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Abstract: At the heart of both lossy compression and clustering is a trade-off between the fidelity
and size of the learned representation. Our goal is to map out and study the Pareto frontier that
quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck
(DIB) objective over the space of hard clusterings. To this end, we introduce the primal DIB problem,
which we show results in a much richer frontier than its previously studied Lagrangian relaxation
when optimized over discrete search spaces. We present an algorithm for mapping out the Pareto
frontier of the primal DIB trade-off that is also applicable to other two-objective clustering problems.
We study general properties of the Pareto frontier, and we give both analytic and numerical evidence
for logarithmic sparsity of the frontier in general. We provide evidence that our algorithm has
polynomial scaling despite the super-exponential search space, and additionally, we propose a
modification to the algorithm that can be used where sampling noise is expected to be significant.
Finally, we use our algorithm to map the DIB frontier of three different tasks: compressing the English
alphabet, extracting informative color classes from natural images, and compressing a group theory-
inspired dataset, revealing interesting features of frontier, and demonstrating how the structure of
the frontier can be used for model selection with a focus on points previously hidden by the cloak of
the convex hull.

Keywords: multi-objective; optimization; Pareto; frontier; information; bottleneck; clustering

1. Introduction

Many important machine learning tasks can be cast as an optimization of two objec-
tives that are fundamentally in conflict: performance and parsimony. In an auto-encoder,
this trade-off is between the fidelity of the reconstruction and narrowness of the bottleneck.
In the rate-distortion setting, the quantities of interest are the distortion, as quantified by a
prescribed distortion function, and the captured information. For clustering, the trade-off
is between intra-cluster variation and the number of clusters. While these problems come
in many flavors—with different motivations, domains, objectives, and solutions—what is
common to all such multi-objective trade-offs is the existence of a Pareto frontier, repre-
senting the boundary separating feasible solutions from infeasible ones. In a two-objective
optimization problem, this boundary is generically a one-dimensional curve in the objective
plane, representing solutions to the trade-off where increasing performance along one axis
necessarily decreases performance along the other.

The shape of the frontier, at least locally, is important for model selection: prominent
corners on the frontier are often more robust to changes in the inputs and therefore corre-
spond to more desirable solutions. The global frontier can provide additional insights, such
as giving a sense of interesting scales in the objective function. Structure often exists at
multiple scales; for hierarchical clustering problems, these are the scales at which the data
naturally resolve. Unfortunately, much of this useful structure (see Figure 1) is inaccessible
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to optimizers of the more commonly studied convex relaxations of the trade-offs. Optimiza-
tion over discrete search spaces poses a particular difficulty to convex relaxed formulations,
as most points on the convex hull are not feasible solutions, and Pareto optimal solutions are
masked by the hull. While the optimization of the Lagrangian relaxation is often sufficient
for finding a point on or near the frontier, we, in contrast, seek to map out the entire frontier
of the trade-off and therefore choose to tackle the primal problem directly.
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Figure 1. Comparison of the Lagrangian DIB (left) and primal DIB (right) frontiers discovered by
Algorithm 1 for the English alphabet compression task discussed in Section 3.2.1. The shaded regions
indicate the convex hull of the points found by the Pareto Mapper algorithm. Clusterings inside the
shaded region, while Pareto optimal, are not optimal in the Lagrangian formulation.

Algorithm 1 Pareto Mapper: ε-greedy agglomerative search
Input: Joint distribution X, Y ∼ pXY, and search parameter ε
Output: Approximate Pareto frontier P

1: procedure PARETO_MAPPER(pXY, ε)
2: Pareto Set P = ∅ . Initialize maintained Pareto Set
3: Queue Q = ∅ . Initialize search queue
4: Point p = (x =−H(pX), y = I(pX;Y), f = id) . Evaluate trivial clustering
5: P← INSERT(p, P)
6: Q← ENQUEUE(id, Q) . Start with identity clustering id : [n]→ [n] where n = |X|
7: while Q is not ∅ do
8: f = DEQUEUE(Q)
9: n = | range( f )|

10: for 0 < i < j < n do . Loop over all pairs of output clusters of f
11: f ′ = ci,j ◦ f . Merge clusters i, j output f
12: Point p = Point(x =−H(p f ′(X)), y = I(p f ′(X);Y), f = f ′)
13: d = PARETO_DISTANCE(p, P)
14: P← PARETO_ADD(p, P) . Keep track of point and clustering in Pareto Set
15: with probability e−d/ε, Q← ENQUEUE( f ′, Q)
16:

return P

We focus on the general problem of the deterministic encoding of a discrete domain.
For a finite set of inputs, X, which we identify with the integers [X] ≡ {1, . . . , |X|}, we seek
a mapping to a set [Z], where |Z| ≤ |X|. The search space is therefore the space of functions
f : [X] → [Z], which we call “encodings” or equivalently, “hard clusterings”, where
Z = f (X) is interpreted as the cluster to which X is assigned. We evaluate the encodings
using the Deterministic Information Bottleneck objective, but regardless of which objectives
are chosen, we will refer to all two-objective optimization problems over the space of such
functions f as “clustering problems”.
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The goal of this paper is to motivate the study of the Pareto frontiers to primal
clustering problems and to present a practical method for their discovery.

1.1. Objectives and Relation to Prior Work

We focus on the task of lossy compression, which is a trade-off between retaining the
salient features of a source and parsimony. Rate-distortion theory provides the theoretical
underpinnings for studying lossy data compression of a source random variable X into
a compressed representation Z [1]. In this formalism, a distortion function quantifies
the dissatisfaction with a given encoding, which is balanced against the complexity of
the compressed representation as measured by I(Z; X). In the well-known Information
Bottleneck (IB) problem [2], the goal is to preserve information about a target random
variable Y as measured by the mutual information I(Z; Y); the IB can be viewed as a
rate-distortion problem with the Kullback–Leibler divergence, DKL(pY|X ||pY|Z), serving as
the measure of distortion. In recent years, a number of similar bottlenecks have also been
proposed inspired by the IB problem [3–5]. We focus on one of these bottlenecks known as
the Deterministic Information Bottleneck (DIB) [3].

1.1.1. The Deterministic Information Bottleneck

In the DIB problem, we are given random variables X and Y with joint probability
mass function (PMF) pXY, and we would like to maximize I(Z; Y) subject to a constraint on
H(Z). As in [3], we further restrict ourselves to the compression of discrete domains, where
X, Y and Z are finite, discrete random variables. We note that DIB-optimal encodings are
deterministic encodings Z = f (X) [3], and we can therefore focus on searching through
the space of functions f : [X] → [Z], justifying the interpretation of DIB as a clustering
problem. Since the optimization is being performed over a discrete domain in this case,
not all points along the frontier are achievable. Nonetheless, we define the Pareto frontier
piecewise as the curve that takes on the minimum vertical value between any two adjacent
points on the frontier.

Formally, given pXY, the DIB problem seeks an encoding f ∗ : X → Z such that,
Z∗ = f ∗(X) maximizes the relevant information captured for a given entropy limit H∗:

f ∗primal ≡ argmax
f :H[ f (X)]≤H∗

I
(

Y; f (X)
)

(1)

We will refer to the constrained version of the DIB problem in Equation (1) as the primal
DIB problem, to differentiate it from its more commonly studied Lagrangian form [3]:

f ∗Lagrangian ≡ argmax
f

I
(

f (X); Y
)
− βH

(
f (X)

)
(2)

In this form, which we call the Lagrangian DIB, a trade-off parameter β is used instead of
the entropy bound H∗ to parameterize f∗ and quantify the importance of memorization
relative to parsimony. The Lagrangian relaxation removes the non-linear constraint by
optimizing a proxy to the original function, known as the DIB Lagrangian, but comes at the
cost of being unable to access points off the convex hull of the trade-off. We note that while
we use the terminology ‘primal DIB’ to differentiate it from its Lagrangian form, we do not
study its ‘dual’ version in this paper.

Many algorithms have been proposed for optimizing the IB, and more recently, the
DIB objectives [6]. An iterative method that generalizes the Blahut-Arimoto algorithm
was proposed alongside the IB [2] and DIB [3] algorithms. For the hierarchical clustering
of finite, discrete random variables X and Y using the IB objective, both divisive [7] and
agglomerative [8] methods have been studied. Relationships between geometric clustering
and information theoretic clustering can also be used to optimize the IB objective in certain
limits [9]. More recently, methods using neural network-based variational bounds have
been proposed [10]. However, despite the wealth of proposed methods for optimizing the
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(D)IB, past authors [2,3,6,10,11] have focused only on the Lagrangian form of Equation (2)
and are therefore unable to find convex portions of the frontier.

Frontiers of the DIB Lagrangian and primal DIB trade-offs are contrasted in
Figure 1, with the shaded gray region indicating the shroud that the optimization of the
Lagrangian relaxation places on the frontier (the particular frontier presented is discussed in
Section 3.2.1). Points within the shaded region are not accessible to the Lagrangian for-
mulation of the problem as they do not optimize the Lagrangian. We also note that while
the determinicity of solutions is a consequence of optimizing the Lagrangian DIB [3], the
convex regions of the primal DIB frontier is known to contain soft clusterings [12,13]. In
our work, the restriction to hard clusterings can be seen as a part of the problem statement.
Finally, we adopt the convention of flipping the horizontal axis as in [13] which more
closely matches the usual interpretation of a Pareto frontier where points further up and to
the right are more desirable.

