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Abstract: With the rapid development of wireless sensor technology, recent progress in wireless
sensor and actuator networks (WSANs) with energy harvesting provide the possibility for various
real-time applications. Meanwhile, extensive research activities are carried out in the fields of efficient
energy allocation and control strategy design. However, the joint design considering physical plant
control, energy harvesting, and consumption is rarely concerned in existing works. In this paper,
in order to enhance system control stability and promote quality of service for the WSAN energy
efficiency, a novel three-step joint optimization algorithm is proposed through control strategy and
energy management analysis. First, the optimal sampling interval can be obtained based on energy
harvesting, consumption, and remaining conditions. Then, the control gain for each sampling interval
is derived by using a backward iteration. Finally, the optimal control strategy is determined as a linear
function of the current plant states and previous control strategies. The application of UAV formation
flight system demonstrates that better system performance and control stability can be achieved by the
proposed joint optimization design for all poor, sufficient, and general energy harvesting scenarios.

Keywords: energy efficiency; energy harvesting controller; network-induced delay; UAV formation
application

1. Introduction

Wireless sensor and actuator network (WSAN), typically consisting of sensors, con-
trollers, and actuators is one of the most critical wireless communication applications [1].
With the characteristic of spatially distributed nodes, WSANs are able to sense, commu-
nicate, compute, and cache to meet the demands of both high reliability and low latency.
Efficient information sharing and energy consumption management can be achieved in
the closed-loop feedback control network through proper resource allocation and control
strategy design. Currently, WSAN has already become an attractive research topic in
various application areas such as Internet of Thing (IoT), connected vehicle systems, smart
cities, and smart grids [2–4].

WSAN takes advantage of wireless networks to provide information sharing, resource
utilization, and plant control. However, there are still some challenges introduced, espe-
cially with the increasing number of connected devices and sensor nodes [5,6]. One of the
problems is the control strategy design integrating with the inherent features of wireless
networks [7]. In general, wireless communications within the WSANs introduced wireless
communication features such as network-induced delays, packet losses, and disturbances.
However, lots of research always focus on perfect system conditions. Actually, issues
such as communication delays can generally lead to performance degradation or even
instability of the closed-loop system. Therefore, the optimal control design to ensure the
feasibility and efficiency of the WSAN system subject to imperfect wireless features has
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been extensively concerned [8]. In addition, the fixed sampling interval will result in low
energy utilization efficiency or failure to obtain high-quality state samplings when the
plant is in high mobility. Therefore, it is desirable to provide an adaptive sampling interval
design to improve energy utilization and system stability [9].

In addition, energy management has gradually become another challenging problem
due to the limitation on battery-powered sensor nodes in WSANs. Over the years, re-
searchers have focused on energy-saving techniques to minimize the energy consumption
of sensor nodes related to the medium access control, duty cycle, and routing design [10].
However, the lifetime of sensor nodes is still limited. Once the battery is used up, the
sensor nodes will no longer participate in the operation of the network. Currently, energy
harvesting, as a new technology that can collect external energy, has become a potential
technology to address energy restriction issues in WSANs [11]. However, restricted by
the limited capacity of the equipped energy buffer, how to effectively store and utilize the
harvested energy is still a great challenge [12].

However, most of the existing articles focus on either control strategy design or energy
harvesting and consumption in WSAN. The overview articles [13] and our earlier work [14]
reveal the potential benefits of jointly optimizing control strategy and energy consumption.
However, the collaborative optimization of the energy management and the control strategy
with energy harvesting capacity has not been studied sufficiently. In this paper, a novel
framework to jointly consider network-induced delay, adaptive sampling intervals, and
energy management is proposed to improve the system performance and stability of
energy harvesting WSANs. In particular, a jointly optimal sampling selection and optimal
control policy design by minimizing the infinite-horizon control cost is addressed, and
a novel three-step joint optimization algorithm is proposed. The main contributions are
summarized as follows.

