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Abstract: This paper is concerned with the adaptive event-triggered finite-time pinning synchro-
nization control problem for T-S fuzzy discrete complex networks (TSFDCNs) with time-varying
delays. In order to accurately describe discrete dynamical behaviors, we build a general model of
discrete complex networks via T-S fuzzy rules, which extends a continuous-time model in existing
results. Based on an adaptive threshold and measurement errors, a discrete adaptive event-triggered
approach (AETA) is introduced to govern signal transmission. With the hope of improving the
resource utilization and reducing the update frequency, an event-based fuzzy pinning feedback
control strategy is designed to control a small fraction of network nodes. Furthermore, by new
Lyapunov–Krasovskii functionals and the finite-time analysis method, sufficient criteria are provided
to guarantee the finite-time bounded stability of the closed-loop error system. Under an optimization
condition and linear matrix inequality (LMI) constraints, the desired controller parameters with
respect to minimum finite time are derived. Finally, several numerical examples are conducted to
show the effectiveness of obtained theoretical results. For the same system, the average triggering
rate of AETA is significantly lower than existing event-triggered mechanisms and the convergence
rate of synchronization errors is also superior to other control strategies.

Keywords: discrete complex networks; T-S fuzzy model; pinning control; finite-time synchronization;
adaptive event-triggered approach

1. Introduction

During the past decades, discrete complex networks (DCNs) have been extensively
studied due to the potential advantages of digital simulation and calculation, such as cyber-
physical systems [1], multi-agent systems [2,3] and digital communications [4]. Similar
to continuous-time complex networks, DCNs are composed of plenty of nodes coupled
with edge-to-edge connections where complex dynamic behaviors are included. Hence,
studies of the structure, nature and application of DCNs are richly reported in existing
literature [5–9]. For instance, Phat et al. designed the switching rule for stability of linear
discrete-time systems via LMIs in [5]. The passivity criterion of discrete-time neural net-
works subject to uncertain parameters was investigated in [6]. Unfortunately, time delays
inevitably appear in information transmission between network nodes, which may lead to
the oscillatory or instability behavior of coupled networks. Especially in real networked
systems, time-varying delays is the problem demanding optimized solutions [10–13]. In
order to eliminate the influence of time-varying coupling delays, a non-fragile protocol
was provided for the Markovian jump stochastic system in [11]. The authors discussed
switched complex networks with time-varying delays for strictly dissipative conditions
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in [13]. Therefore, it is a meaningful attempt to analyze dynamical behaviors of DCNs with
time-varying delays.

As a significant collective behavior in complex networks, synchronization shows prac-
tical significance in a coupled circuit system [14], communication networks [15], genetic
networks [16] and industrial internet of things [17] and has become a hot topic of special
concern in recent years [18–21]. For example, the asymptotic synchronization criteria
for DCNs were derived under the periodic sampling signals in [19] and the exponential
synchronization problem is discussed via topology matrices in [20]. It should be noted
that most existing results neglected the time limitation when studying the synchronization
behavior of complex networks. Besides, it is extremely difficult to realize complete syn-
chronization (error converges to zero) in practical cases of large-scale complex network
structures. Accordingly, the concept of finite-time synchronization is proposed to limit the
closed-loop synchronization errors within a certain range in finite time, which has been
adopted in related literature [22–26]. In [22,23], the finite-time synchronization problems
of switched neural networks affected by delays were solved based on Lyapunov stability
theory. The finite-time synchronization conditions are formulated for a class of Markovian
jumping complex networks with non-identical nodes and impulsive effects in [24]. Until
now, the finite-time boundedness of synchronization error in DCNs is still a challenging
issue, which constitutes one of main motivations for our current study.

The Takagi–Sugeno (T-S) fuzzy model is extensively recognized as a powerful tool to
deal with a nonlinear system, which can express the nonlinear systems by a set of linear
subsystems combined with IF-THEN rules [27–30]. On one hand, the T-S fuzzy model is
used to fuzzify system model for stability analysis. In order to ensure the stability of the
closed-loop system, the authors introduced the T-S fuzzy frameworks to the chaotic system
in [28]. With regard to delayed Markovian jump complex networks in [30], the T-S fuzzy
model was also applied to describing the system nonlinearities. On the other hand, the T-S
fuzzy model has been widely applied in controllers. In [31], depending on T-S fuzzy logic,
the sampled-data controller was designed to synchronized nodes of reaction–diffusion
networks. In order to control complex networks containing communication couplings,
Wang et al. proposed the T-S fuzzy feedback controller in [32]. However, a majority of
previous results on T-S fuzzy theory concerned the continuous-time system, which prompts
us to extend T-S fuzzy model to investigate the finite-time synchronization behaviors
of DCNs.

The synchronization control strategy for complex networks has received significant
attention [33–35]. In view of complex interconnection and huge network scale, it is tough
to achieve the desired synchronized state through controlling all network nodes in practice
applications. Hence, a pinning control scheme is proposed, which means only part of
the nodes need to be directly controlled. As an economical and efficient method, pinning
control has been popular in synchronization control. In [36], the pinning synchronization
problem of DCNs with time delays was addressed. In the face of partial and discrete-time
couplings in networks, the authors designed the pinning sample-data controller in [37]. In
addition, the utilization of controller resource is always a focus of concern [38,39]. Recently,
along with the advance of digital communication and network techniques, the event-
triggered mechanism has been presented to govern the transmission of control signals
in practical applications of networked systems, such as sensor networks [40], chaotic
circuit networks [41] and multiagent networks [42]. By the event-triggered mechanism,
control signals would be updated only if the prespecified triggering condition is satisfied,
which means needless resource consumption can be restrained. For example, an event-
triggered approach was employed in [43] to design an adaptive sliding mode controller for
the stability of a quantized fault system. Furthermore, many efforts are made to improve
existing triggering algorithms for less resource consumption. In [44,45], an internal adaptive
threshold, also named a dynamic variable, was introduced to form the adaptive event-
triggered approach (AETA) to decrease triggering frequency without information packet
loss. The related result was also extended to design the state estimator of neural networks
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in [46]. Based on AETA, energy utilization is further improved in the control process
of communication networks and the network congestion is greatly avoided, especially
in power systems, wireless networkes and so on. Nevertheless, it is worth noting that
finite-time pinning synchronization control for T-S fuzzy DCNs with time-varying delays
and couplings under AETA is still a research gap, which motivates us to conduct the study.

Motivated by above discussions, this paper focuses on the finite-time synchronization
problem of delayed and coupled TSFDCNs via adaptive event-triggered pinning control
strategy. The main contributions of this paper are summarized as follows:

(1) A more general model of DCNs subject to time-varying delays and node couplings
is proposed, which extends the existing continuous-time system model and improves the
description of discretized dynamic behaviors. By fuzzy membership functions connected
by IF-THEN rules, the T-S fuzzy model of DCNs is novelly constructed to analyze the
discrete synchronization behaviors;

(2) Based on the adaptive threshold and system errors, a discrete AETA is applied in
controller design. By introducing the adaptive triggering condition, the update frequency
of control signal is effectively restricted, such that communication resource is saved. Due
to the non-negativity of the threshold variable, AETA can decrease the generated event
triggering instants compared with static or period triggered mechanisms;

(3) To design effective fuzzy pinning controller, sufficient finite-time synchronization
criteria are obtained in terms of LMI constraints and the minimum finite time related
optimization condition. According to finite-time control theory and discrete Jensen inequal-
ity, less conservative Lyapunov–Krasovskii functionals are established to guarantee the
finite-time convergence of synchronization errors;

(4) The effectiveness and generality of the proposed theoretical method are displayed
fully. In three various network systems, especially a practical chaotic network, finite-time
synchronization can be achieved with fast convergence speed compared with existing
methods. Furthermore, it has been shown that the triggering performance of AETA is
superior by several comparative experiments.

The rest of this paper is organized as follows: Section 2 provides the formulation of
the problem and some requisite preliminaries. Section 3 expounds the main results with
proofs of two theorems. Numerical examples are illustrated in Section 4. Finally, Section 5
exhibits the conclusion and outlook.

2. Problem Formulation and Preliminaries

In this paper, we consider a class of DCNs with time-varying delays and N coupled
nodes with the following model:

xi(k + 1) = Axi(k) + B1 f (xi(k)) + B2h(xi(k− τ(k)))

+ c
N
∑

j=1
gijΓxj(k− τ(k)) + wi(k),

(1)

where xi(k) = [xi1(k), xi2(k), . . . , xin(k)] ∈ Rn denotes the state vector of the ith node,
A = diag{a1, a2, . . . an} is real constant matrices, B1 and B2 are known matrices with
appropriate dimensions, c represents the coupling strength between nodes. G = (gij)N×N
is the coupled configuration matrix of the network, where gij > 0 if there is a connection
from j to i (i 6= j), otherwise gij = 0. The diagonal elements of matrix G are defined as

gii = −
N
∑

j=1,j 6=i
gij, which means

N
∑

j=1
gij = 0. Γ ∈ Rn is an inner coupling matrix with Γ > 0

for i = 1, 2, . . . , N. The exogenous disturbance input w(k) satisfies:

N

∑
k=0

wT
i (k)wi(k) < w̃. (2)
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f (·) ∈ Rn×1 and h(·) ∈ Rn×1 are nonlinear activation functions of nodes, τ(k) is the
time-varying delay with 0 < τm 6 τ(k) 6 τM for τm, τM ∈ N+ .The initial state of system
(1) is xi(k) = µi(k) for k ∈ {−τM,−τM + 1, . . . , 0}.