1.1.2. Discrete Memoryless Channels

A closely related trade-off is that between I(Z; Y) and the number of clusters |Z|, which
has been extensively studied in the literature on the compression of discrete memoryless
channels (DMCs) [6,14,15]. In Figure 1 and the other frontier plots presented in Section 3.2,
the DMC optimal points are plotted as open circles. The DIB and DMC trade-offs are
similar enough that they are sometimes referred to interchangeably [6]: some previous
proposals for solutions to the IB [8] are better described as solutions to the DMC trade-off.
We would like to make this distinction explicit, as we seek to demonstrate the richness of
the DIB frontier over that of the DMC frontier.

1.1.3. Pareto Front Learning

In recent work by Navon et al. [16], the authors define the problem of Pareto Front
Learning (PFL) as the task of discovering the Pareto frontier in a multi-objective optimiza-
tion problem, allowing for a model to be selected from the frontier at runtime. Recent
hypernetwork-based approaches to PFL [16,17] are promising being both scalable and in
principle capable of discovering the entirety of the primal frontier. Although we use a
different approach, our work can be seen as an extension to the existing methods for PFL to
discrete search spaces. Our Pareto Mapper algorithm performs PFL for the task of hard
clustering, and our analysis provides evidence for the tractability of the PFL in this setting.

We also note similarities to the problems of Multi-Task Learning and Multi-Objective
Optimization. The main difference between these tasks and the PFL setup is the ability to
select Pareto-optimal models at runtime. We direct the reader to [16], which provides a
more comprehensive overview of recent work on these related problems.

1.1.4. Motivation and Objectives

Our work is, in spirit, a generalization of [13], which demonstrated a method for
mapping out the primal DIB frontier for the special case of binary classification (i.e., |Y| = 2).
Although we deviate from their assumptions, assuming that X is discrete (rather than
continuous in [13]), and being limited to deterministic encodings (rather than stochastic
ones in [13]), and thus our results are not strictly comparable, our goal of mapping out the
primal Pareto frontier is done in the same spirit.

The most immediate motivation for mapping out the primal Pareto frontier is that its
shape is useful for model selection: given multiple candidate solutions, each being near
the frontier, we would often like to be able to privilege one over the others. For example,
one typically favors the points that are the most robust to input noise, that is, those that
are most separated from their neighbors, appearing as concave corners in the frontier. For
the problem of geometric clustering with the Lagrangian DIB, the angle between piecewise
linear portions of its frontier, known as the “kink angle”, has been proposed as a criterion
for model selection [18]. Using the primal DIB frontier, we can use distance from the
frontier as a sharper criterion for model selection; this is particularly evident in the example
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discussed in Section 3.2.3, where the most natural solutions are clearly prominent in the
primal frontier but have zero kink angle. The structure of this frontier also encodes useful
information about the data. For clustering, corners in this frontier often indicate scales
of interests: those at which the data best resolve into distinct clusters. Determining these
scales is the goal of hierarchical clustering.

Unlike the previously studied case of binary classification [13], no polynomial time
algorithm is known for finding optimal clusterings for general |Y| > 2 [15]. Finding an
optimal solution to the DIB problem (i.e., one point near the frontier) is known to be
equivalent to k-means in certain limits [18,19], which is itself an NP-hard problem [20]:
mapping out the entirety of the frontier is no easier. More fundamentally, the number of
possible encoders is known to grow super-exponentially with |X|; therefore, it is not known
whether we can even hope to store an entire DIB frontier in memory. Another issue is that
of the generalization of the frontier in the presence of sampling noise. Estimation of mutual
information and entropy for finite datasets is known to be a difficult problem with many
common estimators either being biased, having high variance, or both [21–25]. This issue is
of particular significance in our case as a noisy point on the objective plane can mask other,
potentially more desirable, clusterings.

It is these gaps in the optimization of DIB and DIB-like objectives that we seek to
address. Firstly, existing work on optimization concerns itself only with finding a point
on or near the frontier. These algorithms may be used to map out the Pareto frontier, but
they need to be run multiple times with special care taken in sampling the constraint in
order to attain the desired resolution of the frontier. Furthermore, we observe empirically
that almost all of the DIB Pareto frontier is in fact convex. The majority of the existing
algorithms applicable to DIB-like trade-offs optimize the Lagrangian DIB [3,10] and are
therefore unable to capture the complete structure of the DIB frontier. Existing agglomer-
ative methods [8] are implicitly solving for the related but distinct DMC frontier, which
has much less structure than the DIB frontier. Finally, existing methods have assumed
access to the true distribution pXY or otherwise used the maximum likelihood (ML) point
estimators [3,13], which are known to be biased and have high variance for entropy and
mutual information, which can have a significant effect on the makeup of the frontier.

1.2. Roadmap

The rest of this paper is organized as follows. In Section 2, we tackle the issue of finding
the Pareto frontier in practice by proposing a simple agglomerative algorithm capable of
mapping out the Pareto frontier in one pass (Section 2.1) and propose a modification that
can be used to select robust clusterings with quantified uncertainties from the frontier
when the sampling error is significant (Section 2.2). We then present our analytic and
experimental results in Section 3. In Section 3.1, we provide evidence for the sparsity of
the Pareto frontier, giving hope that it is possible to efficiently study it in practice. To
demonstrate our algorithm and build intuition for the Pareto frontier structure, we apply
it to three different DIB optimization problems in Section 3.2: compressing the English
alphabet, extracting informative color classes from natural images, and discovering group–
theoretical structure. Finally, in Section 4, we discuss related results and directions for
future work.

2. Methods

We design our algorithm around two main requirements: firstly, we would like to
be able to optimize the primal objective of Equation (1) directly, thereby allowing us to
discover convex portions of the frontier; secondly, we would like a method that records the
entire frontier in one pass rather than finding a single point with each run. While the task
of finding the exact Pareto frontier is expected to be hard in general, Theorem A1 applied
to Example 1, gives us hope that the size of the Pareto frontier grows at most polynomially
with input size |X|. As is often the case when dealing with the statistics of extreme values,
we expect that points near the frontier are rare and propose a pruned search technique with
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the hope that significant portions of the search space can be pruned away in practice. In the
spirit of the probabilistic analysis provided above, we would like an algorithm that samples
from a distribution that favors near-optimal encoders, thereby accelerating the convergence
of our search. For this reason, we favor an agglomerative technique, with the intuition that
there are good encoders that can be derived from merging the output classes of other good
encoders. An agglomerative approach has the additional benefit of being able to record the
entire frontier in one pass. For these reasons, we propose an agglomerative pruned search
algorithm for mapping the Pareto frontier in Section 2.1. We also describe in Section 2.2 a
modification of the algorithm that can be applied to situations where only a finite number
of samples are available.

2.1. The Pareto Mapper

Our method, dubbed the Pareto Mapper (Algorithm 1), is a stochastic pruned agglom-
erative search algorithm with a tunable parameter ε that controls the search depth. The
algorithm is initialized by enqueuing the identity encoder, f = id, into the search queue.
At each subsequent step (illustrated in Figure 2), an encoder is dequeued. A set containing
all of the Pareto-optimal encoders thus far encountered is maintained as the algorithm
proceeds. All encoders that can be constructed by merging two of the given encoder’s
output classes (there are O(n2) of these) are evaluated against the frontier of encoders seen
so far; we call encoders derived this way child encoders. If a child encoder is a distance
d from the current frontier, we enqueue its children with probability e−d/ε and discard
it otherwise, resulting in a search over an effective length-scale ε from the frontier. The
selection of ε tunes the trade-off between accuracy and search time: ε = 0 corresponds to a
greedy search that does not evaluate sub-optimal encodings, and ε→ ∞ corresponds to a
brute-force search over all possible encodings. As the search progresses, the Pareto frontier
is refined, and we are able to prune a larger majority of the proposed encoders. The output
of our algorithm is a Pareto set of all found Pareto optimal clusterings of the given trade-off.

Figure 2. Illustration of one step in the main loop of the Pareto Mapper (Algorithm 1). For pedagogical
purposes, all possible encoders (filled gray circle) are plotted on the objective plane. The Pareto
optimal points searched so far are marked with open black circles, and the region of the objective
plane they dominate is shaded in gray. The black arrows show neighboring encoders and newly
enqueued encoders are marked by open blue circles; encodings that are optimal with respect to the
current frontier are enqueued with certainty and sub-optimal encodings enqueued with probability
e−d/ε, where d is the distance from the frontier. Note that some Pareto optimal points are only
accessible through sub-optimal encoders (blue arrow).
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The Pareto frontier at any given moment is stored in a data structure, called a Pareto Set,
which is a list of point structures. A point structure, p, contains fields for both objectives p.x,
p.y, and optional fields for storing the uncertainties p.dx, p.dy and encoding function p.f.
The Pareto Set is maintained so that the Pareto-optimality of a point can be checked against
a Pareto Set of size m in Θ(log m) operations. Insertion into the data structure requires in the
worst case Θ(m) operations, which is optimal, as a new point could dominate Θ(m) existing
points necessitating their removal. We define the distance from the frontier as the minimum
Euclidean distance that a point would need to be displaced before it is Pareto-optimal,
which also requires in the worst case Θ(m) operations. A list of pairs (H(Z), I(Z; Y)), sorted
by its first index, provides a simple implementation of the Pareto Set. The pseudocode for
important auxiliary functions such as PARETO_ADD and PARETO_DISTANCE is provided in
Appendix B.