• In discrete-time domain, the architecture of the WASN system with an energy harvest-
ing controller considering both energy consumption and control strategy design is
proposed, and then the WSAN dynamics with network-induced delay is modeled.
Based on the analysis of energy harvesting and consumption, the joint optimization
problem for energy harvesting WSAN is formulated;

• The joint optimization problem is successfully decomposed into two suboptimal
problems. In particular, it can be transformed to be an optimal control strategy design
problem for a given sampling interval, while it can be equivalent to an adaptive
sampling interval design problem when the control strategy is determined;

• A novel three-step joint optimization algorithm is proposed. First, the optimal sam-
pling interval can be obtained based on the desired energy level, harvested, and
remaining energy. Then, the control gain can be derived by using a backward iteration.
Finally, the optimal control strategy is determined;

• Numerical experiment results based on the UAV formation flight system are provided
to verify the effectiveness of the proposed three-step optimization algorithm for energy
harvesting WSANs. The system performances with better control stability and lower
energy consumption are achieved.

The remainder of this article is organized as follows. We review the related works
about WSAN dynamics control and adaptive sampling, and energy optimization for Energy
Harvesting WSAN in Section 2. Next, the proposed energy harvesting WSAN model is
presented in Section 3. In Section 4, the joint optimization algorithm considering both
energy consumption and network-induced latency is formulated, followed by the proposed
three-step joint optimization algorithm. Then, the application of the unmanned aerial
vehicle (UAV) system is provided to show the effectiveness of the proposed algorithm for
energy harvesting WSANs in Section 5. Finally, we conclude this work in Section 6.



Entropy 2022, 24, 723 3 of 16

2. Related Works
2.1. WSAN Control and Adaptive Sampling

In recent years, the growing maturity of integrated electronics technology has pro-
moted the further development of WSAN. How to design the optimal control strategy
to improve system performance has become a research hotspot. In [15], an optimal con-
trol and scheduling design problem over deterministic real-time networks was studied,
which minimizes a quadratic cost function in order to evaluate the control performance
and the ability of the adaptive scheduling. However, the above study assumes a perfect
system in that which the communication delay is completely ignored. A networked con-
trol system model is presented in [16] considering network-induced delays through the
wireless communication network, and an optimal controller is designed to address the
delay compensation. Then, in [17], a linear quadratic optimal control algorithm is proposed
for the discrete-time system when long network delays are considered. In [18], a linear
quadratic Gaussian control algorithm was proposed in the multi-hop WSAN to address
the collaborative optimization design of control routing and scheduling under energy con-
straints. Currently, the joint optimization design for the system cost and plant control was
investigated in [19] to both reduce the power consumption and improve the control stability.
However, the above works focus on the fixed sampling interval. Actually, the determined
sampling interval cannot guarantee the energy usage efficiency for the networked control
system in many application scenarios [20–22]. In [23], an adaptive sampling algorithm that
estimates the optimal sampling frequencies for sensors online was proposed to minimize
the energy consumption of the sensors. Two adaptive sampling algorithms were proposed
in [24] in order to increase the lifetime of WSN by using an optimal sampling rate for
monitoring. In [25], the authors provide an energy-aware adaptive sampling algorithm
for WSN with power-hungry sensors and harvesting capabilities, an energy management
technique that can be implemented on any WSN platform with enough processing power
to execute the proposed algorithm. In [26], the authors investigated the variable sampling
method to mitigate the effects of time delays in wireless networked control systems using
an observer-based control system model. In [27], in order to improve the performance
of the networked control system, a variable sampling period scheduling method for the
networked control system under resource constraints was presented based on the network
operation state.