Suppose s(k) ∈ Rn is the state of the unforced target node:

s(k + 1) = As(k) + B1 f (s(k)) + B2h(s(k− τ(k))), (3)

where s(k) = (s1(k), s2(k), . . . , s3(k))T ∈ Rn represents the state vector of the target node
to be synchronized by DCNs (1). f (s(k)) and h(s(k− τ(k))) follow the activation functions
given in state equation (1). s(k) = v(k) denotes the initial value for k ∈ [−τM, 0]Z.

By ei(k) = xi(k)− s(k), the error system is derived as:

ei(k + 1) = Aei(k) + B1 f̃ (ei(k)) + B2h̃(ei(∆k)) + c
N
∑

j=1
gijΓej(∆k) + wi(k), (4)

where ei(k) is the synchronization error dynamics between states of network node and tar-
get node. ∆k = k− τ(k), f̃ (ei(k)) = f (xi(k))− f (s(k)), h̃(ei(∆k)) = h(xi(∆k))− h(s(∆k)).
Due to the existing of node couplings in DCNs, ei(k) in the error system (4) possesses the
same coupling relation for i = 1, 2, . . . , N.

Remark 1. The states of the presented DCNs and target node contain state vectors, activation
functions with and without time delays, which can flexibly describe dynamics of practical systems
via changing weight matrices. By assigning the initial values, the dynamic behaviors of s(k) and
xi(k) are determined, such that synchronization errors are measured.

With the T-S fuzzy model composed of a set of IF-THEN rules, we consider the
following fuzzy rule for TSFDCNs:
Fuzzy Rule l [22]:
IF θ1(k) is δl

1 and . . . and is δ2
p, THEN

ei(k + 1) = Alei(k) + Bl1 f̃ (ei(k)) + Bl2h̃(ei(∆k)) + c
N

∑
j=1

glijΓej(∆k) + wi(k), (5)

where θ1(k), . . . , θp(k) are premise variables, δl
1, . . . , δl

p are fuzzy sets, l ∈ L = {1, 2, . . . r},
r is the number of fuzzy rules. In order to achieve synchronization, the control strategy
is introduced to error system (5). By the weighted average fuzzy inference method, the
controlled error system is inferred as:

ei(k + 1) =
r
∑

l=1
ηl(θ(k))

[
Alei(k) + Bl1 f̃ (ei(k)) + Bl2h̃(ei(∆k))

+ c
N
∑

j=1
glijΓej(∆k) + wi(k)] + ui(k) ,

(6)

where ui(k) = [ui1(k), ui2(k), . . . , uin(k)] is the control input vector. By means of the
technique used in [22,27,29], the normalized membership function ηl(θ(k)) should satisfy:

ηl(θ(k)) =
ρl(θ(k))

r
∑

l=1
ρl(θ(k))

, ρl(θ(k)) =
p

∏
j=1

δl
j(θj(k)),

where δl
j(θj(k)) stands for the grade membership of θj(k) in δl

j . Assume that ρl(θ(k)) > 0,
r
∑

l=1
ρl(θ(k)) > 0 for any k > 0 then we obtain ηl(θ(k)) > 0 and

r
∑

l=1
ηl(θ(k)) = 1.
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To improve controller utilization, the following event-triggered condition including
adaptive threshold is introduced:

ki
s+1 = min

{
k ∈ N

∣∣k > ki
s, σidi(k) + πieT

i (k)Ωiei(k)− εT
i (k)Ωiεi(k) < 0}, (7)

where ki
s is the sth triggered instant of ith node, ki

0 = 0, ki
s+1 is the next triggered instant

(ki
s+1 > ki

s), εi(k) = ei(ki
s)− ei(k) is the state error between control input updates, ei(ki

s) is
the triggered state of error system ei(ki

0) = ei(0). πi and σi are positive constant scalars, Ωi
is a known weighting matrix. The interval adaptive threshold di(k) satisfies:

di(k + 1) = di(k)
λ̄i

+ πieT
i (k)Ωiei(k)− εT

i (k)Ωiεi(k), (8)

where λ̄ is a given constant, di(0) = di0 > 0 is the initial value of di(k).

Remark 2. Based on the dynamic event-triggered mechanism in [40,44], we further propose the
adaptive event-triggered condition (7) for the synchronization control of DCNs. Compared with
conventional periodic event-triggered and static event-triggered mechanisms, AETA improves
the constraint of triggering instants of controller. The event-triggered condition (7) varies in an
iterative form by the change of internal adaptive threshold di(k). It is obvious that the triggering
performance is affected by parameters πi and σi. The triggering frequency grows as σi becomes
closer to zero, while the rise of πi leads to the decline of update frequency. Involved in AETA, πi
and σi can be adjusted flexibly in practical systems and the burden of controller communication will
efficiently decrease.

Remark 3. The adaptive event-triggered condition is constructed according to synchronization
error ei(k) and absolute error εi(k). In order to simplify the calculation and achieve the quantity
analysis of ei(ki

s) within triggering time interval [ki
s, ki

s+1), εi(k) is measured by ei(ki
s)− ei(k) to

evaluate the absolute error between control updates.

The control input of the ith node shares the same fuzzy rule with the error system (6).
Thus, the fuzzy-model-based pinning feedback controller is considered by the follow-
ing rule:
Fuzzy Rule l:
IF θ1(k) is δl

1 and . . . and θp(k) is δl
p, THEN

ui(k) = −ϑiΠliei(ki
s) , ki

s 6 k < ki
s+1, (9)

where Πi is the feedback control gain, ϑi is the controller parameter. ϑi > 1 if the node is
pinned, otherwise ϑi = 0. Note that ei(ki

s) = εi(k) + ei(k), the defuzzified controller ui(k)
can be further described as:

ui(k) = −
r

∑
l=1

ηl(θ(k))[ϑiΠli(εi(k) + ei(k)] . (10)

Remark 4. In the existing literatures, the T-S fuzzy model is rarely applied to analysis of the
dynamical behaviors of DCNs. With a combination of local linear models connected by IF-THEN
rules, we novelly propose the model of TSFDCNs, which is the extension of [22,26] and widely
appropriate for DCNs analysis. Moreover, the same fuzzy rule is selected to designed the fuzzy
pinning feedback controller for closed-loop error system with the hope of reducing computational
complexity.
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Substituting the controller (10) to the error system (6), the closed-loop error system of
TSFDCNs is obtained. Based on the Kronecker product theory [37,38], we can derive the
error system as follows:

e(k + 1) =
r

∑
l=1

ηl(θ(k))[Ale(k) + Bl1F(k) + Bl2H(∆k)

+ c(Gl ⊗ Γ)e(∆k) + w(k)− Klε(k)− Kle(k), ]
(11)

where
Al = IN ⊗ Al , Bl1 = IN ⊗ Bl1, Bl2 = IN ⊗ Bl2,
e(k) =

[
eT

1 (k), eT
2 (k), . . . eT

N(k)
]T,

ε(k) =
[
εT

1(k), εT
2(k), . . . εT

N(k)
]T,

F(k) =
[

f̃ T(e1(k), f̃ T(e2(k), . . . , f̃ T(eN(k)
]T,

H(∆k) =
[
h̃T(e1(∆k)), . . . , h̃T(eN(∆k))

]T,

w(k) =
[
wT

1 (k), wT
2 (k), . . . wT

N(k)
]T,

Kl = diag
{

ϑ̃1Πl1, ϑ̃2Πl2, . . . , ϑ̃NΠlN
}

.

The following definition, assumption and lemmas are introduced to discuss synchro-
nization criteria.

Definition 1 ([45]). There exist a positive matrix Φ, positive constant scalars m1, m2 (m1 < m2),
the TSFDCNs are identified as achieving the finite-time synchronized state with respect to
(m1, m2, Φ, w̃, Tm) if the error system (11) satisfies:

N

∑
k=0

wT(k)w(k) < w̃

sup
k∈{−τM ,−τM+1,...0}

{
(µ(k)− ν(k))TΦ(µ(k)− ν(k))

}
6 m1

⇒ eT(k)Φe(k) < m2 , k ∈ [1, Tm]Z.

(12)

Assumption 1 ([18]). For all ι1, ι2, ι3, ι4 ∈ Rn, it exists following sector-bounded conditions:

[ f (ι1)− f (ι2)−U1(ι1 − ι2)]
T[ f (ι1)− f (ι2)−U2(ι1 − ι2)] 6 0, (13)

[h(ι3)− h(ι4)−U3(ι3 − ι4)]
T[h(ι3)− h(ι4)−U4(ι3 − ι4)] 6 0, (14)

where node activation functions f (·), h(·) are continuous and satisfy f (0) = 0, h(0) = 0. U1, U2,
U3 and U4 are known real matrices with appropriate dimensions.

Remark 5. In Assumption 1, (13) and (14) are both referred to a class of sector-bounded condition
which is more general than the common Lipschitz continuous condition and are used to restrain
system dynamics for bounded continuity. Matrices U1, U2, U3 and U4 are given based on functions
f (·), h(·).

Assumption 2. In order to fully consider the synchronization error dynamics of TSFDCNs, the
initial condition of e(k) is supposed to satisfy:

[e(k + 1)− e(k)]T[e(k + 1)− e(k)] 6 v,

for k ∈ [−τM, 0]Z, where v is a known positive constant.

