φ + kBT ln f

]
· ∇Φ f dvdx

=
∫∫
∇xΦ · v f + kBT∇x(ln f ) · v f − v · ∇Φ f − kBT∇v ln f · ∇Φ f dvdx

=
∫∫

kBT(∇x f · v−∇v f · ∇Φ)dvdx = 0,

where the last equality follows the fact that∇x · v = 0 and∇v · (∇Φ) = 0. Hence, ft = LC f
conserves the total energy. In the meantime,

∫∫ [1
2
|v|2 + Φ + kBT ln f

]
LD f dvdx =

∫∫
(v + KBT∇v ln f ) · (− f γv− σ2

2
∇v f ))

=
∫∫
−γ f |v + kBT∇v ln f |2dvdx ≤ 0.

Here, we need σ2 = 2kBTγ to obtain the quadratic form. σ =
√

2kBTγ is known as the
fluctuation–dissipation theorem [30]. This calculation also reveals the connection between
the fluctuation–dissipation theorem and linear response theorem.

Similar to the micro–macro approach for polymeric fluids introduced in a previous
subsection, one can treat v as a microscopic variable, and x as a macroscopic variable; the
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micro–macro coupling is imposed through xt = v. Due to the conservation property, the
probability density f (x, v, t) satisfies the kinematics

ft +∇x · (v f ) +∇v · (U(x, v) f ) = 0, (32)

where U can be decomposed as

U = UC(x) + UD(v), (33)

Here UC(x) is a conserve velocity. In other words, the equation ft +∇x · (v f ) +∇v ·
(UC(x) f ) = 0 conserves the total energy, i.e.,

d
dt

∫∫ 1
2

f |v|2 + f Φ(x) + f ln f dvdx = 0. (34)

if ft +∇x · (v f ) +∇v · (UC(x) f ) = 0. Notice that∫∫ [1
2
|v|2 + Φ + kBT ln f

]
(LC f dv)dx

=
∫∫
∇xΦ · v f − v ·Uc(x) f + kBT∇x f · v− kBT∇v f · ∇Φdvdx

=
∫∫

(∇xΦ−UC(x)) · vdv f dx,

(35)

which indicates that UC(x) = ∇xΦ. In other word, we can obtain UC(x) by applying the
least action principle at the macroscopic scale.

The dissipative velocity UD(v) can be obtained through the energy–dissipation law

d
dt

∫
f |v|2 + f ln f + f Φdv =

∫
−γ f |UD|2dv. (36)

A standard variational procedure results in

γ f UD(v) = f v + KBT∇v f . (37)

Here 1
2 f |v|2 plays a role of the internal energy in the macroscopic scale. The EnVarA

formulation to the kinetic Fokker–Planck equation may open a new door for both theoretical
and numerical study of these types of equations.

3. EnVarA for Chemical Reactions

Chemical reactions play important roles in many physical, chemical, and biological
processes [42]. The fundamental “law” for chemical reaction kinetics is the law of mass ac-
tion (LMA), which is discovered by Waage and Guldberg, and H. van’t Hoff independently
in the 19th century. A reversible chemical reaction system with N species {X1, X2, . . . XN}
and M reactions can often be represented by

αl
1X1 + αl

2X2 + . . . αl
NXN

kl
+

−−⇀↽−−
kl
−

βl
1X1 + βl

2X2 + . . . βl
NXN , l = 1, . . . , M,

where αl
i and βl

i are constant coefficients. Let c = (c1, c2, . . . , cN)
T be concentrations of all

species. Then c satisfies the reaction kinetics

∂tci =
M

∑
l=1

σilrl(c), (38)

where rl(c) is the reaction rate for the l-th chemical reaction, and σil = βl
i − αl

i is the
stoichiometric coefficients. From (38), it is noticed that
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d
dt

(e · c) = e · σr(c(t), t) = 0, for e ∈ Ker(σT). (39)

In turn, one can define N-rank(σ) linearly independent conserved quantities for the reaction
network.

The classical LMA states that the reaction rate is directly proportional to the product
of the reactant concentrations, i.e.,

rl(c) = k+l cαl − k−l cβl
, cαl

=
N

∏
i=1

c
αl

i
i , cβl

=
N

∏
i=1

c
βl

i
i , (40)

in which k+l and k−l are the forward and backward reaction constants for the l-th reaction.
The LMA was designed for the ideal gas of a perfect gas of non-interacting point particles
without charge or diameter. To generalize the LMA to more complicated systems, it is
important to establish a thermodynamics basis of this empirical law.

Since 1950s, there has been a large amount of work aiming to build an Onsager-type
variational theory for systems involving chemical reactions [1,43–52].The key idea is to
build on analogies between continuum mechanics and reaction kinetics [1,52,53]. Inspired
by these prior works, in a recent paper [54], the authors extended the EnVarA formulation
to a system that involves chemical reactions. By introducing the reaction trajectory R ∈ RM,
which accounts for the “number” of forward chemical reactions that has occurred by time t,
the reaction kinetics can be reformulated in terms of R. The reaction trajectory R, which
is known as the internal state variable in [43], is analogous to the flow map x(X, t) in
mechanical systems [55]. The relation between species concentration c ∈ RN

+ and the
reaction trajectory R is given by c = c0 + σR, where c0 is the initial concentration, and
σ ∈ RN×M is the stoichiometric matrix with σil = βl

i − αl
i . The reaction rate r, defined

as ∂tR, is the reaction velocity [52]. Within the reaction trajectory, we can describe the
chemical kinetics of a reaction network by an energy–dissipation law in terms of R and ∂tR:

d
dt
F [R] = −Dchem[R, ∂tR], (41)

where Dchem[R, ∂tR] is the rate of energy dissipation due to the chemical reaction.
Unlike mechanical processes, chemical reactions are usually far from equilibrium.