2.2. Energy Optimization for Energy Harvesting WSAN

In recent years, much progress has been made in understanding how to use energy
harvesting technology in networking and communications applications [28–31]. However,
there is few works detailing how energy harvesting sensors can be used in control applica-
tions, where the closed-loop system’s dynamical behavior is significant. In [32], in order
to achieve the energy-neutral operation and system performance improvement, a linear
quadratic tracking problem was used to minimize the loss function thus that the duty-cycle
computed maintains the specific battery level while all harvested energy was optimally
used. In [33], the authors proposed a greedy battery management policy to suffice the
plant stability and demonstrate that the optimal control design can be examined by a linear
program. However, most current works focus on the battery management of WSN with
sensors powered by energy harvesting, and then the joint design of energy management
and control strategy in WSAN with energy harvesting capacity is beginning to attract
researchers’ attention. In [34], an optimal linear quadratic gaussian control problem with
feedback coming from an energy-harvesting sensor was studied. In [35], the optimal LQG
controller was obtained by solving the Bellman dynamic programming equation, and a
Q-learning algorithm was used to approximate the optimal energy allocation policy in
case the system parameters were unknown. A closed-form dynamic energy harvesting
and dynamic MIMO precoding solution were proposed for networked control systems
with energy harvesting sensors in [36]. Different from energy harvesting sensor nodes, a
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scenario-based model predictive control approach was exploited to stabilize the plant’s
state with the actuator powered by harvested energy in [37].

Unfortunately, there is seldom literature considering controllers with energy harvest-
ing functions in WSAN. In addition, most existing optimal control algorithms focus on the
perfect traffic system that the communication delays are ignored. In this paper, considering
the network-induced delay as well as the transmission energy consumption of the commu-
nication network with an energy harvesting controller, the optimal control strategy design
and adaptive sampling selection policy for WSAN are addressed.

3. Energy Harvesting WSAN Modeling

As shown in Figure 1, a typical WSAN, consisting of the controller, plant, actuator, and
a number of sensors connected through a shared wireless network is considered [34,35]. In
particular, compared with the traditional controller powered by non-rechargeable batteries,
a controller with the capability of energy harvesting was considered, in which the energy
harvesting devices such as solar panels and micro wind turbines were equipped thus that
the controller energy can be harvested from the surrounding environment.
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Figure 1. The architecture of WASN system with energy harvesting controller.

In energy harvesting WSAN, the plant states can be periodically sampled and trans-
mitted to the controller through the shared wireless communication network. Once the
sampling state information is received, the controller immediately calculates the control
strategy and then forwards it to the actuator. Finally, the actuator executes the control
signal to ensure the dynamic stability of the plant. During the closed-loop control, the
controller energy will be continuously consumed for information reception, storage, calcu-
lation, transmission, etc. At the same time, the energy of the controller is supplemented by
energy harvesting, thus as to achieve energy consumption balance. In the energy harvesting
WSAN, some typical key assumptions are also used [38]: (1) the battery capacity of the
energy harvesting in the controller is assumed to be infinite. This is because the capacity
of even a small button battery is usually sufficient for energy harvesting scenarios; (2) the
energy may be harvested at any time, but the harvested energy can only be used from the
next control frame.
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3.1. WSAN Dynamics Model

In the control process of WSAN, due to the shared wireless network, the effect of
network-induced delays cannot be ignored, which will result in a significant system per-
formance degradation or even a system crash. The network-induced delay is mainly
introduced by the sensor-to-controller delay, signal processing time, and controller-to-
actuator delay. Therefore, the dynamics model for WSAN in a continuous-time domain can
be expressed as [19]

.
s(t) = As(t) + Bc(t− τ), (1)

where s(t) is the K-dimensional state vector, which is typically defined as the plant state
error, c(t) is the N-dimensional control signal vector, A and B are determined system
parameters, and τ is the network-induced delay, which is typically assumed to be smaller
than one sampling interval.