Lemma 1 ([46]). For a matrix R ∈ S+n , integer a < b and a function p: Z[a, b] → Rn, the
following inequalities hold:

b

∑
i=a

pT(i)Rp(i) >
1
ς

φT
1 R̄φ1 (15)
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b

∑
j=a

j

∑
i=a

pT(i)Rp(i) >
2

ς(ς + 1)
φT

2 R̃φ2, (16)

where ς = b − a + 1, φ1 =
[
υT

1 , `T
1 , `T

2
]T, φ2 =

[
υT

2 , `T
3
]T, R̄ = diag{R, 3R, 5R}, R̃ =

diag{R, 8R}, `1 = υ1− 2
ς+1 υ2, `2 = υ1− 6

ς+1 υ2 +
12

(ς+1)(ς+2)υ3, `3 = υ2− 3
ς+2 υ3, υ1 =

b
∑

i=a
p(i),

υ2 =
b
∑

j=a

j
∑

i=a
p(i), υ3 =

b
∑
℘=a

℘

∑
j=a

j
∑

i=a
p(i).

Lemma 2 ([47]). For given integers n, m, a scalar h̄ ∈ (0, 1), a matrix Jn×n > 0 and two matrices
ℵ1,ℵ2 ∈ Rn×m. Define the function χ(h̄, J) as:

χ(h̄, J) =
1
h̄

vTℵT
1 Jℵ1v +

1
1− h̄

vTℵT
2 Jℵ2v, (17)

with all vector v ∈ Rm. If a matrix A ∈ Rn×n such that
[

J A

∗ J

]
> 0 exists, the following

inequality holds:

min
h̄∈(0,1)

χ(h̄, J) >
[
ℵ1v
ℵ2v

]T[ J A

∗ J

][
ℵ1v
ℵ2v

]
. (18)

Lemma 3 ([36]). If x ∈ Rn, M ∈ Rn×n is a positive definite matrix, N ∈ Rn×n is a symmetric
matrix, the following inequality is true:

λmin(M−1N)xTMx 6 xTNx 6 λmax(M−1N)xTMx. (19)

Lemma 4. For the AETA proposed by (7) and (8), with the initial value di0 > 0, the adaptive
threshold parameter di(k) will be non-negative for ∀ k > 0 if condition 0 < σλ̄ 6 1 is satisfied
where σi ∈ (0, 1) andλ̄i > 1.

Proof of Lemma 4. Based on the definition of event-triggered condition (7), it is easy to
get σidi(k) + πieT

i (k)Ωiei(k)− εT
i (k)Ωiεi(k) > 0, ∀ k > 0 when system is controlled, which

derives that:

−σidi(k) 6 πieT
i (k)Ωiei(k)− εT

i (k)Ωiεi(k).

Then, from (8), we can further obtain:

di(k + 1) =
di(k)

λ̄i
+ πieT

i (k)Ωiei(k)− εT
i (k)Ωiεi(k)

> (1/λ̄i − σi)di(k)

> (1/λ̄i − σi)
2di(k− 1)

...

> (1/λ̄i − σi)
k+1di0.

If conditions of 0 < σiλ̄i 6 1 and di0 > 0 are satisfied, di(k) > 0 will hold for any
k > 0.

Remark 6. For event-triggered mechanism, signal transmits only when established condition is
satisfied. By Lemma 4, the non-negativity of di(k) is guaranteed for all k > 0, such that it is
unnecessary to ensure the inequation πieT

i (k)Ωiei(k)− εT
i (k)Ωiεi(k) > 0 holding all the time

when synchronization is reached, which relaxes the conditions in static or period event-triggered
mechanisms. Therefore, the controller triggering frequency is reduced.
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3. Main Results

In this section, several sufficient conditions are analyzed for finite-time synchronization
of TSFDCNs.

3.1. Pinning Finite-Time Synchronization for TSFDCNs with Time-Varying Delays

Theorem 1. Assume that σi ∈ (0, 1) and λ̄i > 1 satisfy σiλ̄i 6 1. For given positive constant
scalars m1 < m2, v > 1, y > 1, a matrix Φ > 0, the TSFDCNs will be finite-time synchronized
with respect to (m1, m2, Φ, w̃, Tm) if there exist symmetric matrix Q = diag{Q1, Q2, . . . , QN},
Kl = diag{Kl1,Kl2, . . . ,KlN}, Ω = diag{Ω1, Ω2, . . . , ΩN} ∈ RnN×nN , positive definite matri-
ces Υ1, Υ2, Υ3, Υ4, Υ5 ∈ RnN×nN , positive constant scalars oi(i = 1, 2, 3, 4),
λi(i = 0, 1, 2, 3, 4, 5), w̄, h̄∗, h̄1, h̄2 and a matrix R ∈ R3nN×3nN satisfying:[

Υ̃3 R
∗ Υ̃3

]
> 0,

λ0 I 6 Q∗ 6 λ1 I, 0 6 Υ∗1 6 λ2 I, 0 6 Υ2 6 λ3 I,

0 6 Υ3 6 λ4 I, 0 6 Υ4 6 λ5 I, 0 6 Υ5 6 w̄I,[
Ψ1 Ψ2
∗ −Θ−1

]
< 0,

L 6 m2(1− y−1),

m1L1 + vL2 + y
N

∑
i=1

σidi0 + w̃w̄ 6 λ0yTm m2,

(20)

where

Ψ1 =

 J11 0 J13
∗ J22 0
∗ ∗ J33

,

Ψ2 =

Al −Kl − InN , c(Gl ⊗ Γ), 0, 0, · · · , 0︸ ︷︷ ︸
8

,Bl1,Bl2, InN , 0,Kl

,

Θ = Q + τm(τm+1)
2 Υ2 + (τM − τm)2Υ3 + τ2

mΥ4,

J11 = Ξ1

[
2Kl − (1 + y−1)Q + (τM − τm + 1)Υ1 + y=Ω

]
ΞT

1 + y−τM Ξ2Υ1ΞT
2

+ Sym
{

Ξ1QAlΞ
T
1 + Ξ1QBl1ΞT

11 + Ξ1QBl2ΞT
12 +cΞ1Q(Gl ⊗ Γ)ΞT

2 + Ξ1QΞT
13

}
− Ξ13Υ5ΞT

13 −
y−1

τM − τm
Λ2Υ̃2ΛT

2 + yτm+1Λ2

[
Υ̃3 R
∗ Υ̃3

]
ΛT

2 −Λ3Υ̃4ΛT
3

− h̄1Λ4AΛT
4 − h̄2Λ5MΛT

5 ,

J22 = diag
{

σ1(
y

λ̄1
− 1 + h̄∗), σ2(

y
λ̄2
− 1 + h̄∗), . . . , σN(

y
λ̄N
− 1 + h̄∗)

}
J13 = −Ξ1Kl , J33 = diag{−(σ1y + h̄∗)Ω1,−(σ2y + h̄∗)Ω2, . . . ,−(σNy + h̄∗)ΩN}
= = diag{σ1π1, σ2π2, . . . , σ2π2},
Λ1 = [Ξ2 − Ξ7, Ξ2 − 4Ξ7 − Ξ10, Ξ3 − Ξ8, Ξ3 − 4Ξ8 + 3Ξ11],
Λ2 = [Ξ4 − Ξ2, Ξ4 − Ξ2 − 2Ξ7, Ξ4 − Ξ2 + 6Ξ7 − 6Ξ10, Ξ2 − Ξ3,

Ξ2 − Ξ3 − 2Ξ7, Ξ2 − Ξ3 + 6Ξ8 − 6Ξ11] ,
Λ3 = [Ξ1 − Ξ4, Ξ1 + Ξ4 − 2Ξ7, Ξ1 − Ξ4 + 6Ξ6 − 6Ξ9],
Λ4 =

[
Ξ1 Ξ11

]T, Λ5 =
[

Ξ1 Ξ12
]T,

Q∗ = Φ−1/2QΦ−1/2, Υ∗1 = Φ−1/2Υ1Φ−1/2,
Ξi =

[
0nN×(i−1)nN InN 0nN×(15−i)nN

]
,

L1 = λ1 + o1λ2, L2 = o2λ3 + (τM − τm)o3λ4 + τmo4λ5,
o1 = y−τm−1

y−1−1 ,
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o2 =
y−τM−2 − y−τm−2 + y−1(τM − τm)(τM + τm + 2)

(y−1 − 1)3

−
(τM − τm)

[
y−2(τM + τm + 3)− (τM + τm + 1)

]
2(y−1 − 1)3 ,

o3 = y−τM−1−y−τm−1−(τM−τm)y−1+τM−τm

(y−1−1)2 , o4 = y−τm−1−(τm+1)y−1+τm

(y−1−1)2 .

Besides, the desired gains matrix of the controller is designed by:

Kli = Q−1
i Kli, i = 1, 2, . . . , N. (21)

Proof of Theorem 1. The detailed proof is provided in Appendix A.

Remark 7. By Theorem 1, we first propose an event-based framework to analyze the finite-time
pinning synchronization issue for a class of time-varying delayed TSFDCNs. Based on the finite
time control technique, sufficient criteria to guarantee the stability of the closed-loop error system
are derived via building Lyapunov–Krasovskii functionals, which covers more error and delay
information to reduce the conservativeness. Meanwhile, Theorem 1 developed an optimization
algorithm with respect to minimum finite time Tm of achieving synchronization based on m2 and
adaptive event-triggered threshold σidi(k). Solving the LMIs in (20), gains of the desired T-S fuzzy
pinning controller can be derived based on Qi and Kli, which extends efficient methods in the
literature [18,22,26]. Obviously, the computational complexity of the algorithm depends on the
number of coupled nodes.