The linear response assumption may be not valid unless at the last stage of chemical
reactions [1,56]. As a consequence, Dchem is not quadratic in terms of ∂tR in general. For a
general nonlinear dissipation

Dchem[R, ∂tR] = (Γ(R, ∂tR), ∂tR) =
M

∑
l=1

Γl(R, ∂tR)∂tRl ≥ 0, (42)

the reaction rate can be derived as [54,57]:

Γ(R, ∂tR) = − δF
δR

, (43)

which is the “force balance” equation for the chemical part [54,57]. It is often assumed
that Γl(R, ∂tR) = Γl(Rl , ∂tRl). Equation (43) specifies the reaction rate of the l-th chemical
reaction. In this formulation, the free energy determines the chemical equilibrium, while the
dissipation functional Dchem[R, ∂tR] determines the reaction rate. It is worth mentioning
that the variational principle (43) can be applied to other systems with non-quadratic
dissipations, such as the systems studied in [58,59].

The classical LMA can be obtained by taking

F [c(R)] =
N

∑
i=1

ci ln(ci/c∞
i ), Γl(R, ∂tR) = ln

(
∂tRl
ηl(c)

+ 1
)

, (44)
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where c∞ is an equilibrium of the reaction kinetics system that satisfies the detailed balance

condition, i.e., rl(c∞) = k+l (c
∞)αl
− k−l (c

∞)βl
= 0, and ηl(c) = k−l ΠN

i=1c
βl

i
i . Similar to the

cases in [58,59], near a chemical equilibrium, ∂tRl is very small, and the dissipation of the
LMA can be well approximated as a classical Onsager quadratic form of ∂tRl .

As an illustration, we consider a single chemical reaction

α1 X1 + α2 X2
k1

+

−−⇀↽−−
k1
−

β3 X3, (45)

in which σ = (−α1,−α2, β3)
T. According to the previous discussion, the variational

approach produces

ln

(
∂tR

k−1 cβ3
3

+ 1

)
= −∂F

∂R
, (46)

where
∂F
∂R

=
3

∑
i=1

σiµi =
3

∑
i=1

σi(ln(ci/c∞
i ).

From (46), we can obtain the law of mass action

Ṙ = k−1 cβ3
3

(
1

Keq

cα1
1 cα2

2

cβ3
3

− 1

)
= k+1 cα1

1 cα2
2 − k−1 cβ3

3 , (47)

where Keq =
k+1
k−1

=
c

β3
3

(c∞
1 )α1 (c∞

2 )α2 .

The energetic variational formulation of chemical reactions opens a new door to model
a general chemo-mechanical system in a unified variational way. One of the simplest
chemo-mechanical systems is reaction–diffusion type system. For a reaction–diffusion
system, the concentration of each species ci satisfies the kinematics:

∂tci +∇ · (ciui) = (σ∂tR)i, i = 1, 2, . . . N, (48)

where ui is the average velocity of each species due to its own diffusion, R ∈ RM represents
various reaction trajectories involved in the system, with σ ∈ RN×M being the stoichiomet-
ric matrix as defined earlier. Then the reaction–diffusion equation can be modeled through
the energy–dissipation law [54]:

d
dt
F [ci] = −

∫
Ω

[
N

∑
i=1

ηi(ci)|ui|2 +
M

∑
l=1

∂tRl ln
(

∂tRl
η(c(R))

+ 1
)]

dx. (49)

We can employ EnVarA to obtain equations for the reaction and diffusion parts, respectively,
i.e., to obtain the “force balance equation” of the chemical and mechanical subsystems,
which leads to {

ηi(ci)ui = −ci∇µi, i = 1, 2, . . . N,

ln
(

∂tRl
η(c(R))

+ 1
)
= −∑N

i=1 σl
i µi, l = 1, . . . , M.

(50)

By taking ηi(ci) =
1

Di
ci, we have a reaction–diffusion system

∂tci = Di∆ci + (σ∂tR)i. (51)

One special reaction–diffusion system is a one-species system, in which the concentra-
tion or density ρ satisfies the kinematics

ρt +∇ · (ρu) = σ(ρ)Rt, (52)
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where u is the average velocity that describes the diffusion of the species, and R is the
reaction trajectory that describes the birth and death process. We can model this type
system by an energy–dissipation law

d
dt
F [ρ] = −

∫
M1(ρ)|u|2 + M2(ρ)R2dx. (53)

These systems are related to the unbalanced optimal transport in machine learning [60–64].
Different systems can be derived by choosing the free energy and the dissipation differently,
including the Kantorovich–Fisher–Rao gradient flows [65].

3.1. Dynamical Boundary Condition

For a better description of short-range interactions between the material and the
boundary, PDE systems with dynamical boundary conditions have drawn lots of attention
recently [66,67]. These type of systems have a wide application in studying moving contact
lines [68], batteries [69], the integrate-and-fire model for neuron networks [70], and sticky
Brownian motion [71], etc.