Then, the corresponding discrete-time dynamics in i-th sampling interval is given
by [16]

si+1 = A0si + B1ci + B2ci−1, (2)

where
si = s(i∆T), ci = c(i∆T), A0= eA∆T ,
B1 =

∫ ∆T−τ
0 eA∆TdtB, B2 =

∫ T
∆T−τ eA∆TdtB,

and ∆T denotes the sampling interval.
The objective of the optimal control strategy design is to ensure the stability of WSAN

through minimizing the normalized cost function, which is typically defined as a normal-
ized quadratic form as [35]

JWSAN =
1
M

[
sT

MRsM +
M−1

∑
i=0

(
sT

i Rsi + cT
i Qci

)]
, (3)

where R and Q are determined system parameters, and M is the finite time horizon.

3.2. Energy Harvesting and Consumption

In this subsection, we will describe the energy harvesting and consumption model
of how the controller collects, stores, and consumes energy. As shown in Figure 2, the
energy arrival may occur at any time, but the harvested energy can only be released at
the beginning of the next control frame, which includes Mk sampling intervals at the
k-th control frame. While the controller consumes energy due to signal processing and
transmission in each sampling interval. In addition, the battery capacity is usually assumed
to be infinity because even a small button battery has enough energy capacity to meet the
needs of most energy harvesting schemes [38]. The objective of energy harvesting and
consumption is to try to improve the system stability based on the joint design of control
strategy and adaptive sampling interval through the effective use of harvesting energy.
In general, the energy consumption of the controller in the k-th control frame is mainly
determined by the signal transmission, which is given by [11]

JC
k =

Mk−1

∑
i=0

(µ + λdr) = Mk(µ + λdr), (4)

where JC
k denotes the energy consumption for the signal transmission from the controller

to the next network node, Mk = Tf /∆Tk denotes the number of sampling intervals in the
k-th control frame, d is the transmission distances, r ∈ [2, 4] is the signal attenuation factor,
λ and µ are determined parameters by path loss and signal amplitude, respectively.



Entropy 2022, 24, 723 6 of 16

Entropy 2022, 24, x FOR PEER REVIEW 6 of 17 
 

 

attenuation factor, λ and µ  are determined parameters by path loss and signal ampli-
tude, respectively. 

Energy
↓ Energy Arrival

t

↓ Energy Consumption




-1
H
kJ H

kJ +1
H
kJ

0
RJ

J ∗ fT fT fT

1k − k 1k +

1 1k kM T− −∆ k kM T∆ 1 1k kM T+ +∆  
Figure 2. Energy harvesting and consumption model for the controller. 

Define H
kJ  and R

kJ  as the harvested energy and remaining energy of the k-th con-
trol frame, respectively. Then, the evolution of the remaining energy in the controller can 
be modeled as 

1 .R R H C
k k k kJ J J J+ = + −  (5) 

In order to make full use of the energy of the controller, the remaining energy of 
controller is expected to be maintained at the desired level kJ ∗  that 

1 .R
k kJ J ∗
+ →  (6) 

4. Joint Optimization Algorithm Design 
In this section, the joint optimization problem for energy harvesting WSAN is formu-

lated. Then, a three-step optimal algorithm is proposed to jointly design the control strat-
egy and adaptive sampling interval. 

4.1. Joint Optimization Problem 
Based on (3) and (6), the utility function of joint optimization problem in k-th control 

frame can be defined as a weighted cost function. 

1 .R
joint WSAN k kJ J J Jβ γ ∗

+= + −  (7) 

where β  and γ  are weight coefficients. 
The objective of the joint optimization is to minimize the utility function subject to 

system dynamics and the evolution of remaining energy through the designs of both con-
trol strategy and adaptive sampling interval. Therefore, the joint optimization problem of 
the k-th control frame can be modeled as 

{ },
1, ,

1, 0 , 1 , 2 1,

min

. . .
k i k

R
WSAN k kM c i

i k i l i k i k

J J J

s t s A s B c B c

β γ ∗
+∀

+ −

+ −

= + +
 (8) 

Actually, at each control frame, the harvested energy will be released at the begin-
ning of the control frame, and then the controller gradually consumes energy in each sam-
pling interval. The remaining energy is continuously decreasing along with the control-
ler’s energy consumption. In other words, the remaining energy is always larger than the 

Figure 2. Energy harvesting and consumption model for the controller.