Remark 8. To guarantee the lower conservativeness of proposed theoretical results, a Lyapunov–
Krasovskii functional candidate containing more system information is established. V2(k) is intro-
duced to capture the variation of adaptive threshold σidi(k), which promotes the effectiveness of the
controller. Compared with stability analysis in Reference [34,44], new terms V4(k) and V5(k) are
designed to ensure the stability of absolute error β(k), such that the synchronization performance
is further improved. In addition, a class of discrete Jensen inequality proposed by Lemma 1 can
approximate the range of Lyapunov terms more accurately.

3.2. Pinning Finite-Time Synchronization for DCNs

Definition 2. There exist a positive matrix Φ and positive constants m1, m2 (m1 < m2), the
DCNs are identified as achieving the finite-time synchronized state with respect to (m1, m2, Φ, Tm)
if the error system (46) satisfies:

sup
k∈{−τ,−τ+1,...0}

{
(µ(k)− ν(k))TΦ(µ(k)− ν(k))

}
6 m1

⇒ eT(k)Φe(k) < m2 , k ∈ [1, Tm] .
(22)

Consider a case where the T-S fuzzy model is not involved and the complex networks
are influenced by constant time delay τ—the corresponding error system can be described
as:

e(k + 1) = Ae(k) + B1F(k) + B2H(∆τ) + c(G⊗ Γ)e(∆τ)− Kε(k)− Ke(k), (23)

where ∆τ = k− τ. By the model (50), we are going to derive a new result on finite-time
synchronization control for DCNs.

Theorem 2. Assume that σi(0 < σi < 1) and λ̄i(λ̄i > 1) satisfy σiλ̄i 6 1. For given positive
scalars m1 < m2, v > 1, y > 1, a matrix Φ > 0, the DCNs will be finite-time synchronized
with respect to (m1, m2, Φ, Tm) if there exists a symmetric matrix Q = diag{Q1, Q2, . . . , QN},
K = diag{K1,K2, . . . ,KN}, Ω = diag{Ω1, Ω2, . . . , ΩN} ∈ RnN×nN , positive definite matri-
ces Υ1, Υ2, Υ3, positive constants õi(i = 1, 2, 3), λ̃i(i = 0, 1, 2, 3, 4), h̄∗, h̄1,h̄2 and a matrix
R ∈ R3nN×3nN satisfying:
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λ0 I 6 Q∗ 6 λ1 I, 0 6 Υ∗1 6 λ2 I,

0 6 Υ2 6 λ3 I, 0 6 Υ3 6 λ4 I,[
Ψ̃1 Ψ̃2
∗ −Θ̃−1

]
< 0,

L 6 m2(1− y−1),

m1 L̃1 + vL̃2 + y
N

∑
i=1

σidi0 6 yTm λ0m2,

(24)

where

Ψ̃1 =



H11 H12 H13 H14 H15 H16 0 H18
∗ H22 H23 H24 0 0 0 0
∗ ∗ H33 H34 0 0 0 0
∗ ∗ ∗ H44 0 0 0 0
∗ ∗ ∗ ∗ H55 0 0 0
∗ ∗ ∗ ∗ ∗ H66 0 0
∗ ∗ ∗ ∗ ∗ ∗ H77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ H88


,

Ψ̃2 = [A−K− InN , c(G⊗ Γ), 0, 0,B1,B2, 0,K]
Θ̃ = Q + τ2Υ2 +

τ(τ+1)
2 Υ3,

H11 = −(1 + y−1) + Υ1 + Υ2 + 3z1(τ)Υ2 + 5z2(τ)Υ2 + 2QA
− 2K+ y=Ω− h̄1A1 − h̄2M1,

H12 = −Υ2 + 3z1(τ)Υ2 − 5z2(τ)Υ2 + cQ(G⊗ Γ),H13 = −6z1(τ)Υ2 + 30z2(τ)Υ2,
H14 = −30z2(τ)Υ2,H15 = QB1 − h̄1A2,H16 = QB2 − h̄2M2,
H18 = K,H22 = −y−τ + Υ2 + 3z1(τ)Υ2 − 5z2(τ)Υ2 + Υ3 + 2z3(τ)Υ3,
H23 = −6z1(τ)Υ2 − 30z2(τ)Υ2 − 4Υ3 − 8z3(τ)Υ3,H24 = 30z2(τ)Υ2 + 6z3(τ)Υ3,
H33 = 12z1(τ)Υ2 + 180z2(τ)Υ2 + 16Υ3 + 32z3(τ)Υ3,H34 = −180z2(τ)Υ2− 24z3(τ)Υ3,
H44 = 180z2(τ)Υ2 + 18z3(τ)Υ3,H55 = −h̄1 IN ,H66 = −h̄2 IN ,
H77 = J22 andH88 = J33 are defined in (21),
Q∗ = Φ−1/2QΦ−1/2, Υ∗1 = Φ−1/2Υ1Φ−1/2,
L̃1 = λ1 + õ1λ2, L̃2 = õ2λ3 + õ3λ4,
õ1 = y−τ−1

y−1−1 , õ2 = y−τ−1−(τ+1)y−1+τ

(y−1−1)2 ,

õ3 = y−τ−2

(y−1−1)3 −
y−2(τ+1)(τ+2)

2(y−1−1)3 + y−1(2τ+τ2)

(y−1−1)3 − τ+ττ

2(y−1−1)3 ,

and the controller gains matrix is given by:

Ki = Q−1
i Ki, i = 1, 2, . . . , N. (25)

Proof of Theorem 2. The detailed proof is provided in Appendix B.

Remark 9. Theorem 2 is the development of Theorem 1, which can also be regarded as the discrete
counterpart of Corollary 1 in [22], as well as the extension of results in [9]. From Definitions 1 and 2,
we get the finite-time analysis method of synchronization dynamics, which differs from traditional
asymptotic synchronization. Rather than reaching mean-square stable, e(k) converges to the certain
region

{
e
∣∣eT(k)Φe(k) < m2

}
only if sufficiently small Tm and sufficiently large m2 exist, which

brings a certain degree of freedom.

Remark 10. In the existing literature, fruitful achievements on the synchronization and stability
control of complex networks are reported [11,16,22,28,34,37]. T-S fuzzy sampled-data control
was applied to guarantee the finite-time synchronization of switched complex networks in [22]
and the stability of chaotic systems in [28]. Exponential synchronization of delayed complex
networks was investigated in [34]. Compared with most results, this paper presents the following
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novel technologies: (1) the T-S fuzzy model is involved to establish DCNs for discrete dynamical
analysis; (2) the finite-time pinning synchronization control is the first attempt for TSFDCNs under
AETA; (3) new criteria including optimization conditions are proposed to guarantee the finite-time
boundedness of the error system.

4. Numerical Experiments

In this section, numerical examples are provided to illustrate the effectiveness of the
proposed synchronization strategy.

Example 1. Based on the IF-THEN rules, the TSFDCNs consisting of five nodes (N = 5) are
considered as follows:

Rule 1. IF θ1(k) is δ1
p, THEN

xi(k + 1) = A1xi(k) + B11 f (xi(k)) + B12h(xi(∆k))

+ cG1 ⊗ Γ1xj(∆k) + wi(k) ,
Rule 2. IF θ2(k) is δ2

p, THEN
xi(k + 1) = A2xi(k) + B21 f (xi(k)) + B22h(xi(∆k))

+ cG2 ⊗ Γ2xj(∆k) + wi(k) .

The membership functions of Rule 1 and Rule 2 are defined as η1(θ(k)) = 1− sin2( k
2 )

and η2(θ(k)) = 1− η1(θ(k)) respectively. From the directed topological structures shown
in Figure 1, the coupled configuration matrices G1 and G2 of two fuzzy rules are chosen as:

G1 =


−3 1 1 1 1
1 −2 1 0 1
1 1 −2 0 0
1 0 1 −2 0
1 0 0 1 −2

, G2 =


−4 1 1 0 0
1 −2 1 1 0
1 1 −3 0 1
0 0 1 −2 1
0 1 0 1 −2

.

(a) (b)

Figure 1. Communication coupling structure for two fuzzy rules. (a) Rule 1. (b) Rule 2.

Some parameters are assumed as:

A1 = A2 = 0.8I2, B11 = B21 =

[
−1 0.5
0.5 −1

]
, B12 = B22 =

[
−0.3 0.25

0 0.2.

]
.

The nonlinear activation functions of TSFDCNs are:

f (xi(k)) =

[
1.85x1(k) + 0.25x2(k) + tanh(0.05x1(k))

−0.35x2(k)− tanh(0.05x1(k) + 0.05x2(k))

]
,

h(xi(∆k)) =

[
−0.3x1(∆k) + 0.5x2(∆k) + tanh(0.5x1(∆k) + 0.5x2(∆k))

−0.4x2(∆k)− tanh(0.2x1(∆k)

]
.

By Assumption 1, select:
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U1 =

[
1.85 0.25
−0.25 0.6

]
, U2 =

[
0.4 0.8
0 −0.35

]
U3 =

[
−0.3 0.5
0.75 0.9

]
, U4 =

[
−0.15 0.2

0 −0.4.