Consider a bounded domain Ω, and denote the densities in Ω as ρ and the density on
Γ = ∂Ω as σ. In the models with dynamical boundary conditions, the conservation of total
mass indicates that

d
dt

(∫
Ω

ρdx +
∫

Γ
σdS

)
= 0. (54)

Hence, ρ and σ satisfy the kinematics in Eulerian coordinates

ρt +∇ · (ρu) = 0, x ∈ Ω,

ρu · ν = Rt, σt +∇Γ · (σvΓ) = Rt, x ∈ Γ,
(55)

where ν is the outer normal of Ω and R is the reaction trajectory for the chemical reaction
ρ −−⇀↽−− σ that represents the density exchange between the bulk and surface.

In general, a system with a dynamical boundary condition can be modeled through
an energy–dissipation law

d
dt

(Fb(ρ) +Fs(σ)) = −
(∫

Ω
ηb(ρ)|u|2dx +

∫
∂Ω

ηs(σ)|v|2 + RtΨ(R, Rt)dS
)

(56)

where Fb(ρ) and Fs(σ) are free energies in the bulk and surface, respectively. The stan-
dard variational procedures lead to the force balance equations for the mechanical and
chemical parts 

ηb(ρ)u = −ρ∇µb(ρ)

ηs(σ)v = −σ∇Γµs(σ)

Ψ(R, Rt) = −(µs(σ)− µb(ρ)),

(57)

where µs(σ)− µb(ρ) is the affinity of the bulk–surface reaction. Different choices of the free
energy and the dissipation lead to different systems.

A typical example is the Cahn–Hilliard equation with dynamic boundary condition,
which can be derived by taking

Fb(ϕ) =
∫

Ω

1
2 |∇ϕ|2 + F(ϕ)dx, Fs(ψ) =

∫
Γ

1
2 |∇Γψ|2 + G(ψ)dS,

ηb(ϕ) =
1

mb
ϕ2, ηs(ψ) =

1
ms

ψ2, Ψ(R, Rt) = γR2
t .

Here the linear response assumption is used for the bulk–surface exchange. The final
equation can be written as [67],
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ϕt = mb∆µb, µb = −∆ϕ + F′(ϕ) x ∈ Ω
ψt = mΓ∆Γµs − 1

γ (µs(ψ)− µb(ϕ)), µs = −∆Γψ + G′(ψ) x ∈ Γ
∂µ
∂ν = 1

γ (µs(ψ)− µb(ϕ)), x ∈ Γ,

(58)

subject to a suitable initial condition. In the limit γ→ 0, the model is reduced to the model
proposed in [66], while limit γ→ ∞ corresponds to the model in [72].

3.2. Boltzmann Equation

Another application of the EnVarA formulation for reaction kinetics is to reformulate
the Boltzmann equation of ideal gas into a variational form, which was also explored in
some previous works [73,74]. The key point is to view the collisions between particles as
generalized chemical reactions. From a historical perspective, Maxwell and Boltzmann
used an analogue of the law of mass action for collisions and discovered the principle of
detailed balance [75].

Consider a Boltzmann equation

∂ f
∂t

+ v · ∇x f = Q( f , f ), t ≥ 0, x ∈ RN , v ∈ RN , (59)

where f (x, v, t) is the density for particles at the point x, having velocity v at time t, Q( f , f )
is the collision term that can be written as

Q( f , f ) =
∫

w(v′, v′∗|v, v∗) f ′ f ′∗ − w(v, v∗|v′, v′∗) f f∗dv∗dv′dv
′
∗. (60)

Here f = f (x, v, t), f∗ = f (x, v∗, t), f ′ = f (x, v
′
, t), f ′∗ = f ′∗(x, v

′
∗, t), and w(v, v∗|v′, v′∗) ≥ 0

is the transition probability for two particles with velocity v and v∗ before a collision to
have velocities v′ and v′∗ after the collision.

The collisions can be viewed as generalized chemical reactions. Since collisions
conserve mass, momentum, and kinetic energy, Q( f , f ) satisfies∫

R3
Q( f , f )dv = 0,

∫
R3

vjQ( f , f )dv = 0,
∫
R3
|v|2Q( f , f )dv = 0. (61)

Moreover, due to the conservation of momentum and kinetic energy

v + v∗ = v′ + v′∗, |v|2 + |v∗|2 = |v′|2 + |v′∗|2, (62)

one can assume that w(v, v∗|v′.v′∗) only depends on v − v∗ and ω ∈ S2, where ω is a
parameter that determines v′ and v′∗, i.e.,

v′ = v− (v− v∗, ω)ω, v′∗ = v∗ + (v− v∗, ω)ω. (63)

For given v and v∗, a fixed ω defines a “chemical reaction”

(v, v∗)
k1−−⇀↽−−
k2

(v′, v′∗) (64)

with k1 = k2 = B(v− v∗, ω), where B(v− v∗, ω) is the collision kernel. At the Maxwellians,
f ′ f ′∗ − f f∗ vanishes identically, so the system satisfies the detailed balance condition.