Define JH
k and JR

k as the harvested energy and remaining energy of the k-th control
frame, respectively. Then, the evolution of the remaining energy in the controller can be
modeled as

JR
k+1 = JR

k + JH
k − JC

k . (5)

In order to make full use of the energy of the controller, the remaining energy of
controller is expected to be maintained at the desired level J∗k that

JR
k+1 → J∗k . (6)

4. Joint Optimization Algorithm Design

In this section, the joint optimization problem for energy harvesting WSAN is for-
mulated. Then, a three-step optimal algorithm is proposed to jointly design the control
strategy and adaptive sampling interval.

4.1. Joint Optimization Problem

Based on (3) and (6), the utility function of joint optimization problem in k-th control
frame can be defined as a weighted cost function.

Jjoint = βJWSAN + γ
∣∣∣JR

k+1 − J∗k
∣∣∣. (7)

where β and γ are weight coefficients.
The objective of the joint optimization is to minimize the utility function subject to

system dynamics and the evolution of remaining energy through the designs of both control
strategy and adaptive sampling interval. Therefore, the joint optimization problem of the
k-th control frame can be modeled as

min
{Mk ,ci,k ,∀i}

βJWSAN + γ
∣∣∣JR

k+1 − J∗k
∣∣∣

s.t. si+1,k = A0si,l + B1ci,k + B2ci−1,k.
(8)

Actually, at each control frame, the harvested energy will be released at the beginning
of the control frame, and then the controller gradually consumes energy in each sampling
interval. The remaining energy is continuously decreasing along with the controller’s
energy consumption. In other words, the remaining energy is always larger than the
desired energy level J∗ in a control frame. Therefore, the joint optimization problem in (8)
can be equivalent to

min
{Mk ,ci,k ,∀i}

βJWSAN + γ
(

JR
k+1 − J∗k

)
s.t. si+1,k = A0si,l + B1ci,k + B2ci−1,k,

JR
k+1 ≥ J∗.

(9)
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The optimization problem (9) is a typical NP hard problem, which is difficult to directly
solve it. Fortunately, it can decompose the joint optimization problem into two suboptimal
problems: (1) for a given sampling interval Tf /M∗k , it can be transformed to be an optimal
control strategy design problem; (2) when the control strategy {c∗i,k} is determined, it can
be equivalent to be a subproblem to address the adaptive sampling interval design. That is

S1 : min
{ci,k}

sT
M∗k ,kRsM∗k ,k +

M∗k−1

∑
i=0

(sT
i,kRsi,k + cT

i,kQci,k)

s.t. si+1,k = A0si,k + B1ci,k + B2ci−1,k.
(10)

S2 : min
Mk

JR
k + JH

k − J∗k −Mk(µ + λdr)

s.t. JR
k + JH

k − J∗k −Mk(µ + λdr) ≥ 0.
(11)

where
R =

βR
Mk

, Q =
βQ
Mk
− µ− λdr.

In general, the control strategy and sampling interval should be calculated by subprob-
lems S1 and S2, respectively, and then iteratively converge to the joint optimization results.
However, the iteration process always has extremely large computational complexity. For-
tunately, it was found that the relationship between the adaptive sampling interval selection
and optimal control strategy design can be totally decoupled. For a given sampling interval,
the optimal corresponding control strategy can be firstly derived as a function of the given
sampling interval. Then, the optimal selection of the sampling interval can be determined
by the energy harvesting, consumption, and remaining level requirements.

4.2. Control Strategy Design

We first address the optimal control strategy design problem (10) subject to a given
sampling interval.