]
The time-varying delay is taken as τ(k) =

[
1 + 2sin2(kπ

/
2)
]
, where τm = 1, τM = 3

([a] denotes the integer part of the number a), the exogenous disturbance is set as wi(k) =[
0.6e0.1k sin(k)

/
(1 + e0.1k), 0.6e0.01k cos(k)

/
(1 + e0.01k)

]T
. Let parameters c = 1.2, matrices

Γ1 = Γ2 = diag{−1.25,−0.85}.
Shown in Figure 2, the system fails to track the motion of the target node without

controllers. In Figure 3, state errors of nodes in TSFDCNs tend to diverge with time, which
implies that the desired synchronization cannot be achieved.

Figure 2. States of nodes xi1, xi2 in TSFDCNs.

Figure 3. Synchronization errors ein without controllers of TSFDCNs.

According to Theorem 1, some parameters are chosen as Φ = I, m1 = 15, m2 = 200,
Tm = 50, w̃ = 0.36, h̄∗ = 1, h̄1 = h̄2 = 0.8. For adaptive event-triggered condition (7),
we set Ω = I, π = 0.5, σ = 0.6, λ̄ = 1.5 and di0 = 0.1. Solving the LMIs in Theorem 1,
we obtain the following control gains Πli under fuzzy rules 1 and 2 when all nodes are
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controlled:

Π11 =

[
0.0078 −1.3824
−1.7081 −0.2099

]
, Π12 =

[
0.0263 −1.8317
−1.6910 −0.2821

]
,

Π21 =

[
0.2476 −1.6201
−1.8991 −1.1850

]
, Π22 =

[
0.1263 −1.2317
−1.2501 −1.8925

]
,

Π31 =

[
0.0135 −1.4855
−1.7287 −1.0990

]
, Π32 =

[
0.3829 −1.6715
−1.9872 −1.2430

]
,

Π41 =

[
0.1147 −1.7001
−1.9306 −2.0012

]
, Π42 =

[
0.5772 −1.9144
−1.7668 −2.4312

]
Π51 =

[
0.1783 −1.5103
−2.5691 −1.1975

]
, Π52 =

[
0.2839 −1.0769
−2.0657 −1.9128

]
.

For Example 1, the initial states of nodes are selected as x1(k) = (−2.4,−0.9)T,
x2(k) = (2,−1.5)T, x3(k) = (−2.2, 3.3)T, x4(k) = (1.6,−1.8)T, x5(k) = (−2.8, 3.5)T,
and s(k) = (2,−1)T for k ∈ {−3 , −2,−1, 0}. Shown in Figure 4a, with controllers, the
closed-loop error system of TSFDCNs gradually converges to stability in finite-time. Be-
sides, Figure 4b displays the convergence performance of Lyapunov term eT

i (k)Qiei(k)
and proposed stability theory is further verified. Figure 5 shows the trajectory of control
inputs. Compared with open-loop results, controlled networks can synchronize to the
isolated node.

(a)

(b)

Figure 4. (a) Synchronization errors ein of closed-loop TSFDCNs with controllers. (b) Curves of
Lyapunov terms eT

i (k)Qiei(k).
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Figure 5. Curves of control inputs.

The selection of parameter values affects the synchronization control performance of
TSFDCNs. According to Theorem 1, the bounds of m2 are restrained by the upper bound of
the time delay. Assume that τm = 1 and other parameters are set as the same as in previous
experiment. In Table 1, the allowable minimum values of m2 for different τM are solved
from the presented conditions in Theorem 1, which indicates that m2 increases with the rise
of τM.

Table 1. The allowable minimum values of m2 for different τM.

τM 2 3 4 5 6

m2 152.6436 156.5210 163.4011 175.2630 198.8712

Notice that there exist two special issues with the change of parameters σi and πi.
When σi = 0, we obtain the static event-triggered condition used in [18]:

ki
s+1 = inf

{
k ∈ N

∣∣k > ki
s, εT

i (k)Ωiεi(k) − πieT
i (k)Ωiei(k) > 0}.

When σi = πi = 0, the condition is reduced as with the periodic triggered case
proposed in [39],

ki
s+1 = inf

{
k ∈ N

∣∣k > ki
s, εT

i (k)Ωiεi(k) > 0}

With hope to evaluate the performance, a set of experiments is conducted among
four event-triggered approaches. The corresponding results are displayed in Figure 6,
where Figure 6a shows the corresponding static triggered case in [18], Figure 6b shows
the periodic triggered case in [39], Figure 6c shows the event-triggered method in [48]
and the last one represents the performance of our proposed AETA with σi = 0.6. It is
obvious that the triggered times in Figure 6d are far fewer than in the other three cases. The
triggering rates of five nodes under different mechanisms are further shown in Figure 7,
where parameter σi is set as 0.2 and AETA is obviously superior to other methods. Based
on the triggering condition (7), the triggering rate is greatly influenced by the selection of
σi. Then, the relationship between triggering rate and varying values of σi are provided in
Figure 8.
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(a)

(b)

(c)

(d)

Figure 6. (a) Triggered instants under the static event-triggered mechanism in [18]. (b) Triggered
instants under the periodic event-triggered mechanism in [39]. (c) Triggered instants under the static
event-triggered mechanism in [48]. (d) Triggered instants under the AETA.

Remark 11. To quantize results, Table 2 is given to show the average triggering rate (ATR) of
network nodes under several existing methods and different values of σi in AETA. With respect
to the index of ATR, AETA outperforms the methods in [18,39,48]. Moreover, the ATR increases
gradually when the value of σi decreases to zero, which is also clearly reflected in Figure 8. In
conclusion, the communication burden of the control process is effectively saved by AETA, compared
with other event-triggered methods.
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Table 2. Comparison of triggering rates in different cases.

Method Node 1 Node 2 Node 3 Node 4 Node 5 ATR

σi = 0.8 26% 11% 18% 15% 16% 17.20%
σi = 0.6 28% 16% 21% 18% 17% 20%
σi = 0.2 38% 19% 27% 21% 22% 25.40%
σi = 0.05 56% 45% 41% 35% 37% 42.80%

Static event-triggered
mechanism in [18]

59% 55% 52% 48% 43% 51.40%

Common event-triggered
mechanism in [48]

65% 59% 55% 52% 52% 56.60%

Periodic Event-triggered
mechanism in [39]

77% 75% 76% 65% 65% 71.60%

Figure 7. The triggering rates of AETA and methods in [18,39,48] for various nodes .

Figure 8. The triggering rates of five nodes for varying σi.

Since system parameters were set in the last subsection, we introduce the method
in [29,44] to compare system performance and related simulation results are given in
Figure 9. As shown in Figure 9a, by Theorem 2 in [29], the errors of the closed-loop system
cannot reach the synchronized state in the setting time. By Theorem 2 in [44], displayed
in Figure 9b, synchronization errors can converge to zero when k gets near 50, while the
optimal convergence time is k = 26 with the proposed controller in this paper. It reveals
that our approach has a superior synchronization performance.
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(a)

(b)

Figure 9. (a) Synchronization errors by Theorem 2 in [29]. (b) Synchronization errors by Theorem 2
in [44].

In order to further verify the usefulness of our proposed strategy in a practical system,
the following example will introduce a discrete-time chaotic network to achieve the finite-
time synchronization.

Example 2. Consider the TSFDCNs containing three nodes and each node is regarded as a chaotic
subsystem, where xi(k) = (xi1(k), xi2(k))T , i = 1, 2, 3. Choosing fuzzy membership functions
η1(θ(k)) = (1− sin2(k))

/
2 and η2(θ(k)) = (1 + sin2(k))

/
2 for two T-S fuzzy rules, some

parameter matrices are defined as follows:

A1 =

[
0.89 0

0 0.91

]
, A2 =

[
0.9 0
0 0.9

]
,B11 =

[
0.21 −0.012
−1.51 0.32

]
,

B21 =

[
0.18 −0.011
−1.6 0.32

]
, B12 =

[
−0.15 −0.01
0.012 −0.14

]
, B22 =

[
−0.16 −0.01
0.015 −0.12

]
.

The node activation functions are given as:

f (xi(k)) =
[

tanh(xi1(k))
tanh(xi2(k))

]
, h(xi(∆τ)) =

[
tanh(xi1(∆k))
tanh(xi2(∆k))

]
.

The time-varying delay for all network nodes is set as τ(k) =
[
e0.1k

/
0.1(1 + e0.1k)

]
, with

τm = 5 and τM = 10. The network system also suffers from disturbance νi(k) = 0.5e−0.1k sin(πk
/

2).
In Figure 10, the chaotic trajectories for two fuzzy modes are demonstrated clearly under the initial
condition s(k) = (−0.5, 0.6)T for k ∈ [−25, 0]Z. In addition, let c = 0.9, Γ = I and the undirected
coupled configuration matrices for two rules as:

G1 =

 −0.3 0.1 0.2
0.3 −0.4 0.1
0.2 0.1 −0.3

, G1 =

 −0.2 0.1 0.1
0.2 −0.4 0.2
0.1 0.2 −0.3

.
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Some system parameters are defined as Φ = I, m1 = 1.5, m2 = 15, Tm = 50, Ωi = I,
πi = 0.2, σi = 0.65, λ̄i = 1.5, di0 = 0.1 and w̃ = 0.5. Suppose that node 1 and node 3 are
controlled by synchronization conditions in Theorem 1, we can then obtain the fuzzy controller
gains Πli as follows:

Π11 =

[
1.3589 −0.0046
−0.0046 −1.3381

]
, Π12 =

[
1.4106 −0.0057
−0.0057 −1.3699

]
,

Π31 =

[
0.9526 −0.0052
−0.0052 0.9176

]
, Π32 =

[
1.0817 −0.0105
−0.0105 0.9630

]
.