Although we have provided evidence for polynomial scaling of size of the Pareto set, it
is not obvious if the polynomial scaling of the Pareto set translates to the polynomial scaling
of our algorithm, which depends primarily on how quickly the search space can be pruned
away by evaluation against the Pareto frontier. To demonstrate the polynomial scaling of
our algorithm with n, we evaluate the performance of the Pareto Mapper on randomly
generated pXY. Since ε→ ∞ corresponds to a brute-force search, and therefore has no hope
of having polynomial runtime, we focus on the ε→ 0 case; we show later, in Section 3.2.1,
that ε→ 0 is often sufficient to achieve good results. For Figure 3a, we randomly sample
pXY uniformly over the simplex of dimension |X||Y| − 1 varying |X| with fixed |Y| = 30.
We find that the scaling is indeed polynomial. Comparing with the scaling of the size of
the Pareto set shown in Figure 4b, we see that approximately O(n) points are searched for
each point on the Pareto frontier. While the computation time, empirically estimated to be
Θ(n5.0), is limiting in practice, we note that it is indeed polynomial, which is sufficient for
our purposes.

𝛿 ≈ 5.0

γ ≈ 3.0

(a)

slope ≈ 2.7

slope ≈ 2.9

ɛ ≈ 5×10−! ɛ ≈ 5×10−"

(b)

Figure 3. Scaling of computation time (left scale) and points searched (right scale) as a function of
(a) input size n at ε = 0, where we find compute time scales as O(nδ) and the size of the Pareto set
scales as O(nγ); (b) search parameter ε for randomly generated pXY of fixed size.
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slope ≈ 3.9

slope ≈ 2.1

slope ≈ 0.4 slope ≈ 1.0

(a)

γ ≈ 2.5

γ ≈ 2.0

γ ≈ 0.0

γ ≈ 2.1

(b)

Figure 4. Scaling of number of points on the Pareto frontier (a) as a function of N = |S| for bivariate
Gaussian distributed (U, V) with specified correlation r ≡ σUV/σUσV , and (b) for the DIB problem
with input size n where we find |Pareto(S)| = O(nγ).

We also evaluate the scaling of our algorithm with ε. Again, we randomly sample pXY
uniformly over the simplex of dimension |X||Y| − 1, this time fixing |X| = 11 and |Y| = 30,
with results plotted in Figure 3b. We find that the relevant scale for distances is between
ε− ≈ 5× 10−3 and ε+ ≈ 5× 10−2; while the specifics of the characteristic range for ε
depends on the dataset, we empirically find that while ε+ remains constant, ε− decreases
as n increases. This is consistent with the fact that as n increases, the DIB plane becomes
denser, and the average separation between points decreases. This would suggest that
there is an n above which the runtime of the Pareto Mapper exhibits exponential scaling
for any ε > 0. In the absence of noise, one can run the Pareto Mapper at a number of
different values of ε evaluating precision and recall with respect to the combined frontier
to evaluate convergence (see Figure 8b). We discuss how to set ε in the presence of noise
due to sampling in Section 3.2.1.

2.2. Robust Pareto Mapper

So far, we have assumed access to the true joint distribution pXY. Normally, in practice,
we are only provided samples from this distribution and must estimate both objective func-
tions, the mutual information I(Z; Y) and entropy H(Z), from the empirical distribution
p̂XY. Despite the uncertainty in these estimates, we would like to find clusterings that
are Pareto optimal with respect to the true distribution. Here, we propose a number of
modifications to Algorithm 1 that allow us to quantify our uncertainty about the frontier
and thereby produce a frontier that is robust to sampling noise. The modified algorithm,
dubbed the Robust Pareto Mapper (Algorithm 2), is described below.

Given samples from the joint distribution, we construct the empirical joint distribution
and run the Pareto Mapper (Algorithm 1) replacing the entropy and mutual information
functions with their respective estimators. We use the entropy estimator due to Nemenman,
Shafee, and Bialek (NSB) [21], as it is a Bayesian estimator that provides not only a point
estimate but also provides some bearing on its uncertainty, although another suitable esti-
mator can be substituted. We find that our method works well even with point estimators,
in which case resampling techniques (e.g., bootstrapping) are used to obtain the uncertainty
in the estimate. After running the Pareto Mapper, points that are not significantly different
from other points in the Pareto set are removed. This filtering operation considers points in
order of ascending uncertainty, as measured by the product of its standard deviations in
H(Z), and I(Z; Y). Subsequent points are added as long as they do not overlap with the
confidence interval in either H or I with a previously added point, and they are removed
otherwise. There is some discretion in choosing the confidence interval, which we have
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chosen empirically to keep the discovered frontier robust between independent runs. This
filtering step is demonstrated in Section 3.2.1.

Algorithm 2 Robust Pareto Mapper: dealing with finite data
Input: Empirical joint distribution p̂XY, search parameter ε, and sample size S
Output: Approximate Pareto frontier P with uncertainties

1: procedure ROBUST_PARETO_MAPPER(p̂XY, ε)
2: Pareto Set P← PARETO_MAPPER( p̂XY, ε) . Run PARETO_MAPPER with suitable

estimators
3: Pareto Set P′ = ∅ . Initialize set of robust encoders
4: for p ∈ P do . This step can be skipped if an interval estimator is used above
5: (p.dx, p.dy)← RESAMPLE(p, p̂XY) . Store uncertainty of points on frontier
6: for p ∈ P in ascending order of uncertainty do
7: if p is significantly different than all q ∈ P′ then
8: P′ ← PARETO_ADD(p, P′) . Filter with preference for points with low

variance
return P′

3. Results
3.1. General Properties of Pareto Frontiers

Before introducing the specifics of the DIB problem, we would like to understand a
few general properties of the Pareto frontier. The most immediate challenge we face is the
size of our search space. For an input of size |X|, the number of points on the DMC frontier
is bounded by |X|, but there is no such limit on the DIB frontier. Given the combinatorial
growth of the number of possible clusterings with |X|, it is not immediately clear that it is
possible to list all of the points on the frontier, let alone find them. If we are to have any
chance at discovering and specifying the DIB frontier, it must be that DIB-optimal points
are sparse within the space of possible clusterings, where sparse is taken to mean that the
size of the frontier scales at most polynomially with the number of items to be compressed.

In this section, we provide sufficient conditions for the sparsity of the Pareto set
in general and present a number of illustrative examples. We then apply these scaling
relationships to the DIB search space and provide numerical evidence that the number of
points grows only polynomially with n ≡ |X| for most two-objective trade-off tasks.

3.1.1. Argument for the Sparsity of the Pareto Frontier

First, we will formally define a few useful terms. Let S = {~si}N
i=1 be a sample of N

independent and identically distributed (i.i.d.) bivariate random variables representing
points ~si = (Ui, Vi) in the Pareto plane.

Definition 1. A point (U, V) ∈ S is maximal with respect to S, or equivalently called Pareto-
optimal, if ∀(Ui, Vi) ∈ S, Vi > V =⇒ Ui > U. In other words, a point is maximal with respect to
S if there are no points in S both above and to its left (in our picture with the horizontal axis flipped).

Definition 2. For a set of points S ⊂ R2, the Pareto set Pareto(S) ⊆ S is the largest subset of S
such that all (U, V) ∈ Pareto(S) are maximal with respect to S.

Now, we can state the main theorem of this section, which we prove in Appendix A.

Theorem 1. Let S = {(Ui, Vi)}N
i=1 be a set of bivariate random variables drawn i.i.d. from a

distribution with Lipschitz continuous CDF F(u, v), and invertible marginal CDFs FU , FV . Define
the region

RN ≡
{
(u, v) ∈ [0, 1]× [0, 1] : u + v− C(u, v) ≥ e−

1
N

}
(3)
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where C(u, v) denotes the copula of (Ui, Vi), which is the function that satisfies F(u, v) =
C(FU(u), FV(v)).

Then, if the Lebesgue measure of this region λ(RN) = Θ
(

`(N)
N

)
as N → ∞, we have

E
[
|Pareto(S)|

]
= Θ(`(N)).

Example 1. Let us consider the case of independent random variables with copula C(u, v) = uv.

Note that in this case, the level curves u + v− C(u, v) = e−
1
N are given by v = e−

1
N −u

1−u . We can
then integrate to find the area of the region RN

λ(RN) = 1−
∫ e−

1
N

0

e−
1
N − u

1− u
du = e−1/n

(
1− e1/n

)(
log
(

1− e−1/n
)
− 1
)

(4)

Expanding for large N, we find that λ(RN) =
log N

N + O(N−1). We see that this satisfies the
conditions for Theorem A1 with `(N) = log N, giving ES

[
|Pareto(S)|

]
= Θ(log N).

Additional examples can be found in Appendix A. Numerically, we see that for
independent random variables U and V, the predicted scaling holds even down to relatively
small N; furthermore, the linear relationship also holds for correlated Gaussian random
variables U, V (Figure 4a). The logarithmic sparsity of the Pareto frontier allows us to
remain hopeful that it is possible, at least in principle, to fully map out the DIB frontier
for deterministic encodings of discrete domains despite the super-exponential number of
possible encoders.