Define

s̃i,k =

[
si,k

ci−1,k

]
. (12)

Then, the discrete-time dynamics can be rewritten as

s̃i+1,k = Ãs̃i,k + B̃ci,k, (13)

where

Ã =

[
A0 B2

0N×K 0N×N

]
, B̃ =

[
B1

IK×K

]
.

and 0i×j and Ii×i denote the i× j zero matrix and i× i identity matrix, respectively.
By using the new state vector s̃i,k, the joint optimization problem (10) can be equivalent

to the following problem

min
{ci,k}

s̃T
M∗k ,kR̃s̃M∗k ,k +

M∗k−1

∑
i=0

(
s̃T

i,kR̃s̃i,k + cT
i,kQci,k

)
s.t. s̃i+1,k = Ãs̃i,k + B̃ci,k,

(14)

where

R̃ =

[
R 0K×N

0N×K 0N×N

]
.

Define the residual cost as

JRe
i,k = min

{cj,k}

s̃T
M∗k ,kR̃s̃M∗k ,k +

M∗k−1

∑
j=i

(
s̃T

i,kR̃s̃i,k + cT
i,kQci,k

). (15)
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Theorem 1. The optimal control strategy design for (14) is given by

c∗i,k = −gi,k s̃i,k, i = 0, 1, . . . , M∗k − 1, (16)

where gi,k can be iteratively calculated as

gi,k =
[

B̃T li,k+1B̃ + Q
]−1

B̃T li,k+1 Ã,

li,k = ÃT li,k+1 Ã + R̃− gT
ik B̃T li,k+1 Ã,

lM∗k ,k = R̃,

(17)

and the corresponding residual cost in (15) can be derived in a quadratic form as

JRe
i,k = s̃T

i,kli,k s̃i,k. (18)

Proof. The optimal control strategy can be deduced by a backward recursion approach.
Assuming JRe

j,k , j > i has the same quadratic form as (18) that

JRe
j,k = s̃T

j,klj,k s̃j,k. (19)

Then, the residual cost function JRe
i,k given as follows

JRe
i,k = min

{[
s̃i,k
ci,k

]T[ R̃ 0
0 Q

][
s̃i,k
ci,k

]}
+ JRe

i+1,k

= min

{[
s̃i,k
ci,k

]T[ R̃ 0
0 Q

][
s̃i,k
ci,k

]}
+ s̃T

j+1,klj+1,k s̃j+1,k

= min


[

s̃i,k
ci,k

]T
 e1,1

i,k

(
e2,1

i,k

)T

e2,1
i,k e2,2

i,k

[ s̃i,k
ci,k

]
(20)

where

e1,1
i,k = ÃT li,k+1 Ã + R̃,

e2,2
i,k = B̃T li,k+1B̃ + Q,

e2,1
i,k = B̃T li,k+1 Ã,

It can be seen that JRe
i,k is a quadratic form of ci,k. In order to derive the minimum value

for the JRe
i,k based on (15) and (20), the optimal control strategy can be deduced as

c∗i,k = arg
{ci,k}

min
{

JRe
i,k

}
= −gi,k s̃i,k,

(21)

where

gi,k = −
(

e2,2
i,k

)−1
e2,1

i,k

=
[

B̃T li,k+1B̃ + Q
]−1

B̃T li,k+1 Ã.
(22)

and the corresponding residual cost function can be derived in the quadratic form as in (18). �

Thus, it can be seen that the optimal control strategy c∗i,k can be obtained on-line by a
linear function of current plant states and previous control signals given by (16), in which the
corresponding control gain gi,k is derived offline by using backwards iteration based on (17).
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4.3. Adaptive Sampling Interval Design

Once the optimal control strategy is determined, the joint optimization problem (9)
can be simplified to be the adaptive sampling interval design problem as

min
Mk

∣∣∣JR
k + JH

k − J∗k −Mk(µ + λdr)
∣∣∣. (23)

Actually, at each control frame, the harvested energy will be released at the beginning
of the control frame, and then the controller gradually consumes energy in each sampling
interval. The remaining energy is continuously decreasing along with the controller’s
energy consumption. In other words, the remaining energy is always larger than the
desired energy level J∗ in a control frame. Therefore, the adaptive sampling interval design
problem (23) is equivalent to

min
Mk

JR
k + JH

k − J∗k −Mk(µ + λdr). (24)