Like the kinetic Fokker–Planck equation, the kinematics of f (x, v, t) can be written as
the sum of the conservative and dissipative parts, i.e.,

∂t f = LC f + LD f , (65)

where LC f = −∇x · (v f ) and LD f = Q( f , f ). The total energy of the system can be
defined as
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F [ f ] =
∫ 1

2
f |v|2 + f ln f dvdx. (66)

For the conservative part,

〈 δF
δ f

,LC f 〉 =
∫
∇x · (

1
2
|v|2 + ln f + 1) · v f dvdx

=
∫
∇x f · vdvdx = −

∫
f (∇x · v)dvdx = 0

(67)

For the dissipative part, a direct computation shows that

〈 δF
δ f

,LD f 〉 = −
∫ 1

4
B(v− v∗, ω)( f f∗ − f ′ f ′∗) ln

(
f f∗
f ′ f ′∗

)
dv∗dωdv ≤ 0 (68)

Here,
∫

Q( f , f )|v|2dv = 0 and
∫

Q( f , f )dv = 0 are used.
We can reformulate the energy–dissipation law of the Boltzmann Equation (68) in

terms of reaction trajectories R(v, v∗, ω), by imposing the kinematics

f (v) = f0(v)−
∫ ∫

R(v, v∗, ω)dωdv∗. (69)

The dissipation can be written in terms of R and ∂tR, i.e.,∫ ∫ ∫ 1
4

Rt ln
(

Rt

B f ′ f ′∗
+ 1
)

dω dv∗dv. (70)

Notice that

d
dt

∫
f (ln f − 1)dv = −

∫ ∫ ∫
ln f ∂tR(v, v∗, ω)dωdv∗dv

=
∫ ∫ ∫ 1

4
(− ln f − ln f∗ + ln f ′ + ln f ′∗)∂tRdωdv∗dv.

(71)

By a variational procedure, we can obtain

ln
(

B−1Rt

f ′ f ′∗
+ 1
)
= (ln f + ln f∗ − ln f ′ − ln f ′∗), (72)

which leads to
Rt(v, v∗, ω) = B(v− v∗, ω)( f f∗ − f ′ f ′∗). (73)

It is worth mentioning that − ln f − ln f∗ + ln f ′ + ln f ′∗ is the affinity of the chemical
reaction (64). Indeed, the chemical potential associated with v can be computed as

µ =
δF
δ f

= ln f + 1 +
1
2
|v|2, (74)

where 1
2 |v|2 plays the role of the internal energy. Due to the conservation of the kinetic

energy, we have |v|2 + |v∗|2 = |v′|2 + |v′∗|2, which indicates that the affinity of the collision
equals to −µ− µ∗ + µ′ + µ′∗ = − ln f − ln f∗ + ln f ′ + ln f ′∗.

3.3. Reactive Fluids

Reactive and active fluids, which are systems involving coupling and competition
between chemical reactions and various types of mechanical processes, have drawn lots of
attention recently [76–81].

A simple example of reactive complex fluids is wormlike micellar (WLM) solutions,
also known as “living polymer”. These are polymeric fluids that consist of long, cylindrical
aggregates of self-assembled surfactants that can break and reform reversibly [82]. During
the last couple of decades, a number of mathematical models have been proposed for
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wormlike micellar solutions [82–86]. The reptation–reaction model, proposed by Cates [82],
is one of the first models that accounts for the reversible breaking and reforming of micellar
chains. The Cates’ model assumes that a chain can break with a fixed probability per unit
time per unit length anywhere along its length. Let c(L) be the number density of chains of
length L, and the governing equation of c(L) can be formulated as

ċ(L) = −k1Lc(L)− k2c(L)
∫ ∞

0
c(L′)dL′ + 2k1

∫ ∞

L
c(L′)dL′

+ k2

∫ ∞

0

∫ ∞

0
c(L′)c(L′′)δ(L′ + L′′ − L)dL′dL′′,

where k1 and k2 are rate constants for the breakage and recombination, respectively. It can
be shown that the steady state (ċ(L) = 0) is given by ceq(L) = (2k1/k2) exp(−L/L̄), where
L̄ is a constant that satisfies 2L̄2 =

(∫ ∞
0 Lc(L)dL

)
k2/k1.

Inspired by Cates’ seminal work, a two-species model for wormlike micellar solutions
was proposed in [86], known as the Vasquez–Cook–McKinley (VCM) model. Although the
VCM model was derived from a highly simplified discrete version of Cates’ model [87],
it can capture the key rheological properties of wormlike micellar solutions [86,88,89].
However, due to the assumption that the breakage rate depends on the velocity gradient
explicitly, the VCM model may not be thermodynamically consistent [87]. Using the
generalized bracket approach [1], a thermodynamically consistent revision to the VCM
model was proposed in [87,90], known as the GCB (Germann–Cook–Beris) model. They
also extended such a model to a three species cases. Using the GENERIC framework [15,16],
Grmela et al. also extended the VCM model into a three-species thermodynamically
consistent model [84].

In a recent work [91], the authors developed a thermodynamically consistent two-
species micro–macro model for wormlike micellar solutions, which incorporates a breakage
and combination process of polymer chains into the classical micro–macro dumbbell model
of polymeric fluids in the general framework of EnVarA. The model assumes that there
exists only two species in the system. A molecule of species A can break into two molecules
of species B, and two molecules of species B can reform species A. A polymer molecule of
both species can be modeled as an elastic dumbbell consisting of two “beads” joined by a
one-dimensional spring [37]. The microscopic configuration is described by an end-to-end
vector q ∈ Rd. Let ψα(x, q, t) (α = A, B) be the number density distribution function of
finding a molecule with end-to-end vector q at position x ∈ Ω at time t for species α.