3.1.2. Dependence on Number of Items |X|
The analysis above gives us hope that Pareto-optimal points are generally polyloga-

rithmically sparse in N ≡ |S|, i.e., |Pareto(S)| = O((log N)γ). Of course, the scenario with
which we are concerned is one where the random variables U = −H(Z) and V = I(Z; Y);
the randomness of U and V in this case comes from the choice of encoder f : X → Z
which, for convenience, we assume is drawn i.i.d. from some distribution over the space
of possible encodings. Note that conditioned on the distribution of X and Y, the points
(H( f (X)), I( f (X); Y)) are indeed independent, although the agglomerative method we
use to sample from the search space introduces dependence; however, in our case, this
dependence likely helps the convergence of the algorithm.

In the DIB problem, and clustering problems more generally, we define n ≡ |X| to
be the size of the input. The search space is over all possible encoders f : X → Z, which
has size N = B(n) where B(n) are the Bell numbers. Asymptotically, the Bell numbers
grow super-exponentially: ln B(n) ∼ n ln n− n ln ln n, making an exhaustive search for
the frontier intractable. We provide numerical evidence in Figure 4b that the sparsity
of the Pareto set holds in this case, with its size scaling as O(poly(n)), or equivalently,
O(polylog(N)). While in the worst case, all Bn clusterings can be DIB-optimal (the case
where (pXY)ij = diag(~r) for ri drawn randomly from the (n − 1)-dimensional simplex
results in clusterings with strict negative monotonic dependence on the DIB plane, and
therefore all points are DIB-optimal, see Appendix A), our experiments show that in
practice, the size of the Pareto frontier (and compute time) grows polynomially with the
number of input classes n (Figure 3), with the degree of the polynomial depending on the
details of the joint distribution p(x, y). This result opens up the possibility of developing a
tractable heuristic algorithm that maps out the Pareto frontier, which we will explore in the
remainder of this paper.

3.2. At the Pareto Frontier: Three Vignettes

The purpose of this section is to demonstrate our algorithm and illustrate how the
primal DIB frontier can be used for model selection and to provide additional insights
about the data. To this end, we apply our algorithm to three different DIB optimization
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tasks: predicting each character from its predecessor in the English text, predicting an
object from its color, and predicting the output of a group multiplication given its input.
In all cases, the goal is to find a representation that retains as much predictive power as
possible given a constraint on its entropy. We will describe the creation of each dataset and
motivate its study. For all three tasks, we discuss the frontier discovered by our algorithm
and highlight informative points on it, many of which would be missed by other methods
either because they are not DMC-optimal or because they lie within convex regions of the
frontier. For the task of predicting the subsequent English character, we will also compare
our algorithm to existing methods including the Blahut–Arimoto algorithm, and a number
of geometric clustering algorithms; we will also use this example to demonstrate the Robust
Pareto Mapper (Algorithm 2).

3.2.1. Compressing the English Alphabet

First, we consider the problem of compressing the English alphabet with the goal of
preserving the information that a character provides about the subsequent character. In this
case, we collect 2-gram statistics from a large body of English text. Treating each character
as a random variable, our goal is to map each English character X into a compressed version
Z while retaining as much information as possible about the following character Y.

Our input dataset is a 27× 27 matrix of bigram frequencies for the letters a–z and the
space character, which we denote “_” in the figures below. We computed this matrix from
the 100 Mb enwiki8 (http://prize.hutter1.net/ (accessed on 15 February 2020)) Wikipedia
corpus after removing all symbols except letters and the space character, removing diacritics,
and making all letters lower-case.

The Pareto frontier is plotted in Figure 5 and the points corresponding to some interest-
ing clusterings on the frontier are highlighted. We find that from 2-gram frequencies alone,
the DIB-optimal encodings naturally discover relevant linguistic features of the characters,
such as their grouping into vowels and consonants.

Figure 5. The primal DIB frontier of the English alphabet is compressed to retain information about
the subsequent character. Points in the shaded gray region, indicating the convex hull, are missed
by optimization of the DIB Lagrangian. Encodings corresponding to interesting features of the
frontier are annotated, and DMC-optimal points are circled. Dotted vertical lines mark the location
of balanced clusters (i.e., H(Z) = log2 k for k ∈ {2, 3, . . .}), and solid vertical lines correspond to the
entropy of the DMC-optimal encodings. A sample of encodings drawn uniformly at random for each
|Z| is evaluated on the plane, illustrating the large distance from the frontier for typical points in the
search space. The color indicates |Z|.

http://prize.hutter1.net/
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The DMC-optimal encoding corresponding to a cluster size of k = 2 is nearly balanced
(i.e., H(Z) = log2 2) and separates the space character and the vowels from most of the
consonants. However, in contrast to the binary classification case of |Y| = 2 studied in [13],
the DMC-optimal encodings are far from balanced (i.e., H(Z) ≈ log2(k)) for larger k. We
note that on the DIB frontier, the most prominent corners are often not the DMC-optimal
points, which are circled. By looking at the corners and the DMC-optimal points near the
corners, which are annotated on the figure, we discover the reason for this: distinguishing
anomalous letters such as ‘q’ has an outsized effect on the overall information relative to its
entropy cost. These features are missed when looking only at DMC-optimal points, because
although the 2-gram statistics of ‘q’ are quite distinct (it is almost always followed by a
‘u’), it does not occur frequently enough to warrant its own cluster when our constraint is
cluster count rather than entropy. In other words, ‘q‘ is quite special and noteworthy, and
our Pareto plot reveals this while the traditional DMC or DIB plots do not.

The frontier is seen to reveal features at multiple scales, the most prominent corner
corresponding to the encoding that separates the space character, ‘_’, from the rest of the
alphabet, and the separation of the vowels from (most of the) consonants. The separation
of ‘q‘ often results in a corner of a smaller scale because it is so infrequent. These corners
indicate the natural scales for hierarchical clustering. We also note that a large majority of
the points, including those highlighted above, are below the convex hull (denoted by the
solid black line) and are therefore missed by algorithms that optimize the DIB Lagrangian.

A random sample of clusterings colored by |Z| is also plotted on the DIB plane in
Figure 5; a sample for each value of |Z| = {1, . . . , |X|} is selected uniformly at random. We
see that there is a large separation between the typical clustering, sampled uniformly at
random, and the Pareto frontier, indicating that a pruned search based on the distance from
the frontier, such as the Pareto Mapper of Algorithm 1, is likely able to successfully prune
away much of the search space. A better theoretical understanding of the density could
provide further insights on how the runtime scales with ε.

We now compare the results of the Pareto Mapper (Algorithm 1) with other clustering
methods. We first use the Pareto Mapper with ε = 0 to derive a new dataset from the
original alphabet dataset (which has |X| = 27) by taking the |Z| = 10 clustering with the
highest mutual information. We are able to obtain a ground truth for this new dataset with
|X| = 10 using a brute force search, against which we compare the other methods. These
methods are compared on the DIB plane in Figure 6 and in tabular form in Table 1. Notably,
all the encodings found by the Blahut–Arimoto algorithm used in [2,3] are DIB-optimal,
but as it optimizes the DIB Lagrangian, it is unable to discover the convex portions of
the frontier. We also compare our algorithm to geometric clustering methods where we
assign clusters pairwise distances according to the Jensen–Shannon distances between the
conditional distributions p(Y|X = xi). These methods perform poorly when compared on
the DIB plane for a number of reasons: firstly, some information is lost in translation to
a geometric clustering problem, since only pairwise distances are retained; secondly, the
clustering algorithms are focused on minimizing the number of clusters and are therefore
unable to find more than n points. Additionally, these geometric clustering algorithms,
while similar in spirit, are not directly optimizing the DIB objective.
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Figure 6. Comparison of the Pareto Mapper and other classification algorithms with ground truth for
|X| = 10. The true Pareto frontier is calculated with a brute force search over all B(10) = 115, 975
clusterings f .

Table 1. Comparison of the performance of Algorithm 1 with other clustering algorithms. Here, a
true positive (TP) is a point that is correctly identified as being Pareto optimal by a given method;
false positives (FP) and false negatives (FN) are defined analogously.

Method Points TP FP FN Precision Recall

Ground truth (ε→ ∞) 94 94 0 0 1.00 1.00
Pareto Mapper (ε = 10−2) 94 94 0 0 1.00 1.00

Pareto Mapper (ε = 0) 91 88 3 6 0.97 0.94

Hierarchical (average) 10 7 3 87 0.70 0.07
Hierarchical (single) 10 10 0 84 1.00 0.11
Hierarchical (Ward) 10 7 3 87 0.70 0.07

k-means (JSD) 10 3 7 91 0.30 0.02
k-means (wJSD) 10 2 8 92 0.20 0.10

Blahut Arimoto 9 9 0 85 1.00 0.10

To demonstrate the Robust Pareto Mapper (Algorithm 2), we create a finite sample
n̂XY = sp̂XY from a multinomial distribution with parameter pXY and s trials. To quantify
the sample size in natural terms, we define the sampling ratio r ≡ s/2H(X,Y). The results of
the Robust Pareto Mapper on the alphabet dataset for several sampling ratios are shown
in Figure 7. We note that even for relatively low sampling ratios, the algorithm is able to
extract interesting information; it is able to quickly separate statistically distinct letters such
as ‘q’ and identify groups of characters such as vowels. As the sampling ratio increases,
the Robust Pareto Mapper identifies a larger number of statistically significant clusterings
(marked in red) from the rest of the discovered frontier (marked in gray). It is also notable
that uncertainties in the entropy are typically lowest for encodings that split X into roughly
equally probably classes; that these clusters are preferred is most readily seen in the
highlighted clustering with H(Z) ≈ 1 in Figure 7b. We can see from these plots that,
especially for low sampling ratios, the estimated frontier often lies above that of the true
pXY (solid black line). This is expected, as estimators for mutual information are often
biased high. Despite this, the true frontier is found to lie within our estimates when the
variance of the estimators is taken into account even for modest sampling ratios, as seen in
the plot for r = 4.
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𝑟 = 1

(a)

𝑟 = 4

(b)

𝑟 = 25

(c)

Figure 7. The optimal frontier discovered by the Robust Pareto Mapper at various sampling ratios.
The points corresponding to robust clusterings selected by the algorithm are highlighted in red, with
the rest in gray. The true frontier is shown in solid black.