Then, the optimal number of sampling intervals can be derived when the remaining
energy is equal to the desired energy level at the end of the control frame. That is

JR
k + JH

k − J∗ −M∗k (µ + λdr) = 0

⇔ Tf
∆T∗k

=
JR
k +JH

k −J∗k
µ+λdr

(25)

Based on (25), the optimal sampling interval is given by

∆T∗k =
Tf (µ + λdr)

JR
k + JH

k − J∗k
. (26)

Thus, the joint optimization design of the energy consumption and control strategy
for energy harvesting wireless sensor networks can be summarized as in Algorithm 1 by
a three-step procedure below. Firstly, the adaptive sampling interval design ∆T∗k can be
determined by (25) based on the harvested energy, remaining energy of the last control
frame, desired energy level, and transmission environments. Then, the optimal control
gain

{
gi,k
}

is iteratively calculated off-line by (17). Finally, the optimal control strategy
{c∗i,k} can be derived by (16) in real-time for each sampling interval based on the current
plant states, optimal control gain, and previous control signals.

Algorithm 1 Three-Step Algorithm

1 Step 1: Off-line
2 Set System paramters µ, λ, d, r and J∗k .
3 Update initializations JR

k and JH
k

4 Calculate the optimal sampling interval ∆T∗k = Tf (µ + λdr)/JR
k + JH

k − J∗k .
5 Step 2: Off-line
6 Initialize lM∗k ,k = R̃
7 for i = M∗k − 1 : −1 : 0 do
8 Calculate li,k = ÃT li,k+1 Ã + R̃− gT

ik B̃T li,k+1 Ã.

9 Calculate gi,k =
[

B̃T li,k+1B̃ + Q
]−1

B̃T li,k+1 Ã.

10 end
11 Step 3: On-line
12 Initialize s0,k, c∗l,k = 0, l ≤ 0.
13 for i = 0 : 1 : M∗k − 1 do
14 Update plant states si,k.

15 Set s̃i,k =
[
sT

i,k, c∗i−1,k

]T
.

16 Calculate the optimal control c∗i,k = −gi,k s̃i,k.
17 end
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5. Simulations and Discussion

The application of the UAV formation flight system with an energy harvesting con-
troller is provided to show the effectiveness of the proposed three-step optimization al-
gorithm for WSANs. The UAV formation flight system, including a solar-powered UAV
controller, a UAV leader, and multiple UAV followers, is shown in Figure 3. The UAV
controller collects the position and speed information of the leader. Once the UAV controller
receives the state information of the leader, it immediately calculates the control strategy
and selects the optimal sampling period according to the situation of solar energy charging
and energy consumption in order to maintain the UAV formation flight system stably and
efficiently. As a case study, a typical three-UAV platoon traveling on a horizontal path
is considered; the UAV formation flight system has one UAV follower, one leader, and a
solar-powered UAV controller. The states of UAV formation flight system are given by

s(t) = [h(t), v(t)]T , (27)

where h(t) and v(t) represent the UAV follower’s position error and speed error, respectively.
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Figure 3. The UAV formation flight system with an energy harvesting controller.

The purpose of UAV formation flight control is to maintain the formation of the
follower when the UAV state is disturbed by the external environments, such as wind and
state noises. That is, the control signal is to ensure the state deviation remains within a
limited range. In the simulations, the initialization position and velocity errors are set to
be zero, which is disturbed by the random noise. The control frame is set as Tf = 5[s], the
fixed sampling interval is set as 0.083[s], the initial energy of UAV controller is JR

0 = 20,
the desired energy level J∗ = 10, the minimum energy level Jmin = 5, and the system
parameters are set as follows.

A =

[
0 1
0 0

]
, B =

[
0
1

]
,

R =

[
1 0
0 1

]
, Q = 1.