In general, the breakage and combination processes can be regarded as chemical
reactions

q + q′ −−⇀↽−− q′′, (75)

where q and q′ are end-to-end vectors of species B, and q′′ is an end-to-end of species A
(see Figure 2a for illustration). We can denote the forward and backward reaction rates of
(75) by W+(q, q′; q′′) and W−(q, q′; q′′), respectively. The kinematics of ψA and ψB can be
written as

∂tψA +∇ · (uAψA) +∇q · (VAψA) =
∫

Rt(q′, q′′; q)dq′dq′′

∂tψB +∇ · (uBψB) +∇q · (VBψB) = −
∫

Rt(q, q′; q′′)dq′dq′′ −
∫

Rt(q′, q; q′′)dq′dq′′

Rt(q, q′; q′′) = W+(q, q′; q′′)ψB(q)ψB(q′)−W−(q, q′; q′′)ψA(q′′),

where uα and Vα are effective macroscopic and microscopic velocities. Different models can
be obtained by choosing W+(q, q′; q′′) and W−(q, q′; q′′) differently. In the simplest case,
one can take

W±(q, q′; q′′) 6= 0 if and only if q = q′ = q′′, (76)

which corresponds to the case that an A molecule at position x with end-to-end vector q
can only break into two B molecules with the same end-to-end vector, and the combination
process can only happen between two B molecules at the same position x with the same
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end-to-end vector, as illustrated in Figure 2b, with α = 1. Within this assumption, one can
have a detailed balance condition for each x and q, and the kinematics can reduce to{

∂tψA +∇ · (uAψA) +∇q · (VAψA) = −Rt

∂tψB +∇ · (uBψB) +∇q · (VBψB) = 2Rt,
(77)

where R(x, q, t) is the reaction trajectory for the breakage and combination for given q
and x.

!

!"

!""

#$%!& !'( !"")

#*%!& !'( !"")

(a)

!

!

"!

#$%!&

#'%!&

(b)

Figure 2. Schematic diagram of breakage and combination processes in wormlike micellar solutions,
in which different species are indicated by different colors. (a) General reaction mechanism (75);
(b) The reaction mechanism (76) considered in this paper (α = 1).

Within the above kinematics assumptions, the overall system can be modeled by an
energy–dissipation law

d
dt

∫
Ω
[ 1

2 ρ|u|2 + λ
2

∑
α=1

∫
ψα(ln ψα − 1) + ψαUi(q)dq]dx

= −
∫

Ω
[η|∇u|2 + λ

2

∑
α=1

∫
ψα
ξα
|Vα −∇uq|2 + RtΓ(R, Rt)dq]dx,

(78)

where ψα(x, q, t) is the number density distributions of each species, Ui(q) is the spring
potential associated with each species, u is the macroscopic velocity satisfying the in-
compressible condition ∇ · u = 0, the constant ρ > 0 is the density of the macroscopic
flow, Vα is the average microscopic velocity of each species in the configuration space,
λ > 0 is the constant that represents the ratio between the kinetic energy and the elastic
energy, and ξα > 0 is a constant related to the relaxation time of each species. By taking

Γ(R, Rt) = Rt ln
(

Rt
k2(q)ψ2

B
+ 1
)

, the final micro–macro system can be derived as (see [91]

for details)
ρ(∂tu + (u · ∇)u) +∇p = η∆u + λ∇ · τ,
∇ · u = 0,
∂tψA + u · ∇ψA +∇q · (∇uqψA)− ξA∇q · (∇ψA +∇qUAψA) = −∂tR,
∂tψB + u · ∇ψB +∇q · (∇uqψB)− ξB∇q · (∇ψB +∇qUBψB) = 2∂tR,

(79)

where
∂tR = k1(q)ψA − k2(q)ψ2

B, (80)

and the stress tensor τ is given by

τ =
∫
(∇qUA ⊗ q)ψA + (∇qUB ⊗ q)ψBdq− (nA + nB)I (81)

with nα(x, t) =
∫

ψα(x, q, t)dq being the number density of each species. The breakage
and combination process indeed created an active stress in the macroscopic momentum
equation. The global existence of the class solution near the global equilibrium of this
model is given in [92]. The underlying variational structure (78) plays a crucial role in the
theoretical analysis.
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4. EnVarA for Non-Isothermal Systems

The above EnVarA framework works for isothermal cases, in which the whole system
can be well-described by a single energy-dissipation law (1). However, in non-isothermal
cases, one cannot obtain a single energy–dissipation law from the first and second laws
of thermodynamics. Motivated by the classical treatments of temperature in rational
mechanics [14,43], some recent work [93–96] extended EnVarA to non-isothermal cases.

To model a non-isothermal system, the extended EnVarA approach starts with a
suitable form of the non-isothermal Helmholtz free energy density Ψ(ζ, ϑ), where ϑ(x, t) is
the absolute temperature and ζ represents all the mechanical variables in the system, such
as the density ρ(x, t) and the deformation tensor F, which are determined by the flow map
x(X, t). The non-isothermal Helmholtz free energy density Ψ(ζ, ϑ) needs to be concave
with respect to the temperature ϑ, i.e., Ψϑϑ < 0 [14].