Finally, we would like to comment on choosing the parameter ε in Algorithms 1 and 2
when working with limited sample sizes. The uncertainty in the frontier due to finite
sampling effects naturally sets a scale for choosing ε. Ideally, we want the two length
scales—that given by ε, and that due to the variance in the estimators—to be comparable.
This ensures that we are not wasting resources fitting sampling noise. Evaluating the
performance as a function of sample size and epsilon, we see that often, sample size is the
limiting factor even up to significant sampling ratios, and often, a small ε is often sufficient.
This is demonstrated in Figure 8, where it can be seen that performance is good even with
small ε, and increasing ε does not result in a more accurate frontier until the sampling ratio
is greater than r ≈ 5× 104. In practice, determining the appropriate ε can be accomplished
by selecting different holdout sets, and running the algorithm at a given ε in each case;
when ε is chosen appropriately, the resulting Pareto frontier should not vary significantly
between the runs.

ɛ ≈ 5×10!

(a)

ɛ ≈ 7×10−3

(b)

Figure 8. Performance as a function of (a) sample size, and (b) ε. The precision and recall are
measured relative to the true frontier obtained by a brute force search on the true distribution.
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3.2.2. Naming the Colors of the Rainbow

Human languages often have a small set of colors to which words are assigned, and
they remarkably often settle on similar linguistic partitions of the color space despite
cultural and geographic boundaries [26]. As our next example, we apply our method to the
problem of optimally allocating words to colors based on the statistics of natural images.
In order to cast this as a DIB-style learning problem, we consider the goal of being able
to identify objects in natural images based solely on color: the variable we would like to
predict, Y, is therefore the class of the object (e.g., apple or banana). The variable we would
like to compress, X, is the average color of the object. The Pareto-optimal classifiers are
those that, allotted limited memory for colorative adjectives, optimally draw the boundaries
to accomplish the task of identifying objects. We demonstrate some success in discovering
different color classes, relate it to those typically found in natural languages, and discuss
shortcomings of our method.

We create a dataset derived from the COCO dataset [27], which provides a corpus of
segmented natural images with 91 object classes. There are a number of challenges we
immediately face in the creation of this dataset, which require us to undertake a number
of preprocessing steps. Firstly, using standard RGB color values, with 8 bits per channel,
leaves over 16 million color classes to cluster, which is not feasible using our technique.
Secondly, RGB values contain information that is not relevant to the task at hand, as they
vary with lighting and image exposure. Thus, we turn to the HSV color model and use only
the hue value (since hue is a circular quantity, we use circular statistics when discussing
means and variances), which we refer to as the color of the object from now on. This leaves
256 values which are further reduced by contiguous binning so that each bin has roughly
equal probability in order to maximize the entropy of X. After this preprocessing, we are
left with an input of size |X| = 30. Another challenge we face is that there are often cues in
addition to average color when performing object identification such as color variations,
shape, or contextual understanding of the scene; in order to obtain the cleanest results, we
retain only those classes that could reasonably be identified by color alone. Specifically, for
the roughly 800,000 image segments from the approximately 100,000 images we considered
in the COCO dataset, we calculate the average color of each segment and keep only the 40%
with the most uniform color as measured by the variance of the hue across the segment;
then, looking across classes, we keep only those that are relatively uniform on the average
color of its instances, keeping approximately the most uniform 20% of classes. We are
left with a dataset of approximately 80,000 objects across |Y| = 18 classes, predictably
including rather uniformly colored classes such as apples, bananas, and oranges. We chose
these cutoff percentiles heuristically to maximize the predictive power of our dataset while
maintaining a sizable number of examples.

The Pareto frontier for this dataset is shown in Figure 9. A number of DMC-optimal
points are circled, and their respective color palettes are plotted below in descending order
of likelihood. First, we note that the overall amount of relevant information is quite low,
with a maximum I(X; Y) ≈ 0.12, indicating that despite our preprocessing efforts, color is
not a strong predictor of object class. Unlike the other Pareto frontiers considered, there are
a few prominent corners in this frontier, which is a sign that there is no clear number of
colors to best resolve the spectrum. For the first few DMC-optimal clusterings, the colors
fall broadly into reddish-purples, greens, and blues. This is somewhat consistent with the
observation that languages with limited major color terms often settle for one describing
warm colors and one describing colder colors [26].
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Figure 9. Pareto frontier of color data. A representative color patch for each cluster is shown below
select points sorted by likelihood. The saturation of the patch represents the likelihood-weighted
variance of the colors mapped to the class.

Overall, the results are not conclusive. We will address a few issues with our method
and discuss how it might be improved. Firstly, as noted by [26], the colors present in human
languages often reflect a communicative need and therefore should be expected to depend
strongly on both the statistics of the images considered and also the prediction task at hand.
Since the COCO dataset was not designed for the purpose of learning colors, classes had
color outliers, despite our preprocessing efforts, which reduced the classification accuracy
by color alone. Using color as a predictor of the variety of an apple or as a predictor of the
ripeness of a banana might yield better results (see Figure 10); indeed, these tasks might be
more reflective of the communicative requirements under which some human languages
developed [26]. Due to the scarcity of relevant datasets, we have not attempted to address
these subtleties.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Examples of correctly (a,b) and incorrectly (c,d) identified apples; and correctly (e,f)
and incorrectly (g,h) identified bananas from the filtered COCO dataset using the best discovered
five-bin clustering.

Another issue, more fundamental to the DIB algorithm, is that DIB is not well suited
for the compression of domains of a continuous nature. The DIB trade-off naturally favors a
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discrete domain, X, without a measure of similarity between objects in X. Unlike the other
examples considered, the space of colors is inherently continuous: there is some notion
of similarity between different hues. One weaknesses of the DIB trade-off is that it does
not respect this natural notion of closeness and it is as likely to map distant hues together
as it is ones that are close together. This is undesirable in the case of the color dataset, as
we would ideally like to map contiguous portions of the color space to the same output.
Other objectives, such as the IB or a multidimensional generalization of [13], may be more
suitable in cases where the domain is of a continuous nature.

3.2.3. Symmetric Compression of Groups

For our final example, we turn our attention to a group–theoretic toy example illustrat-
ing a variation on the compression algorithm so far considered which we call “symmetric
compression.” We consider a triplet of random variables (X1, X2, Y), each taking on val-
ues in the set G with the special property that G forms a group under the binary group
operation ‘·’. We could apply Algorithm 1 directly to this problem by setting X = (X1, X2),
but this is not ideal, as it does not make use of the structure we know the data to have
and as a result needlessly expands our search space. Instead, we make the slight mod-
ification, detailed in Appendix C, where we apply the same clustering to both inputs,
Z = ( f (A), f (B)). We would like to discover an encoding f that trades off the entropy
of the encoding with the ability to predict Y from ( f (X1), f (X2)). We expect that the DIB
frontier encodes information about the subgroups of the group G, but we also expect to
find points on the frontier corresponding to near-subgroups of G.

We consider two distributions. The first consists of the sixteen integers that are co-
prime to 40, i.e., {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}, which for a multiplicative
group modulo 40 denoted (Z/40Z)×. The second is the Pauli group G1, whose elements are
the sixteen 2× 2 matrices generated by the Pauli matrices under matrix multiplication: they
are the identity matrix I and Pauli matrices X, Y, Z, each multiplied by ±1 and ±i. These
groups are chosen as they both have order 16 but are otherwise quite different; notably,
(Z/40Z)× is abelian while G1 is not. The joint probability distribution is defined as follows
for each group G: we take (X1, X2) to be distributed uniformly over G2 and Y = X1 · X2.
The distribution pX1X2Y is given as input to the symmetric Pareto Mapper (Algorithm A4).

The resultant frontiers are shown in Figure 11. As expected, the subgroups are readily
identified in both cases, as seen the in circled points on the frontier with entropy H(Z) = 1,
H(Z) = 2, and H(Z) = 3, corresponding to subgroups of size 2, 4, and 8, respectively. In
this example, we also see that the clusterings corresponding to the subgroups saturate the
feasibility bound of I(Z; Y) = H(Z), indicating that at these points, all the information
captured in Z is relevant to Y. At these points, the encoding effectively identifies a subgroup
H ≤ G and retains information only about which of the |G|/|H| cosets an element belongs
to; as it retains the identity of the cosets of X1 and X2 in Z1 and Z2, it is able to identify the
coset of the output Y, thereby specifying Y to log2

|G|
|H| bits. These clearly desirable solutions

show up prominently in the primal DIB frontier, yet their prominence is not evident on the
frontier of the Lagrangian DIB—notably having zero kink angle as defined by [18].