With the initial values x1(k) = (−1, 0.6)T , x2(k) = (−0.3, 0.8)T and x3(k) = (0.5,−0.7)T ,
synchronization error curves of open-looped TSFDCNs are shown in Figure 11. Through introducing
the control signals to nodes, the state trajectory of the target node can be tracked well by three
network nodes and synchronization errors can converge in finite time, which are exhibited via
Figures 12 and 13. In Figure 14, the corresponding control inputs are drawn. The triggered instants
of controlled nodes are given by Figure 15, where ATR is calculated as 19%. On the basis of this
chaotic system, we compare the results of two existing synchronous control techniques and show
them in Figure 16. Intuitively, by these two methods, the state trajectory is unable to be tracked
within k = 50 and oscillations are bigger. The specific convergence time is listed in Table 3; it
implies that the method proposed in Theorem 1 outperforms the other two.

(a)

(b)

Figure 10. Chaotic trajectories of two fuzzy modes with initial condition x̃(k) = (−0.5, 0.6)T .
(a) Rule 1. (b) Rule 2.
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Figure 11. Synchronization errors of chaotic TSFDCNs without control.

Figure 12. State trajectories of network nodes in chaotic TSFDCNs.

Table 3. Comparison of convergence time Tc.

Method Theorem 1 Theorem 2 in [29] Theorem 3.1 in [34]

Tc/k 43 >150 87
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(a)

(b)

Figure 13. (a) Synchronization errors of chaotic TSFDCNs under control. (b) Curves of Lyapunov
terms eT

i (k)Qiei(k).

Figure 14. Curves of control inputs.
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Figure 15. Triggered instants of pinned nodes.

(a)

(b)

Figure 16. Performance of two existing methods. (a) State trajectories of network nodes by Theorem
2 in [29]. (b) State trajectories of network nodes by Theorem 3.1 in [34].

By means of Theorem 2, the finite-time synchronization of DCNs can be achieved,
which will be proved by the following example.
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Example 3. Consider the DCNs including four nodes (N = 4) with the following parameters:

A = −I3, B1 =

 −0.2 0.5 0.4
0.3 −0.6 0.1
0.3 0.2 −0.5

, B2 =

 −0.3 0.2 0.1
0.2 −0.1 0.3
0.4 0.1 −0.2.


The nonlinear activation functions f (·) and h(·) are:

f (xi(k)) =

 0.4x1(k)− tanh(0.3x1(k))
0.3x2(k)− tanh(−0.4x2(k))

0.5x3(k)− tanh(0.5x1(k))


h(xi(∆τ)) =

 0.3x1(∆τ)− 0.1 tanh(0.1x1(∆τ))
−0.2x2(∆τ) + 0.3 tanh(0.3x2(∆τ))

0.1x3(∆τ) + 0.2 tanh(−0.2x2(∆τ)).


Let τ = 2, c = 0.8, Γ = −0.6I3, and the topological structure in Figure 17 defines the coupled

configuration matrix as:

G =


−2 1 1 1
1 −3 1 0
0 1 −2 1
0 1 1 −2.


In simulations, we choose Φ = I, m1 = 0.1, m2 = 3, πi = 0.15, σi = 0.8,λ̄ = 1.2, di0 = 0,

h̄∗ = 1, h̄1 = h̄2 = 0.8, and the initial system states are assumed as x1(k) = (−0.2, 1.1,−0.5)T,
x2(k) = (−2.5,−1.8, 0.2)T, x3(k) = (−0.9,−2.8, 1)T, x4(k) = (0.5, −1.8, 0.1)T, s(k) =
(1,−1, 2)T for k = −2. We deduce the following control gains:

Π1 =

 −10.8652 1.0237 −2.6701
0 5.2051 −2.0032

−5.0721 −8.2006 5.1233

, Π2 =

 −10.5406 1.4589 −2.8723
0 5.2611 −2.0742

−5.1290 −8.2107 5.2118


Π3 =

 −10.6315 1.2790 −2.2130
0 5.1843 −2.0637

−5.3428 −8.1592 5.1341

, Π4 =

 −10.5893 1.3122 −2.4685
0 5.2417 −2.1090

−5.1691 −8.2502 5.2782

.

The states of nodes in DCNs are indicated in Figure 18. From Figure 19, we get the syn-
chronization errors which diffuse with time mainly due to coupling effects and delays. Figure 20a
indicates that states of DCNs can be ultimately finite-time synchronized, where the minimum
Tm is computed as 19. Lyapunov stability is obviously obtained by Figure 20b, where curves of
eT

i (k)Qiei(k) are plotted. Particularly, using the model in Example 3, Table 4 provides the optimal
finite time Tm for various m2. It is obvious that the enlargement of m2 results in a longer minimum
convergence time. In Figure 21, the performance of the controller is displayed. The triggered instants
of DCNs are depicted in Figure 22 and ATR is 25.67%. As a result, the effectiveness of the proposed
theory and method is proved.
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Figure 17. Communication structure of coupled nodes in DCNs.

Table 4. Calculated minimum Tm for various values of m2.

m2 2 3 5 10 15 20

Tm/k 17 19 23 28 35 48

Figure 18. States of nodes xi1, xi2, xi3 in DCNs.

Figure 19. Synchronization errors ein without controllers of DCNs.
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(a)

(b)

Figure 20. (a) Synchronization errors ein of closed-loop DCNs with controllers. (b) Curves of
Lyapunov terms eT

i (k)Qiei(k).

Figure 21. Curves of control inputs.
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Figure 22. Triggered instants of pinned nodes in DCNs.

5. Conclusions

In this paper, the finite-time pinning synchronization control problem has been studied
for TSFDCNs with time-varying delays. By means of the T-S fuzzy model, the dynamical
behaviors of more general delayed DCNs with couplings and external disturbance are
analyzed. In order to further reduce the communication burden of the control update,
a discrete AETA is introduced with an adaptive threshold to the controller design, and
the triggering rate can be obviously decreased in the system examples. Based on finite-
time Lyapunov–Krasovskii functionals, sufficient synchronization criteria are derived to
guarantee the finite-time stability of the closed-loop error system. By considering LMI
constraints related to an optimization algorithm for minimum finite time, the desired gains
of the fuzzy pinning controller are further obtained. The effectiveness and advantages of
our proposed control strategy are proved by several experiments, where synchronization
errors are converged with a shorter time in comparison. However, computation complexity
rises with the number of nodes and needs to be reduced, which will be appreciated in the
following study. For a future research topic, the proposed method will be extended to study
control strategies of TSFDCNs subject to different disturbances or cyber-attacks, as well as
to analyze the finite-time synchronization of Markov DCNs.
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Appendix A. Proof of Theorem 1

Choose the following Lyapunov-Krasovskii functional candidate for the error sys-
tem (11):

V(k) =
5

∑
q=1

Vq(k) (A1)

where
V1(k) = eT(k)Qe(k),

V2(k) =
N
∑

i=1
yσidi(k)

V3(k) =
k−1
∑

i=∆k

yi−k+1eT(i)Υ1e(i) +
−τm+1

∑
j=−τM+2

k−1
∑

i=k+s−1
yi−k+1eT(i)Υ1e(i),

V4(k) =
−τm−1

∑
j=−τM

−1
∑
℘=j

k−1
∑

i=k+℘
yi−k+1βT(i)Υ2β(i)

V5(k) = (τM − τm)
−τm−1

∑
j=−τM

k−1
∑

i=k+j
yi−k+1βT(i)Υ3β(i) + τm

−1
∑

j=−τm

k−1
∑

i=k+j
yi−k+1βT(i)Υ4β(i)

and β(i) = e(i + 1)− e(i). For simplicity, let
γT(k) =

[
γ̃T(k), d̃(k), εT(k)

]
,

γ̃T(k) = [eT(k), eT(∆k), eT(∆M), eT(∆m), κT
1 , κT

2 , κT
3 , κT

4 , κT
5 , κT

6 ,

FT(k), HT(∆k), wT(k)], ∆M = k− τM, ∆m = k− τm,

d̃(k) = diag
{

d1/2
1 (k), d1/2

2 (k), . . . , d1/2
N (k)

}
,

κ1 = 1
τm+1

k
∑

i=∆m

e(i), κ2 = 1
τ(k)−τm+1

∆m
∑

i=∆k

e(i), κ3 = 1
τM−τ(k)+1

∆k
∑

i=∆M

e(i),

κ4 = 2
(τm+1)(τm+2)

0
∑

j=−τm

k
∑

i=k+j
e(i), κ5 = 2

(τ(k)−τm+1)(τ(k)−τm+2)

−τm
∑

j=−τ(k)

∆m
∑

i=k+j
e(i),

κ6 = 2
(τM−τ(k)+1)(τM−τ(k)+2)

−τ(k)
∑

j=−τM

∆k
∑

i=k+j
e(i)

γT
2 (k) =

[
FT(k), HT(∆k)

]
, γT

3 (k) =
[
wT(k), d1/2(k), εT(k)

]
. (A2)

For k ∈
[
ki

s, ki
s+1
)
, taking the forward difference of Vq(k), we have

∆V1(k) = V1(k + 1)−V1(k)

= eT(k + 1)Qe(k + 1)− y−1eT(k)Qe(k) + (y−1 − 1)V1(k)

= β(k)Q β(k) + 2eT(k)Qe(k + 1)− eT(k)Qe(k)

− y−1eT(k)Qe(k) + (y−1 − 1)V1(k).