According to the basic thermodynamical relations [14,97], the entropy density s =
s(ζ, ϑ) is defined by

s(ζ, ϑ) = −Ψϑ(ζ, ϑ), (82)

while the internal energy density e(ζ, ϑ) is defined by

e(ζ, ϑ) = Ψ + sϑ = Ψ−Ψϑϑ. (83)

Since Ψθθ < 0, s is a monotonically increasing function of ϑ, which indicates that ϑ can be
represented as a function of ζ and s, i.e.,

ϑ = ϑ(ζ, s). (84)

As a consequence, the internal energy density e can be reformulated as a function of ζ
and s by using (84). Without ambiguity, we denote ê(ζ, s(ζ, ϑ)) = e(ζ, ϑ). According to the
chain rule, it is straightforward to show

∂

∂s
ê(ζ, s) =

∂Ψ
∂ϑ

∂ϑ

∂s
+ ϑ + s

∂ϑ

∂s
= ϑ, (85)

and
∂

∂ζi
ê(ζ, s) =

∂Ψ
∂ζi

+
∂Ψ
∂ϑ

∂ϑ

∂ζi
+ s

∂ϑ

∂ζi
=

∂Ψ
∂ζi

. (86)

As in isothermal systems, it is crucial to specify the kinematics of the mechanical vari-
able ζ as well as the kinematics of the temperature ϑ in non-isothermal systems. Different
kinematic relations lead to different dynamics. To illustrate the idea, in the following, we
only consider a simple case, with the mechanical variable being a density function ρ only,
which satisfies the kinematics ρt +∇ · (ρu) = 0. For the temperature ϑ, we assume that

ϑt + u · ∇ϑ = 0,

i.e., the temperature is purely transported along the trajectory. Moreover, we focus on cases
where the kinetic energy K = 0 throughout this section.

Although the whole system is no longer determined by the energy–dissipation law (1),
we can still define the total energy Etotal =

∫
Ψ(ρ, ϑ)dx as well as the dissipation potential

D ≥ 0, and derive the force balance Equation (4) for the mechanical part of the system by
using the LAP and MDP. To simplify the calculations, we assume that

D =
1
2

∫
η(ρ)|u|2dx

throughout this section, although other forms of the dissipation can be handled in a similar
manner. By applying the LAP and the MDP, we can obtain the force balance equation for
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the mechanical part, i.e., equation for the flow map x(X, t). The computation procedure is
almost the same as that in Section 2.1. Indeed, a direct computation shows that

δA = −δ
∫ T

0

∫
Ω0

Ψ(ρ0(X)/ detF, ϑ0(X))detFdXdt

= −
∫ T

0

∫
Ω0

−
(

∂Ψ
∂ρ

(
ρ0(X)
detF

, ϑ0(X)
)
· ρ0(X)

detF
+ Ψ

(
ρ0(X)
detF

, ϑ0(X)
))

× (F−T : ∇Xδx)detF dXdt.

Pushing forward to the Eulerian coordinates, we have

δA = −
∫ T

0

∫
Ω
(−µρ + Ψ(ρ, ϑ))∇ · (δx)dxdt

=
∫ T

0

∫
Ω
(−ρ∇µ− s∇ϑ) · δxdxdt,

(87)

which indicates that δA
δx = −ρ∇µ− s∇ϑ. Then the force balance equation for the mechani-

cal part can be written as
η(ρ)u = −ρ∇µ− s∇ϑ. (88)

To determine the equation for temperature ϑ or entropy s, we need to use both the
first and second laws of thermodynamics. The first law of the thermodynamics can be
written as

d
dt

∫
V

ê(ρ, s)dx =
∫

V
∇ · Σ +∇ · qdx, (89)

where V is an arbitrary control volume, Σ stands for the specific work done to the system,
and q is the absorbed heat flux. According to (85) and (86), it is easy to compute that

d
dt

∫
V

ê(ρ, s)dx =
∫

V
Ψρρt + ϑstdx

=
∫

V
Ψρ(−∇ · (ρu)) + ϑ

(
−∇ · (su) +∇ ·

(q
ϑ

)
+4∗

)
dx

=
∫

V
−∇ · (Ψρρu + ϑsu) + ρ∇Ψρ · u + s∇ϑu +∇ · q−∇ϑ ·

(q
ϑ

)
+ ϑ4∗dx,

(90)

where the kinematic assumption on the entropy s

∂ts +∇ · (su) = ∇ · (q
ϑ
) +4∗, 4∗ ≥ 0 (91)

is used. Here,
q
ϑ

is the entropy flux defined by the Clausius–Duham relation, and4∗ ≥ 0
is the density of the entropy production. Comparing (90) with (89), we obtain that

ϑ4∗ = −ρ∇Ψρ · u− s∇ϑ · u +∇ϑ ·
(q

ϑ

)
(92)

Recall (88). We have

− ρ∇Ψρ · u− s∇ϑ · u = η(ρ)|u|2 ≥ 0. (93)

On the other hand, by the Fourier law, we have

q = k3∇ϑ, (94)

where k3 ≥ 0. Hence, the density of the entropy production is

4∗ = ρ|u|2
ϑ

+ k3
|∇ϑ|2

ϑ2 ≥ 0, (95)



Entropy 2022, 24, 721 19 of 26

which is consistent with the second law of thermodynamics.
The final system can be written as

ρt +∇ · (ρu) = 0
ϑt + u · ∇ϑ = 0
st +∇ · (su) = ∇ · ( k3∇ϑ

ϑ ) +4∗

η(ρ)u = −ρ∇µ− s∇ϑ, µ = ∂Ψ
∂ρ

4∗ = ρ|u|2
ϑ + k3

|∇ϑ|2
ϑ2 .