In addition to the points corresponding to identified subgroups, a number of inter-
mediary points have also been highlighted showing ‘near-subgroups’, where, allotted a
slightly larger entropy budget, the encoder can further split cosets apart in such a way
that partial information is retained. Interestingly, despite being very different groups, they
have identical Pareto frontiers. This is because they both have subgroups of the same
cardinality, and the entropy and relevant information of these encodings is agnostic to the
group theoretic details and concerns itself only with the ability to predict the result of the
group operation.
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(a) (b)

Figure 11. Discovered frontier of the (a)
(
Z/40Z

)× group and (b) the non-abelian Pauli group. Both
groups have identical frontiers despite having different group structures.

4. Discussion

We have presented the Pareto Mapper algorithm, which computes the optimal trade-
off between parsimony and performance for lossy data compression. By applying it to
examples involving linguistics, image colors and group theory, we have demonstrated
the richness of the DIB Pareto frontier that customarily lies hidden beneath the convex
hull. Our English alphabet example revealed features at multiple scales and examples of
what the frontier structure reveals about the data, and we demonstrated a modification
to our algorithm that can aid model selection given significant sampling noise. Notably,
we showed how the prominence of a point on the primal frontier can be a sharper tool for
model selection than existing measures on the Lagrangian DIB frontier; for example, for our
group theory examples, it outperformed the kink-angle method for model selection, which
only gave kink angles of zero. Our datasets and implementation of the presented methods
are freely available on GitHub (https://github.com/andrewktan/pareto_dib (accessed on
15 April 2022)).

Our result helps shed light on recently observed phases transitions. Recent work has
shown that learning phase transitions can occur when optimizing two-objective trade-offs
including the (D)IB [28–31] and β-VAEs [32]. In these cases, it is found that the performance
of the learned representation makes discontinuous jumps as the trade-off parameter β is
varied continuously. Such phase transitions can be readily understood in terms of the
primal Pareto frontier of the trade-off: methods that optimize the Lagrangian DIB are only
able to capture solutions on the convex hull of objective plane; as the Pareto frontier is
largely convex, methods that optimize the Lagrangian exhibit will discontinuous jumps
when the trade-off parameter β (which corresponds to the slope of a tangent to the frontier)
is varied. This is analogous to the way first-order phase transitions in statistical physics
arise, where it is the closely related Legendre–Fenchel dual that is minimized.

We would like to emphasize that, going beyond the IB framework, our basic method
(Section 2.1) is generally applicable to a large class of two-objective optimization problems,
including general clustering problems. Specifically, our method can be adapted for two-
objective trade-offs with the following properties: a discrete search space; a frontier that,
for typical datasets, grows polynomially with the input size |X|; and a notion of relatedness
between objects in the search space (e.g., for the DIB problem, new encodings can be derived
from existing ones by merging its output classes), which allows for an agglomerative search.

https://github.com/andrewktan/pareto_dib
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The modification (Section 2.2) can also be adapted given suitable estimators for other
two-objective trade-offs.

Outlook

There are many opportunities to further improve our results both conceptually and
practically. To overcome the limitations we highlighted with our image color dataset, it
will be interesting to generalize our work and [13] to compressing continuous variables
potentially with trade-offs such as the IB. While our evidence for the polynomial scaling
of the size of the Pareto frontier is likewise applicable to other trade-offs of this sort, the
runtime of our algorithm depends heavily on how quickly the search space can be pruned
away and therefore is not guaranteed to be polynomial. Here, there is ample opportunity
to tighten our analysis of the algorithmic complexity of finding the DIB frontier and on the
scaling of generic Pareto frontiers.

Proofs aside, it will also be interesting to optimize the algorithm runtime beyond
simply showing that it is polynomial. Although we have demonstrated the polynomial
scaling of our algorithm for realistic datasets, the polynomial is of a high degree for our
implementation, placing limits of |X| ≤ 50 in practice. There are fundamental lower
bounds on the runtime set by the scaling of the Pareto set, which we have shown in
Figure 4b to be approximately O(n2.1) for realistic datasets; however, there is likely to be
some room for reducing the runtime by sampling clusterings from a better distribution.
Another opportunity for improvement is increasing the speed at which a given point can
be evaluated on the objective plane, which is evidenced by the gap between the runtime,
approximately O(n5.0), and the number of points searched, O(n3.0) (Figure 3a).

While our method is only applicable to trade-offs over discrete search spaces, the
Pareto frontier over continuous search spaces can also fail to be (strictly) concave. For
example, the inability for the Lagrangian formulation of the (D)IB to explore all points
on the trade-off has previously been studied in [12]. They propose a modification to
the (D)IB Lagrangian that allows for the exploration of parts of the frontier that are not
strictly concave. An interesting direction for future work is to study whether a similar
modification to the Lagrangian can be used to discover the convex portions of similar trade-
offs, including those over discrete spaces. Another direction for future work is to compare
the primal DIB frontier with solutions to the IB; while solutions to the DIB Lagrangian often
perform well on IB plane [3], it is an open question whether the solutions to the primal
DIB perform favorably. Finally, as pointed out by a helpful reviewer, the dual problem
corresponding to the primal problem of Equation (1), being a convex optimization problem,
is also an interesting direction for future study.

We would also like to note that Pareto-pruned agglomerative search is a generic
strategy for mapping the Pareto frontiers of two-objective optimization problems over
discrete domains. The Pareto Mapper algorithm can also be extended to work in multi-
objective settings given an appropriate implementation Pareto set in higher dimensions. We
conjecture that the poly-logarithmic scaling of the Pareto set holds in higher dimensions as
well. Extending this work to multi-objective optimization problems is another interesting
direction for future work.

In summary, multi-objective optimization problems over discrete search spaces arise
naturally in many fields from machine learning [3,10,18,19,33–35] to thermodynamics [36]
and neuroscience [37]. There will therefore be a multitude of interesting use cases for further
improved techniques that map these Pareto frontiers in full detail, including concave parts
that reveal interesting structure in the data.
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Appendix A. Proof of Pareto Set Scaling Theorem

As discussed in Section 3.1, the performance of our algorithm depends on the size of
the Pareto frontier. In the paper, we provide experimental evidence for the polynomial
scaling of the DIB Pareto frontier of a variety of datasets. In this appendix, we will prove
Theorem A1, which provides sufficient conditions for the sparsity of the Pareto frontier and
apply it to a number of examples.

As in Section 3.1, let S = {(Ui, Vi)}N
i=1 be a sample of N i.i.d. bivariate random

variables having joint cumulative distribution FUV(u, v). Further, let RS,U(Ui) and RS,V(Vi)
be the marginal rank statistics of U and V, respectively, with respect to S; that is, Ui is the
RS,U(Ui)

th smallest U-value in S and likewise for V. Ties can be broken arbitrarily. We will
often drop the subscripts on RS,U and RS,V when it is clear by context.

Definition A1. Given a permutation σ : [N] → [N] where [N] ≡ {1, . . . , N}, we call i a
sequential minimum if j < i⇒ σ(j) > σ(i).

We would now like to show that the marginal rank statistics S are sufficient for
determining membership in Pareto(S), which we formalize in Lemma A1.

Lemma A1. Let σU(i) = R(Ui) and σV(i) = R(Vi). An element (Ui, Vi) ∈ S is maximal if and
only if its rank, i, is a sequential minimum of σU ◦ σV .

Proof. ( =⇒ ) Assume (Ui, Vσ(i)) ∈ S is maximal. For any other point (uj, vσ(j)) ∈ S, i 6= j,
if j < i⇒ ui < uj, then vσ(i) > vσ(j) by definition of maximality, which implies σ(j) > σ(i),
showing that i is a sequential minimum of σ.

( ⇐= ) For (ui, vσ(i)) ∈ S such that i is a sequential minimum of σ. For any other
point (uj, vσ(j)) ∈ S, i 6= j, either i < j ⇒ ui > uj showing that (ui, vσ(i)) is maximal, or
j > i ⇒ σ(j) > σ(i) by definition of a sequential minimum, which implies vσ(i) > vσ(j)
showing that (ui, vσ(i)) is maximal.

Corollary A1. Membership in the Pareto set is invariant under strictly monotonic transformations
of U or V.

Proof. Strictly monotonic transformations leave the rank statistics unchanged and therefore
also do not affect membership in the Pareto set by Lemma A1.

We now turn to the main result of this Appendix: the proof of Theorem A1, which is
restated here for convenience.

Theorem A1. Let S = {(Ui, Vi)}N
i=1 be a set of bivariate random variables drawn i.i.d. from a

distribution with Lipschitz continuous CDF F(u, v), and invertible marginal CDFs FU , FV . Define
the region

RN ≡
{
(u, v) ∈ [0, 1]× [0, 1] : u + v− C(u, v) ≥ e−

1
N

}
(A1)
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where C(u, v) denotes the copula of (Ui, Vi), which is the function that satisfies F(u, v) =
C(FU(u), FV(v)).

Then, if the Lebesgue measure of this region λ(RN) = Θ
(

`(N)
N

)
as N → ∞, we have

E
[
|Pareto(S)|

]
= Θ(`(N)).

Proof. Since the marginal CDFs are invertible by assumption and therefore strictly mono-
tonic, Corollary A1 allows us to consider instead U′i = FU(Ui) and V′i = FV(Vi) with the
promise that Pareto(S′) = Pareto(S) where S′ ≡ {(U′i , V′i }. Note that FU′(u′) = u′ and
FV′(v′) = v′, and therefore without loss of generality, we can assume FU and FV are uniform
distributions over the interval [0, 1] dropping the prime notation. This allows us to identify
the copula with the joint CDF C(FU(u), FV(v)) = C(u, v) = F(u, v).