(28)

In order to demonstrate the effectiveness of the proposed algorithm, three energy
harvesting cases, including poor, sufficient, and general energy harvesting conditions, are
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considered, and the performance comparisons with the existing work [19] with traditional
fixed sampling interval are shown.

First, the poor energy harvesting condition such as cloudy weather, where the har-
vested energy is not enough, is investigated. As seen in Figure 4, the energy of the controller
using the traditional fixed sampling method decreases rapidly and then suddenly drops
below the minimum energy level, which will cause the controller to fail to work. This is be-
cause the fixed sampling interval causes more energy to be consumed than harvested, thus
that the remaining energy level gradually decreases and may even exhaust the remaining
energy to make the control system shut down. Compared with the fixed sampling interval,
the energy of the controller using the adaptive sampling interval is also difficult to keep at
the expected value due to insufficient energy harvested, but the energy of the controller can
still be higher than the minimum energy level to maintain the normal work of the system.
This is because the sampling interval is automatically adjusted to become larger to save
energy when the remaining energy level is low. The control performance comparison is
shown in Figure 5; it can be seen that a significant performance improvement is achieved
compared to that of the fixed sampling interval. Especially when the energy level falls
below the minimum energy level, the controller cannot work properly; thus that severe
control stability degradation is caused in the case of fixed sampling interval.
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Then, the performances of the proposed algorithm in sufficient energy harvesting
conditions are shown in Figures 6 and 7. It can be seen that the remaining energy of the
traditional fixed sampling interval gradually increases. This is because the remaining
energy cannot be effectively utilized in sufficient energy harvesting conditions due to the
fixed sampling interval, and the harvested energy is always greater than the consumed
energy in each sampling interval. Fortunately, through the adaptive sampling interval
algorithm, the controller energy can be maintained near the required energy level; thus
that the remaining energy and harvested energy in each control frame can be fully used to
improve the system control performance. Similarly, Figure 7 also shows that the oscillation
reduction of the relative distance between the follower and the leader can be achieved
by the adaptive sampling interval strategy, especially when the oscillation of the relative
distance is large.
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energy harvesting condition.

Finally, the general energy harvesting condition is considered in Figures 8 and 9. It
can be observed that the performance of the adaptive sampling interval is slightly better
when the remaining energy level is high, which is similar to the case of sufficient energy
harvesting conditions. While when the remaining energy level is low, the traditional fixed
sampling period will suffer significant performance degradation, which is similar to the
poor energy harvesting condition.
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To sum up, the proposed joint optimization design of control strategy and energy
consumption can guarantee the system performance and control stability for all poor,
sufficient, and general energy harvesting conditions. Compared to the traditional fixed
sampling interval approach, the proposed joint optimization algorithm can successfully
avoid the serious control instability when the remaining energy level is low and can also
efficiently use up the harvested energy when the remaining energy level is high.

6. Conclusions

In this paper, the joint optimization algorithm of physical plant control, energy har-
vesting, and energy consumption toward the WSAN system is proposed when the network-
induced delays caused by wireless communications are considered. The architecture of
the WASN system with an energy harvesting controller considering both energy consump-
tion and control strategy design is modeled, and then the joint optimization problem is
formulated based on the collaborative utility function and WSAN dynamics. With the
objective of minimizing the utility function subject to system dynamics and the evolution of
remaining energy, a three-step algorithm is proposed for the closed-loop feedback control.
The sampling interval is firstly determined by the information of desired energy level, har-
vested, and remaining energy. Then, the control gain can be obtained by using a backward
iteration. Finally, the optimal control strategy is derived from meeting both requirements of
control stability and energy efficiency. A case study of the UAV formation flight system is
introduced to demonstrate the effectiveness of the proposed joint optimization design that
the serious control instability can be avoided when the remaining energy level is low, while
the harvested energy can be efficiently used up when the remaining energy level is high.
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