(96)

For ideal gas models, it is often assumed that

Ψ(ρ, ϑ) = k1ϑρ ln ρ− k2ρϑ ln ϑ, η(ρ) = ρ. (97)

Then

s(ρ, ϑ) = −(k1ρ ln ρ− k2ρ(ln ϑ + 1)), e(ρ, ϑ) = k2ρϑ, ρu = −k1∇(ρϑ). (98)

In this case, the non-isothermal system (96) can be simplified as{
ρt = ∇ · (k1∇(ρϑ))

(k2ρϑ)t = ∇ · (k1(k1 + k2)ϑ∇(ρϑ) + k3∇ϑ),
(99)

where the last equation follows (90).
One can derive a different system by imposing a different kinematics assumption on

the temperature and the entropy. For instance, we can assume that the temperature ϑ is
independent of the flow map x(X, t) during the purely mechanics processes, which leads
to a simple kinematics ∂tϑ = 0. The force balance Equation (88) becomes η(ρ)u = −ρ∇µ.
In this case, the kinematics of the entropy becomes

∂ts = ∇ · (
q
ϑ
) +4∗, 4∗ ≥ 0. (100)

Again,4∗ is the density of the entropy production, and q
ϑ is the entropy flux defined by

Clausius–Duhem relation. Following the same procedure, one can show that the entropy
production is same as in (95). We refer the interested reader to [98] for a detailed derivation.

The formulations (91) and (100) are the differential version of the entropy balance
equation [52,99]

d
dt

S =
de

dt
S +

di
dt

S, (101)

introduced by Prigogine in [100] as a modern formulation of the second law of thermody-
namics (See 3.4 in [52]). For mechanical processes, S =

∫
V s(x, t)dx is the entropy in the

control volume V, de
dt S =

∫
∂V JedS is the entropy change due to the exchange of matter and

energy with Je being the entropy flux [52], while di
dt S =

∫
V4

∗dx ≥ 0 is the entropy change
due to irreversible process, i.e., the entropy production. The Clausius–Duhem relation
specifies Je =

q
ϑ .

For systems involving chemical reactions, since the system is not determined by
the flow map x(X, t) alone, it is natural to assume that the temperature also depends
on the reaction trajectory R [43]. The remaining derivation is almost same as for the
mechanical system.

5. Coarse-Graining and Numerical Realization

In this section, we briefly review some applications of the EnVarA in developing
structure-preserving numerical schemes [28,57,101] and thermodynamically consistent
coarse-grained models [91].
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One of the fundamental questions in developing numerical schemes is how to preserve
the properties of the original systems as much as possible. Different mathematical repre-
sentations of physical principles can lead to different structure-preserving methods [102].
For dissipative systems modeled by the EnVarA, the most important structures are the
underlying variational structures and the kinematic constraints of physical variables, such
as positivity and the conservation property of a mass density, and the conservation of
current for a charged system.

In [28], the authors introduced a numerical framework called the discrete energetic
variational approach to preserve the energetic variational structure in the semi-discrete level.
The approach first seeks a finite dimensional realization to a continuous energy–dissipation
law, given by

d
dt

Eh(Ξ(t)) = −4h(Ξ(t), Ξ′(t)), (102)

where Ξ(t) = (Ξ1(t), Ξ2(t), . . . , ΞK(t))
′ ∈ RK is the discrete state variable, Eh(Ξ) is the

discrete total energy that is the sum of the discrete kinetic energy Kh(Ξ, Ξ′) and the discrete
free energy Fh(Ξ), and 4h(Ξ(t), Ξ′(t)) = 2Dh is the discrete energy dissipation. The
discrete energy–dissipation (102) law can be obtained by introducing a suitable spatial
discretization to the original system by Eulerian [103], Lagrangian [28,101], or particle
approximations [104]. From the discrete energy–dissipation law (102), one can obtain an
ODE system of Ξ(t), given by

δDh
δΞ′

=
δAh
δΞ

, (103)

by the energetic variational approach. Here, Ah(Ξ(t)) =
∫ T

0 Kh(Ξ
′)−Fh(Ξ(t))dt is the

discrete action functional. In the case that Kh = 0 and Dh(Ξ(t), Ξ′(t)) is a quadratic
function of Ξ′, the ODE system of Ξ(t) can be written as

M(Ξ)Ξ′(t) = − δFh
δΞ

(Ξ(t)), (104)

where M(Ξ(t)) is a K× K matrix.
The discrete energetic variational approach follows the idea of “discretize-then-variation”,

which has been used to study both Hamiltonian and dissipative systems [18,105–110]. An
advantage of this Ritz-type variational approach is that the resulting system inherits the
variational structure from the continuous level, which enables us to apply these varia-
tional temporal discretizations [111–113]. For example, an implicit Euler discretization to
Equation (104) could be reformulated as

Ξ = arg min
Ξ∈Sh

ad

Jn(Ξ), Jn(Ξ) =
(Mn
∗(Ξ− Ξn), (Ξ− Ξn))

2τ
+Fh(Ξ), (105)

where Sh
ad is the admissible set of Ξ and Mn

∗ = M(Ξ∗) is the numerical mobility that
is independent with Ξn+1. The scheme is also known as the minimizing movement
scheme [114,115]. Although in general, the optimization problem (105) is non-convex
in a non-convex admissible set Sh

ad, one can use some line search-based optimization
method to update Ξn+1 ∈ Sh

ad such that Fh(Ξ
n+1) ≤ Fh(Ξ

n). The existence of a minimizer
of Jn(Ξ) that decreases the total energy and the convergence of the numerical scheme
at the discrete level can be proved under suitable conditions on Fh(Ξ) [101,112,116]. A
smaller τ can be chosen such that the optimization problem can be solved by some standard
optimization method.