Let 1A(x) denote the indicator function of a set A: taking the value 1 for x ∈ A
and 0 otherwise. Then, ES

[
|Pareto(S)|

]
= ES

[
∑N

i=1 1Pareto(S)(Ui, Vi)
]
. Making use of the

linearity of expectation and noting that (Ui, Vi) are drawn i.i.d., we can write

ES
[
|Pareto(S)|

]
= NES

[
1Pareto(S)(U1, V1)

]
(A2)

Note that E
[
1Pareto(S)(u, v)

]
= (1− Pr[U > u, V > v])N = (u + v− C(u, v))N , which fol-

lows from the definition of Pareto optimality. For convenience, we define
Ĉ(u, v) ≡ u + v− C(u, v) yielding

ES
[
|Pareto(S)|

]
=
∫ 1

0

∫ 1

0
N f (u, v)Ĉ(u, v)N−1dudv (A3)

Take fmax to be the maximum value f achieves over the domain, we are guaranteed
fmax < ∞ as C is Lipschitz by assumption. Therefore

ES
[
|Pareto(S)|

]
≤ N fmax

∫ 1

0

∫ 1

0
Ĉ(u, v)N−1dudv (A4)

Now, define ĈN , which is equal to Ĉ in the region RN and 0 otherwise. We also define the
region

R′N ≡
{
(u, v) ∈ [0, 1]× [0, 1] : e−

1+2 log N
N ≤ Ĉ(u, v) < e−

1
N

}
(A5)

We now split the integral over [0, 1]2 into three disjoint parts∫ 1

0

∫ 1

0
Ĉ(u, v)N−1dudv =

∫
RN

ĈN(u, v)N−1dudv +
∫

R′N
Ĉ(u, v)N−1dudv +

∫
[0,1]2\RN∪R′N

Ĉ(u, v)N−1dudv (A6)

The integrand of the final term is bounded by e− log(N)+O(1) = O(N−1) and λ([0, 1]2 \ RN ∪
R′N) = Θ(1); therefore, this term goes to 0 as N → ∞. Now, we turn to the middle term on
the right-hand side. Since C is 2-non-decreasing and Lipschitz, we have that the measure

of the set λ(R′N) = Θ
(

e−
1
N − e−

1+2 log N
N

)
= Θ

(
log N

N

)
, Ĉ(u, v) < e−

1
N in the region R′N by

definition, and therefore, the second term goes to 0 as N → ∞. Since there is always at least
one point on the Pareto frontier, the first term must be Ω(1), and the integral is dominated
by the portion over RN . Equivalently,∫ 1

0

∫ 1

0
Ĉ(u, v)N−1dudv ∼

∫ 1

0

∫ 1

0
ĈN(u, v)N−1dudv (A7)

Further,∫ 1

0

∫ 1

0
NCN(u, v)N−1dudv ≤ N

∫ 1

0

∫ 1

0
1RN (u, v)dudv = Nλ(RN) = `(N) (A8)
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Following the chain of inequalities and asymptotic equivalences, we arrive at the desired
result ES

[
|Pareto(S)|

]
= Θ(`(N)).

We now apply Theorem A1 to a few illustrative examples.
The Fréchet–Hoeffding copulae, W and M, are extremal in the sense that, written in

two dimensions, any copula C must satisfy W(u, v) ≤ C(u, v) ≤ M(u, v), ∀(u, v) ∈ [0, 1]2;
where W(u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v). W and M correspond to
complete negative and positive monotonic dependence, respectively.

Example A1 (Fréchet–Hoeffding lower bound). First, let us consider the scaling of the Pareto of
a distribution with extremal copula W(u, v). In this case, we note that the region [0, 1]2 \ RN is the
triangle with vertices at {(0, 0), (0, e−1/N), (e−1/N , 0)}, and therefore λ(RN) = 1− 1

2 exp−
2
N .

For large N, λ(RN) = 1
2 + O(N−1). We see that this satisfies the conditions for Theorem A1

with `(N) = N, giving ES
[
|Pareto(S)|

]
= Θ(N) as expected for a distribution with complete

negative monotonic dependence.

Example A2 (Fréchet–Hoeffding upper bound). First, let us consider the scaling of the Pareto
of a distribution with extremal copula M(u, v). In this case, we note that the region [0, 1]2 \ RN is
the region [0, e−1/N ], and therefore, λ(RN) = 1− exp−

2
N . For large N, λ(RN) =

2
N + O(N−2).

We see that this satisfies the conditions for Theorem A1 with `(N) = 1, giving ES
[
|Pareto(S)|

]
=

Θ(1) as expected for a distribution with complete positive monotonic dependence.

Example A3 (Independent random variables). Next, let us consider the case of independent
random variables with copula C(u, v) = uv. Note that the level curves in this case u + v −

C(u, v) = e−
1
N are given by v = e−

1
N −u

1−u . We can then integrate to find the area of the region RN

λ(RN) = 1−
∫ e−

1
N

0

e−
1
N − u

1− u
du = e−1/n

(
1− e1/n

)(
log
(

1− e−1/n
)
− 1
)

(A9)

Expanding for large N, we find that λ(RN) =
log N

N + O(N−1). We see that this satisfies the
conditions for Theorem A1 with `(N) = log N, giving ES

[
|Pareto(S)|

]
= Θ(log N).

Theorem A1 provides a useful tool to pin down the scaling of the size of the Pareto
set. Due to the relatively quick decay of the additional terms in Equation (A6), we find
that scaling estimates using the region RN are quite accurate even for modest N. However,
its applicability is limited, as it requires that we either have an analytic expression for
the copula or are otherwise able to estimate the copula to precision 1/N. In particular,
we are not able to prove any bounds for the DIB frontier, which is the case U = H(Z),
and V = I(Z; Y). We suspect that for most realistic datasets, including points on the DIB
plane, that `(N) = polylog(N), which implies that the scaling of the Pareto set is likewise
Θ(polylog(N)). Since we are interested in the large N behavior, we are hopeful that more
general results can be found through the study of extreme-value copulas, which we leave
for future work.

Appendix B. Auxiliary Functions

In this appendix, we provide the pseudocode for the important auxiliary functions
used in Algorithms 1 and 2. The Pareto Set data structure is a list of point structures. A
Point structure, p, contains fields for both objectives p.x, p.y, and optional fields for storing
the uncertainties p.dx, p.dy and clustering function p.f. As a list, the Pareto Set P for Point
p, and index i, also supports the functions SIZE(P) returning the number of elements in P,
INSERT(p, i, P) for inserting Point p at index i, and REMOVE(i, P) for removing the entry
at index i. Additionally, since the Pareto Set P is maintained in sorted order by its first
index, we can find the correct index at which to insert a new point in logarithmic time:
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for a Point p and Pareto Set P, this is written FIND_INDEX(p.x, P) in the pseudocode of
Algorithms A1–A3.

Algorithm A1 Check if a point is Pareto optimal
Input: Point on objective plane p, and Pareto Set P
Output: TRUE if and only if p is Pareto optimal in P

1: procedure IS_PARETO(p, P)
2: i = FIND_INDEX(p.x, P) . Return correct value to insert p in P

return SIZE(P) = 0 or i = SIZE(P) or P[i + 1].y < p.y

Algorithm A2 Add point to Pareto Set
Input: Point on objective plane p, and Pareto Set P
Output: Updated Pareto Set P

1: procedure PARETO_ADD(p, P)
2: if IS_PARETO(p, P) then . Insert only if Pareto optimal
3: i = FIND_INDEX(p.x, P)
4: P← INSERT(p, i, P) . Insert Point into correct location
5: while i < SIZE(P) and p.y > P[i + 1].y do . Remove dominated points
6: REMOVE(i + 1, P)
7: i = i + 1

return P

Algorithm A3 Calculate distance to Pareto frontier
Input: Point on objective plane p, and Pareto Set P
Output: Distance to Pareto frontier (defined to be zero if Pareto optimal)

1: procedure PARETO_DISTANCE(p, P)
2: if IS_PARETO(p, P) then return 0 . Distance defined to be zero if Point is Pareto

optimal
3: i = FIND_INDEX(p.x, P)
4: d = P[i].y− p.y . Check top boundary
5: while P[i].x− p.x < d do
6: if i + 1 < SIZE(P) and P[i].y > p.y then
7: q = POINT(x = P[i].x, y = P[i + 1].y)
8: d = MINIMUM(DISTANCE(p, q), d) . Check corners
9: else

10: d = MINIMUM(P[i].x− p.x, d) . Check right boundary
return d

Appendix C. The Symmetric Pareto Mapper

In this appendix, we consider one way that Algorithm 1 can be modified to accommo-
date an additional structure in the dataset. The full pseudocode is provided in Algorithm A4
with the key difference occurring on line 12. This modification amounts to a redefining
of the compressed variable Z = ( f (X1), f (X2)). We would like to discover an encoding f
that trades off the entropy of the encoding with the ability to predict Y from ( f (X1), f (X2)).
This corresponds to the following graphical model:

Z1 X1 Y

Z2 X2

f

f
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Figure A1. Joint distribution pX1,X2;Y for the (a)
(
Z/40Z

)× group and (b) the Pauli group.
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Algorithm A4 Symmetric Pareto Mapper
Input: Joint distribution A, B, C ∼ pABC, and search parameter ε
Output: Approximate Pareto frontier P