(A3)

∆V2(k) = V2(k + 1)−V2(k)

=
N

∑
i=1

σi

[
(

y
λ̄i
− 1)di(k) + yπieT

i (k)Ωiei(k) −yεT
i (k)Ωiεi(k)

]
+ (y−1 − 1)V2(k)

=
N

∑
i−1

σi

[
(

y
λ̄i
− 1)di(k) + yET

i Ω̃iEi

]
+ (y−1 − 1)V2(k).

(A4)

where ET
i = [eT

i (k), εT
i (k)], Ω̃i = diag{πiΩi,−Ωi}. According to the adaptive event-

triggered condition (7), it yields

N

∑
i=1

[
σidi(k) + πieT(k)Ωiei(k)− εT

i (k)Ωiεi(k)
]
≥ 0 (A5)
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which means for h̄∗ > 0

h̄∗
r

∑
i=1

σi

[
di(k) + ET

i ΩEi

]
> 0. (A6)

∆V3(k) = V3(k + 1)−V3(k)

= eT(k)Υ1e(k) +
k−1

∑
i=∆k+1

yi−keT(i)Υ1e(i) +
−τm+1

∑
j=−τM+2

k

∑
i=k+s

yi−keT(i)Υ1e(i)−V3(k)

6 (τM − τm + 1)eT(k)Υ1e(k)− y−τM eT(∆k)Υ1e(∆k) + (y−1 − 1)V3(k).

(A7)

∆V4(k) = V4(k + 1)−V4(k)

=
−τm−1

∑
℘=−τM

−1

∑
j=℘

k

∑
i=k+1+j

yi−kβT(i)Υ2β(i) −
−τm−1

∑
℘=−τM

−1

∑
j=℘

k−1

∑
i=k+j

yi−k−1βT(i)Υ2β(i)

6
τm(τm + 1)

2
βT(k)Υ2β(k) − y−1

−τm−1

∑
j=−τM

k−1

∑
i=k+j

βT(i)Υ2β(i) + (y−1 − 1)V4(k).

(A8)

With the help of Lemma 1, we obtain

− y−1
−τm−1

∑
j=−τM

k−1

∑
i=k+j

βT(i)Υ2β(i)

= −y−1

 −τm−1

∑
j=−τ(k)

k−1

∑
i=k+j

βT(i)Υ2β(i) +
−τ(k)−1

∑
j=−τM

k−1

∑
i=k+j

βT(i)Υ2β(i)


6 − y−1

τM − τm
(2ξT

1 Υ2ξ1 + 4ξT
2 Υ2ξ2 + 2ξT

3 Υ2ξ3 + 4ξT
4 Υ2ξ4)

= − y−1

τM − τm
ξT(k)Υ̃2ξ(k).

(A9)

where
Υ̃2 = diag{2Υ2, 4Υ2, 2Υ2, 4Υ2},
ξT = [ξ1(k), ξ2(k), ξ3(k), ξ4(k)], ξ1(k) = e(∆k)− κ2,
ξ2(k) = e(∆k)− 4κ2 + 3κ5, ξ3(k) = e(∆M)− κ3,
ξ4(k) = e(∆M)− 4κ3 + 3κ6.
Combined with (A9), ∆V4(k) can be bounded as

∆V4(k) 6
τm(τm + 1)

2
βT(k)Υ2β(k) + (y−1 − 1)V4(k)−

y−1

τM − τm
ξT(k)Υ̃2ξ(k). (A10)

∆V5(k) = V5(k + 1)−V5(k)

= (τM − τm)

[
−τm−1

∑
j=−τM

k

∑
i=k+1+j

yi−kβT(i)Υ3β(i) −
−τm−1

∑
j=−τM

k−1

∑
i=k+j

yi−k−1βT(i)Υ3β(i)

]

+ τm

[
−1

∑
j=−τm

k

∑
i=k+1+j

yi−kβT(i)Υ4β(i) −
−1

∑
j=−τm

k−1

∑
i=k+j

yi−k−1βT(i)Υ4β(i)

]

6 βT(k)
[
(τM − τm)

2Υ3 + τ2
mΥ4

]
β(k)− (τM − τm)y−τm−1

∆m−1

∑
i=∆M

βT(i)Υ3β(i)

− τm

k−1

∑
i=∆m

βT(i)Υ4β(i) + (y−1 − 1)V5(k).

(A11)
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From Lemma 2, the following inequality holds:

− (τM − τm)y−τm−1
∆m−1

∑
i=∆M

βT(i)Υ3β(i)

= −(τM − τm)yτm+1

[
∆k−1

∑
i=∆M

βT(i)Υ3β(i) +
∆m−1

∑
i=∆k

βT(i)Υ3β(i)

]

6 −yτm+1 τM − τm

τ(k)− τm

[
ζT

1 (k)Υ3ζ1(k) + 3ζT
2 (k)Υ3ζ2(k) + 5ζT

3 (k)Υ3ζ3(k)
]

− yτm+1 τM − τm

τM − τ(k)

[
ζT

4 (k)Υ3ζ4(k) + 3ζT
5 (k)Υ3ζ5(k) + 5ζT

6 (k)Υ3ζ6(k)
]

= −yτm+1ζT(k)
[

Υ̃3 R
∗ Υ̃3

]
ζ(k)

(A12)

where
Υ̃3 = diag{Υ3, 3Υ3, 5Υ3},
ζT(k) = [ζT

1 (k), ζT
2 (k), ζT

3 (k), ζT
4 (k), ζT

5 (k), ζT
6 (k)],

ζ1(k) = e(∆m)− e(∆k), ζ2(k) = e(∆m)− e(∆k)− 2κ2,
ζ3(k) = e(∆m)− e(∆k) + 6κ2 − 6κ5, ζ4(k) = e(∆k)− e(∆M),
ζ5(k) = e(∆k)− e(∆M)− 2κ3, ζ6(k) = e(∆k)− e(∆M) + 6κ3 − 6κ6.
Relying on Lemma 1, we can find that

− τm

k−1

∑
i=∆m

βT(i)Υ4β(i) 6 −ρT(k)Υ̃4ρ(k) (A13)

where
Υ̃4 = diag

{
Υ4, 3zτm

1 Υ4, 5zτm
2 Υ4

}
, zτm

1 = τm+1
τm−1 , zτm

2 = (τm+1)(τm+2)2

(τm−1)(τ2
m+11)

,

ρT(k) =
[
ρT

1 (k), ρT
2 (k), ρT

3 (k)
]
, ρ1(k) = e(k)− e(∆m),

ρ2(k) = e(k) + e(∆m)− 2κ, ρ3(k) = e(k)− e(∆m) + 6κ1 − 6κ4.
Substituting (A12) and (A13) into (A11), one has

∆V5(k) 6 βT(k)
[
(τM − τm)

2Υ3 + τ2
mΥ4

]
β(k) + (y−1 − 1)V5(k)

−yτm+1ζT(k)
[

Υ̃3 R
∗ Υ̃3

]
ζ(k) − ρT(k)Υ̃4ρ(k).

(A14)

According to Assumption 1 and (20),we can obtain following inequalities for h̄1, h̄2 > 0

h̄1

[
e(k)
F(k)

]T[
A1 A2
∗ InN

][
e(k)
F(k)

]
6 0 , (A15)

h̄2

[
e(∆k)
H(∆k)

]T[
M1 M2
∗ InN

][
e(∆k)
H(∆k)

]
6 0 . (A16)

where

A =

[
A1 A2
∗ InN

]
, M =

[
M1 M2
∗ InN

]
.

A1 =
ÃT

1 Ã2+ÃT
2 Ã1

2 , A2 = − ÃT
1+ÃT

2
2 , M1 =

M̃T
1M̃2+M̃T

2M̃1
2 , M2 = −M̃T

1+M̃T
2

2 ,
For symmetric matrix Q > 0, it follows from (11) that
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0 = 2eT(k)Q[e(k + 1)− e(k + 1)]

= 2eT(k)Q

{
r

∑
l=1

ηl(θ(k))[Ale(k) + Bl1F(k) + Bl2H(∆k)

+ c(Gl ⊗ Γ)e(∆k) + w(k)− Klε(k)− Kle(k)]− e(k + 1)}

= 2eT(k)
r

∑
l=1

ηl(θ(k))[QAle(k) + QBl1F(k) + QBl2H(∆k)

+ cQ(Gl ⊗ Γ)e(∆k) + Qw(k)−Klε(k)−Kle(k)]− 2eT(k)Qe(k + 1)

(A17)

Repeating the process from (A1) to (A17), we obtain

∆V(k)− (y−1 − 1)V(k)− w(k)TΥ5w(k)

= β(k)Q β(k) + 2eT(k)Qe(k + 1)− (1 + y−1)eT(k)Qe(k)

+
N

∑
i−1

σi

[
(

y
λ̄i
− 1)di(k) + yET

i Ω̃iEi

]
+ (τM − τm + 1)eT(k)Υ1e(k)

− y−τM eT(∆k)Υ1e(∆k) +
τm(τm + 1)

2
βT(k)Υ2β(k)

− y−1

τM − τm
ξT(k)Υ̃2ξ(k) + βT(k)

[
(τM − τm)

2Υ3 + τ2
mΥ4

]
β(k)

− yτm+1ζT(k)
[

Υ̃3 R
∗ Υ̃3

]
ζ(k) − ρT(k)Υ̃4ρ(k)− w(k)TΥ5w(k)

+ h̄∗
N

∑
i=1

σi

[
di(k) + ET

i ΩiEi

]
+ Sym

{
r

∑
l=1

ηl(θ(k))
[
eT(k)QAle(k)