Similarly, the BDF2 scheme or a modified Crank–Nicolson scheme can also be refor-
mulated as a minimization problem due to the variational structure in the semi-discrete
level [113,117]. Other temporal discretization techniques, such as convex splitting [118–121],
invariant energy quadratization (IEQ) [122,123], scalar auxiliary variable (SAV) [124,125],
the discrete variational derivative method [105,126], and the strong stability-preserving
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(SSP) time discretizations [127] can also be applied to the semi-discrete system. In some
applications, if the goal is to compute equilibrium states and the phase diagram, one
can use some optimization method, such as the L-BFGS, to minimize the discrete free
energy Fh(Ξ) directly. Using the approach, we studied various confined liquid crystal
systems [103,128–130].

The idea of “approximation-then-variation” can also be used to develop a dynamic
coarse-grained model from a detailed multiscale model [18]. Similar to numerical approx-
imations, the aim of coarse-graining is to reduce the degrees of freedom of the original
system but preserve the properties of the original systems as much as possible. Closure ap-
proximation is one typical approach to develop coarse-grained models. The idea of closure
approximation in to use the evolution equation of moments to represent the evolution of
the probability density in the original Fokker–Planck type equations.

In [91], the authors studied maximum closure approximations to the micro–macro
model of a wormlike micellar solution (79) by using “closure-then-variation”. The idea
is to apply the closure approximation to the energy dissipation law first. Let A and B
be the second moment of ψA and ψB, and nα be the number density of species α. By
applying the energetic variational approach in the coarse-grained level, we can obtain a
thermodynamically consistent closure model for both mechanical and chemical parts of
the system. In more detail, within the assumption that A = nAÃ and B = nBB̃, the free
energy, obtained by the maximum entropy closure, can be reformulated in terms of number
density nA and nB, and the conformation tensor of two species Ã and B̃, given by

F̃CL(nA, nB, Ã, B̃) =
∫

nA

(
ln
(

nA
n∞

A

)
− 1
)
+ nB

(
ln
(

nB
n∞

B

)
− 1
)

+
nA
2

(
− ln det

(
HAÃ

)
+ tr

(
HAÃ− I

))
+

nB
2

(
− ln det

(
HBB̃

)
+ tr

(
HBB̃− I

))
dx.

(106)

We impose the kinematics for the number density to account for the macroscopic breakage
and reforming procedure: {

∂tnA +∇ · (nAu) = −Rn,
∂tnB +∇ · (nBu) = 2Rn,

(107)

where Rn is the macroscopic reaction trajectory.
The dissipation of the moment closure system consists of three parts: the viscosity of

the macroscopic flow, the evolution of the conformation tensors, and the reaction on the
number density, which can be formulated as

4̃∗ =
∫

ν|∇u|2 + tr

MA

(
dÃ
dt

)2
+ tr

MB

(
dB̃
dt

)2
 dx + D̃chem(Rn, ∂tRn), (108)

where d•
dt = ∂t •+(u · ∇) • −(∇u) • − • (∇u)T is the kinematic transport of the confor-

mation tensor, MA(nA, Ã) and MB(nB, B̃) are mobility matrices. D̃chem(Rn, ∂tRn) is the
dissipation for breakage and reforming at the macroscopic scale. A typical choice of
D̃chem(Rn, ∂tRn) is

D̃chem(Rn, ∂tRn) = ∂tRn ln
(

∂tRn

ηn(Rn)
+ 1
)

. (109)

The choice of ηn(Rn) determines the macroscopic reaction rate in the closure system.
By taking

1/ηn(Rn) = k̃2(B)n2
B exp(tr(τB)/nB)/ det(HBB̃)

with k̃2(B) = k2nd/2
B /(2d(π)d/2(det(B))1/2, and applying the energetic variational ap-

proach, we can obtain the final moment closure system
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ρ(∂tu + (u · ∇)u) +∇p = η∆u + λ∇ · (HAA + HBB− (nA + nB)I),
∇ · u = 0,
∂tnA +∇ · (nAu) = −kneq

1 nA + kneq
2 n2

B,
∂tnB +∇ · (nBu) = 2kneq

1 nA − 2kneq
2 n2

B,
∂tÃ + (u · ∇)Ã− (∇u)Ã− Ã(∇u)T = 2ξA(I− HAÃ),
∂tB̃ + (u · ∇)B̃− (∇u)B̃− B̃(∇u)T = 2ξB(I− HBB̃),

(110)

where A = nAÃ, B = nBB̃, kneq
1 = keq

1
exp( 1

2 tr(τA/nA))√
det(HAÃ)

and kneq
2 = k̃eq

2
exp(tr(τB/nB)

det(HBB̃)
. One can

view (110) as a dynamics restricted in the sub–manifold formed by quasi–equilibrium states,
in which A = nAÃ and B = nBB̃. It is clear that the fluctuations on the number density
nA and nB will create an active stress tensor in the macroscopic momentum equation. The
resulting closure system is similar to the VCM [86] and GCB models [87]. Numerical
simulations in [91] show that the momentum closure model can capture the key rheological
features of wormlike micellar solutions as the VCM and GCB models.

6. Conclusions

In this paper, we briefly review some recent advances related to the energetic varia-
tional approaches, by examples. The general framework of EnVarA provides a thermo-
dynamically consistent description to a complicated chemo-mechanical system involv-
ing couplings and competitions, such as the energetics vs. kinematics, the macroscopic
hydrodynamics vs. micro-structures, the reversible vs. irreversible, the mechanics vs.
chemistry, and the deterministic vs. stochastic. It is a powerful tool to study multiscale
and multi-physics problem arising in physics, chemistry, and biology. The current review
only sketches the underlying variational structure of several complex fluid models with
chemo-mechanical coupling and non-isothermal effects; all these models require lots of
investigation, both theoretically and numerically.
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