1: procedure SYMMETRIC_PARETO_MAPPER(pABC, ε)
2: Pareto Set P = ∅ . Initialize maintained Pareto Set
3: Queue Q = ∅ . Initialize search queue
4: Point p = (x =−H(pX1X2)/2, y = I(pX1X2;Y), f = id) . Evaluate trivial clustering
5: P← INSERT(p, P)
6: Q← ENQUEUE(id, Q) . Start with identity clustering id : [n]→ [n] where n = |X|
7: while Q is not ∅ do
8: f = DEQUEUE(Q)
9: n = | range( f )|

10: for 0 < i < j < n do . Loop over all pairs of output clusters of f
11: f ′ = ci,j ◦ f . Merge clusters i, j output f
12: Point p = Point(x =−H(p f ′(X1) f ′(X2)

)/2, y = I(p f ′(X1) f ′(X2);Y), f = f ′)
13: d = PARETO_DISTANCE(p, P)
14: P← PARETO_ADD(p, P) . Keep track of Point and clustering in Pareto Set
15: with probability e−d/ε, Q← ENQUEUE( f ′, Q)
16:

return P

References
1. Cover, T.; Thomas, J. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2006.
2. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
3. Strouse, D.; Schwab, D.J. The deterministic information bottleneck. Neural Comput. 2017, 29, 1611–1630. [CrossRef] [PubMed]
4. Alemi, A.A.; Fischer, I. TherML: Thermodynamics of machine learning. arXiv 2018, arXiv:1807.04162.
5. Fischer, I. The conditional entropy bottleneck. Entropy 2020, 22, 999. [CrossRef] [PubMed]
6. Hassanpour, S.; Wuebben, D.; Dekorsy, A. Overview and investigation of algorithms for the information bottleneck method. In

Proceedings of the SCC 2017, 11th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany,
6–9 February 2017; pp. 1–6.

7. Pereira, F.; Tishby, N.; Lee, L. Distributional clustering of English words. In Proceedings of the 31st Annual Meeting on
Association for Computational Linguistics, Columbus, OH, USA, 22–26 June 1993; pp. 183–190.

8. Slonim, N.; Tishby, N. Agglomerative information bottleneck. In Advances in Neural Information Processing Systems 12, Proceedings
of the NIPS Conference, Denver, CO, USA, 29 November–4 December 1999; Solla, S.A., Leen, T.K., Müller, K., Eds.; The MIT Press:
Cambridge, MA, USA, 1999; pp. 617–623.

9. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J.; Lafferty, J. Clustering with Bregman divergences. J. Mach. Learn. Res. 2005, 6,
1705–1749.

10. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, ICLR 2017 (Conference Track Proceedings, OpenReview.net), Toulon, France,
24–26 April 2017.

11. Andritsos, P.; Tsaparas, P.; Miller, R.J.; Sevcik, K.C. LIMBO: Scalable clustering of categorical data. In Proceedings of the
Advances in Database Technology—EDBT 2004, 9th International Conference on Extending Database Technology, Crete, Greece,
14–18 March 2004; pp. 123–146. [CrossRef]

12. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

13. Tegmark, M.; Wu, T. Pareto-optimal data compression for binary classification tasks. Entropy 2019, 22, 7. [CrossRef] [PubMed]
14. Kurkoski, B.M.; Yagi, H. Quantization of binary-input discrete memoryless channels. IEEE Trans. Inf. Theory 2014, 60, 4544–4552.

[CrossRef]
15. Zhang, J.A.; Kurkoski, B.M. Low-complexity quantization of discrete memoryless channels. In Proceedings of the 2016

International Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA, 30 October–2 November 2016;
pp. 448–452.

16. Navon, A.; Shamsian, A.; Fetaya, E.; Chechik, G. Learning the Pareto Front with Hypernetworks. In Proceedings of the
International Conference on Learning Representations, Addis Ababa, Ethiopia, 36–30 April 2020.

17. Lin, X.; Yang, Z.; Zhang, Q.; Kwong, S. Controllable pareto multi-task learning. arXiv 2020, arXiv:2010.06313.
18. Strouse, D.; Schwab, D.J. The information bottleneck and geometric clustering. Neural Comput. 2019, 31, 596–612. [CrossRef]

[PubMed]
19. Still, S.; Bialek, W. How many clusters? An information-theoretic perspective. Neural Comput. 2004, 16, 2483–2506. [CrossRef]

[PubMed]

http://doi.org/10.1162/NECO_a_00961
http://www.ncbi.nlm.nih.gov/pubmed/28410050
http://dx.doi.org/10.3390/e22090999
http://www.ncbi.nlm.nih.gov/pubmed/33286768
http://dx.doi.org/10.1007/978-3-540-24741-8_9
http://dx.doi.org/10.3390/e22010007
http://www.ncbi.nlm.nih.gov/pubmed/33285782
http://dx.doi.org/10.1109/TIT.2014.2327016
http://dx.doi.org/10.1162/neco_a_01136
http://www.ncbi.nlm.nih.gov/pubmed/30314426
http://dx.doi.org/10.1162/0899766042321751
http://www.ncbi.nlm.nih.gov/pubmed/15516271


Entropy 2022, 24, 771 26 of 26

20. Awasthi, P.; Charikar, M.; Krishnaswamy, R.; Sinop, A.K. The hardness of approximation of euclidean k-Means. In Proceedings
of the 31st International Symposium on Computational Geometry (SoCG 2015), Eindhoven, The Netherlands, 22–25 June 2015.

21. Nemenman, I.; Shafee, F.; Bialek, W. Entropy and Inference, Revisited. In Advances in Neural Information Processing Systems;
Dietterich, T., Becker, S., Ghahramani, Z., Eds.; MIT Press: Cambridge, MA, USA, 2002; Volume 14, pp. 471–478.

22. Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [CrossRef]
23. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [CrossRef] [PubMed]
24. Nemenman, I.; Bialek, W.; de Ruyter van Steveninck, R. Entropy and information in neural spike trains: Progress on the sampling

problem. Phys. Rev. E 2004, 69, 056111. [CrossRef] [PubMed]
25. Poole, B.; Ozair, S.; Van Den Oord, A.; Alemi, A.; Tucker, G. On variational bounds of mutual information. In Proceedings of the

International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 5171–5180.
26. Twomey, C.R.; Roberts, G.; Brainard, D.H.; Plotkin, J.B. What we talk about when we talk about colors. Proc. Natl. Acad. Sci. USA

2021, 118, e2109237118. [CrossRef] [PubMed]
27. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in

context. In European Conference on Computer Vision; Springer: Berlin, Germany, 2014; pp. 740–755.
28. Achille, A.; Soatto, S. Emergence of invariance and disentanglement in deep representations. J. Mach. Learn. Res. 2018,

19, 1947–1980.
29. Wu, T.; Fischer, I.S. Phase Transitions for the Information Bottleneck in Representation Learning. In Proceedings of the 8th

International Conference on Learning Representations, ICLR 2020 (OpenReview.net), Addis Ababa, Ethiopia, 26–30 April 2020.
30. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the information bottleneck. In Uncertainty in Artificial Intelligence,

Proceedings of the PMLR, Cambridge, MA, USA, 16–18 November 2020; AUAI Press: Corvallis, OR, USA, 2020; pp. 1050–1060.
31. Ngampruetikorn, V.; Schwab, D.J. Perturbation theory for the information bottleneck. In Advances in Neural Information Processing

Systems; Springer: Berlin, Germany, 2021; Volume 34.
32. Rezende, D.J.; Viola, F. Taming VAEs. arXiv 2018, arXiv:1810.00597.
33. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE Information

Theory Workshop (ITW), Jeju Island, Korea, 11–15 October 2015; pp. 1–5.
34. Chaudhari, P.; Soatto, S. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks.

In Proceedings of the 2018 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 11–16 February 2018;
pp. 1–10.

35. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of
deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]

36. Still, S. Thermodynamic cost and benefit of memory. Phys. Rev. Lett. 2020, 124, 050601. [CrossRef] [PubMed]
37. Buesing, L.; Maass, W. A spiking neuron as information bottleneck. Neural Comput. 2010, 22, 1961–1992. [CrossRef] [PubMed]

http://dx.doi.org/10.1162/089976603321780272
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ncbi.nlm.nih.gov/pubmed/15244698
http://dx.doi.org/10.1103/PhysRevE.69.056111
http://www.ncbi.nlm.nih.gov/pubmed/15244887
http://dx.doi.org/10.1073/pnas.2109237118
http://www.ncbi.nlm.nih.gov/pubmed/34556580
http://dx.doi.org/10.1088/1742-5468/ab3985
http://dx.doi.org/10.1103/PhysRevLett.124.050601
http://www.ncbi.nlm.nih.gov/pubmed/32083919
http://dx.doi.org/10.1162/neco.2010.08-09-1084
http://www.ncbi.nlm.nih.gov/pubmed/20337537

	Introduction
	Objectives and Relation to Prior Work
	The Deterministic Information Bottleneck
	Discrete Memoryless Channels
	Pareto Front Learning
	Motivation and Objectives

	Roadmap

	Methods
	The Pareto Mapper
	Robust Pareto Mapper

	Results
	General Properties of Pareto Frontiers
	Argument for the Sparsity of the Pareto Frontier
	Dependence on Number of Items |X|

	At the Pareto Frontier: Three Vignettes
	Compressing the English Alphabet
	Naming the Colors of the Rainbow
	Symmetric Compression of Groups


	Discussion
	Proof of Pareto Set Scaling Theorem
	Auxiliary Functions
	The Symmetric Pareto Mapper
	References