+ eT(k)QBl1F(k) + eT(k)QBl2H(∆k) + ceT(k)Q(Gl ⊗ Γ)e(∆k)

+ eT(k)Qw(k)− eT(k)Klε(k)− eT(k)Kle(k)
]}

− 2eT(k)Qe(k + 1)− h̄1

[
e(k)
F(k)

]T[
A1 A2
∗ IN

][
e(k)
F(k)

]
− h̄2

[
e(∆k)
H(∆k)

]T[
M1 M2
∗ IN

][
e(∆k)
H(∆k)

]
6

r

∑
l=1

ηl(θ(k))
[
γT(k)(Ψ1 + ΨT

2 ΘΨ2 )γ(k)] +
N

∑
i=1

1
λ̄i
(yσi + h̄∗)

(A18)

where Ψ1, Ψ2, and Θ are defined in (20).
Then by the Schur complement theory, it is no difficult to get the following inequality

from (20):
Ψ1 + ΨT

2 ΘΨ2 < 0. (A19)

Thus

∆V(k) 6 (y−1 − 1)V(k) + wT(k)Υ5w(k) + L. (A20)

where L =
N
∑

i=1

1
λ̄i
(yσi + h̄∗)
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Based on V(k) < y−1V(k− 1) < · · · < y−Tm V(0) from the result in [25], V(k) can be
derived as

V(k) 6 y−1Vq(k− 1) + wT(k− 1)Υ5w(k− 1) + L
6 y−2Vq(k− 2) + y−1wT(k− 1)Υ5w(k− 1)

+ wT(k− 2)Υ5w(k− 2) + y−1L+ L
...

6 y−Tm V(0) + w̄
Tm−1

∑
i=0

y−Tm+i+1wT(i)w(i) +
1− y−Tm

1− y−1 L

6 y−Tm V(0) + y−Tm w̃w̄ +
1

1− y−1L.

(A21)

By means of Lemma 3 and (20), the initial value of V(k) is denoted as

V(0) = eT(0)Qe(0) +
N

∑
i=1

yσidi(0) +
−1

∑
i=−τ(0)

yi+1eT(i)Υ1e(i)

+
−1

∑
j=−τM

−1

∑
℘=j

−1

∑
i=℘

yi+1βT(i)Υ2β(i) + (τM − τm)
−τm−1

∑
j=−τM

−1

∑
i=j

yi+1βT(i)Υ3β(i)

+ τm

−1

∑
j=−τm

−1

∑
i=j

yi+1βT(i)Υ4β(i)

6 m1λ1 + y
N

∑
i=1

σidi0 + m1λ2

−1

∑
i=−τM

yi+1 + vλ3

−τm−1

∑
j=−τM

−1

∑
℘=j

−1

∑
i=℘

yi+1

+ (τM − τm)vλ4

−τm−1

∑
j=−τM

−1

∑
i=j

yi+1 + τmvλ5

−1

∑
j=−τm

−1

∑
i=j

yi+1

= m1[λ1 + o1λ2] + v[o2λ3 + (τM − τm)o3λ4 + τmo4λ5] + y
N

∑
i=1

σidi0.

= m1L1 + vL2 + y
N

∑
i=1

σidi0.

(A22)

The combination (A20) and (A21) can obtain

V(k) < y−Tm

[
m1L1 + vL2 + y

N

∑
i=1

σidi0 + w̃w̄

]
. (A23)

Recalling (20) results in
V(k) > λ0eT(k)Φe(k) (A24)

Namely, we further get the following inequality

eT(k)Φe(k) <
y−Tm

[
m1L1 + vL2 + y

N
∑

i=1
σidi0 + w̃w̄

]
λ0

6 m2. (A25)

According to the given condition in Definition 1 and the bound of V(k) in (A21), we
deduce that

λ0m2 6 y−Tm V(0) + y−Tm w̃w̄ +
1

1− y−1L (A26)
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From (20), L should satisfy L 6 m2(1− y−1), so (A26) is further derived as

(λ0 − 1)m2 6 y−Tm(V(0) + w̃w̄) (A27)

Then, the upper bound of finite time Tm is described by

min
{

T
∣∣∣T > logy−1

[
(λ0 − 1)m2

/
(V(0) + w̃w̄)

]
, T ∈ Z

}
when m2 < (V(0) + w̃w̄)

/
(λ0 − 1) holds, otherwise Tm = 0.

As a result, the closed-loop TSFDCNs can reach synchronization in finite time Tm with
respect to (m1, m2, Φ, w̃, Tm). The proof of Theorem 1 is accomplished.

Appendix B. Proof of Theorem 2

Define Lyapunov-Krasovskii functional candidate as

V(k) = eT(k)Qe(k) +
k−1

∑
i=k−τ

yi−k+1eT(i)Υ1e(i) +
−1

∑
j=−τ

k−1

∑
j=k+j

yi−k+1βT(i)Υ2β(i)

+
−1

∑
j=−τ

−1

∑
℘=j

k−1

∑
j=k+℘

yi−k+1βT(i)Υ3β(i) +
N

∑
i=1

yσidi(k) ,

(A28)

let

γ̃T(k) =
[
eT(k), eT(∆τ), κ̃T

1 , κ̃T
2 , FT(k), HT(k), d1/2(k), εT(k)

]
,

κ̃1 =
1

τ + 1

k

∑
i=∆τ

e(i), κ̃2 =
2

(τ + 1)(τ + 2)

0

∑
j=−τ

k

∑
i=k+j

e(i).
(A29)

The forward difference of V(k) is calculated as

∆V(k) 6 β(k)Q β(k) + 2eT(k)Qe(k + 1)

− (1 + y−1)eT(k)Qe(k) + eT(k)Υ1e(k)

− y−τeT(∆τ)Υ1e(∆τ) + τ2βT(k)Υ2β(k)

− τ
k−1

∑
i=∆τ

βT(i)Υ2β(i) +
τ(τ + 1)

2
βT(k)Υ3β(k)

−y−τ
−1

∑
j=−τ

k−1

∑
i=j+k

βT(i)Υ3β(i) + (y−1 − 1)V(k)

+
N

∑
i−1

σi

[
(

y
λ̄i
− 1)di(k) + yET

i Ω̃iEi

]
.

(A30)

According to Lemma 1, we have

− τ
k−1

∑
i=∆τ

βT(i)Υ̃τ
2 β(i) 6 −γ̃T(k)Λ̃T

1 Υ̃τ
2 Λ̃1γ̃(k) (A31)

and similarly,

− y−τ
−1

∑
j=−τ

k−1

∑
i=j+k

βT(i)Υ3β(i) 6 −y−τ 2(τ + 1)
τ

γ̃T(k)Λ̃T
2 Υ̃3Λ̃2γ̃(k). (A32)

where Υ̃2 = diag{Υ2, 3z1(τ)Υ2, 5z2(τ)Υ2}, Υ̃3 = diag{Υ3, 3z2(τ)Υ3},
z1(τ) =

τ+1
τ−1 , z2(τ) =

(τ+1)(τ+2)2

(τ−1)(τ2+11) , z3(τ) =
τ+2
τ−1 ,

Λ̃1 = (e(k)− e(∆τ), e(k) + e(∆τ)− 2κ̃1, e(k)− e(∆τ) + 6κ̃1 − 6κ̃2)
T,
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Λ̃2 = (e(∆τ)− κ̃1, e(∆τ)− 4κ̃1 + 3κ̃2)
T.

By taking (A6) and (A15)–(A17) in Theorem 1 into account, we obtain

∆V(k)− (y−1 − 1)V(k) 6 γ̃T(k)(Ψ̃1 + Ψ̃T
2 Θ̃Ψ̃2)γ̃(k) +

N

∑
i=1

1
λ̄i
(yσi + h̄∗) (A33)

where Ψ̃1 + Ψ̃T
2 Θ̃Ψ̃2 < 0 based on Schur complement theory. As similar with (A21), we

notice that V(k) < y−NV(0) + L
/
(1− y−1).Then the initial value of V(k) is described as

V(0) = eT(0)Qe(0) +
−1

∑
i=−τ

yi+1eT(i)Υ1e(i) +
−1

∑
j=−τ

−1

∑
j=j

yi+1βT(i)Υ2β(i)

+
−1

∑
j=−τ

−1

∑
℘=j

−1

∑
j=℘

yi+1βT(i)Υ3β(i) +
N

∑
i=1

yσidi(0)

= m1λ1 + m1λ2

−1

∑
i=−τ

yi+1 + vλ3

−1

∑
j=−τ

−1

∑
i=j

yi+1 + vλ4

−1

∑
j=−τ

−1

∑
℘=j

−1

∑
i=℘

yi+1

+ y
N

∑
i=1

σidi0

= m1 L̃1 + vL̃2 + y
N

∑
i=1

σidi0.

(A34)

Based on Lemma 3, we get V(k) > λ0eT(k)Φe(k) from (24). It is concluded that

eT(k)Φe(k) <
y−Tm(m1 L̃1 + vL̃2 + y

N
∑

i=1
σidi0)

λ0
6 m2. (A35)

Consider the process in Theorem 1, we can further calculate the maximum finite
time Tm of synchronization as min

{
T
∣∣∣T > logy−1

[
(λ0 − 1)m2

/
(V(0))

]
, T ∈ Z

}
for m2 <

V(0)
/
(λ0 − 1). So the finite-time synchronization of DCNs is realized with respect to

(m1, m2, Φ, Tm). The proof is accomplished.
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