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Abstract: Peer-to-peer lending (P2P lending) has proliferated in recent years thanks to Fintech and big
data advancements. However, P2P lending platforms are not tightly governed by relevant laws yet,
as their development speed has far exceeded that of regulations. Therefore, P2P lending operations
are still subject to risks. This paper proposes prediction models to mitigate the risks of default
and asymmetric information on P2P lending platforms. Specifically, we designed sophisticated
procedures to pre-process mass data extracted from Lending Club in 2018 Q3–2019 Q2. After that,
three statistical models, namely, Logistic Regression, Bayesian Classifier, and Linear Discriminant
Analysis (LDA), and five AI models, namely, Decision Tree, Random Forest, LightGBM, Artificial
Neural Network (ANN), and Convolutional Neural Network (CNN), were utilized for data analysis.
The loan statuses of Lending Club’s customers were rationally classified. To evaluate the models,
we adopted the confusion matrix series of metrics, AUC-ROC curve, Kolmogorov–Smirnov chart
(KS), and Student’s t-test. Empirical studies show that LightGBM produces the best performance
and is 2.91% more accurate than the other models, resulting in a revenue improvement of nearly
USD 24 million for Lending Club. Student’s t-test proves that the differences between models are
statistically significant.

Keywords: P2P lending default prediction; data processing; AI model; statistical model

1. Introduction

Crowdlending or P2P lending has gradually become more popular worldwide due to
the accelerated growth of financial technologies. In P2P lending, “users of the platform are
lending capital directly to their peers, mediated by a platform without a bank standing in
between” [1]. Therefore, both borrowers and lenders can trade without the intervention
of financial institutions. Aside from the convenience of credit review and loan processing,
crowdlending services are also cost-effective. P2P platforms are more advantageous for
borrowers with economic difficulties or low credit scores than traditional financial insti-
tutions because they can easily match borrowers with lenders. In addition, individual
investors who are willing to tolerate the extra risk may receive a higher return; thus, the
benefits of P2P lending extend to both parties. Crowdlending has the distinct advantage
of not requiring investors to lend all of their money to the same person; instead, they can
diversify the investment amount to different borrowers to decrease risks.

From another perspective, however, if P2P platforms fail to formulate relevant regula-
tions and supervision, they can only rely on ethical standards. For instance, people with
higher education are more likely to obtain loans and pay them back [2]. Taking China as
an example, despite the rapid development of crowdlending in this country, the Chinese

Entropy 2022, 24, 801. https://doi.org/10.3390/e24060801 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060801
https://doi.org/10.3390/e24060801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9742-4456
https://doi.org/10.3390/e24060801
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060801?type=check_update&version=2


Entropy 2022, 24, 801 2 of 23

market faces a high moral hazard and negative consequences, including numerous platform
failures and loss of investors’ deposits. The business continuity of P2P platforms and the
protection of investors and lenders are therefore significant concerns. As of early 2018,
approximately 6000 P2P platforms had been registered in China, generating around USD
800 billion in loans. However, a phenomenally high failure rate has accompanied this ex-
traordinary growth. The number of P2P platforms that had ceased to operate by early 2018
amounted to over 60%. Because of ineffective regulations, many Chinese platforms went
bankrupt in June 2018. There were 2834 active platforms at that time, but the outstanding
loans amounted to RMB 1.317 trillion (~USD 200 billion), most of which were short-term
loans. This led to a phenomenon known as runoff, where platform owners disappeared
with investor funds. Due to stricter national regulations on P2P lending platforms from
2018 to 2020, only 29 platforms were still active by June 2020 [3,4].

In the United States (USA) context, policymakers provide little support for P2P lending;
however, banks and P2P companies have collaborated over time. The bank–P2P lender
partnership announced in April 2015 between Citi and Lending Club (LC), for example,
would provide extra funding to small and medium-sized enterprises, thus legitimizing P2P
lending. In 2007, LC first launched and became the largest P2P lending platform in the
USA. LC and another leading platform—Prosper—currently account for about 98% of the
USA market share [5]. LC only provides services to borrowers with a FICO score of 660 or
higher, and its interest rate is lower than the interest on a credit card due. Therefore, LC’s
users are not just those plagued by financial distress; 77.14% of borrowers use the platform
to repay credit card bills. LC is also eroding the core competitive advantages of traditional
banks by offering attractive interest. As a result, the demand for such personal credit loans
increases daily, which means that default risk is rising.

The current situation of the P2P lending markets in two major countries, China and
the USA, raises the question: What is the most optimal model to minimize the default
risk of P2P lending platforms based on data provided by the borrowers? In response
to this question, this paper proposes classification models to control the risk of default
and ensure the sustainability of P2P platforms. Based on public information from LC, we
present methodologies for processing this company’s dataset. Good data are essential to
building good models in financial technology. Data are now comparable to gold or currency,
and, in the future, they may be considered an intangible asset [6]. Besides collecting the
original data, pre-processing plays a major role in converting data into decision-making
information. The first objective of this research (1) is to propose a series of methods to
improve data quality and construct models. Raw data went through feature screening, data
conversion, 10-fold cross-validation, and dataset balancing steps. The second objective
(2) is to apply three statistical models, namely, Logistic Regression, Bayesian Classifier, and
LDA, and five AI models, namely, Decision Tree, Random Forest, LightGBM, ANN, and
CNN, for data analysis. This study examined the performance of each model in P2P lending
default prediction under similar data structures. The last purpose of this research (3) is to
propose metrics to evaluate prediction models. Once the model results are obtained, if we
only analyze their accuracy to measure the model’s pros and cons, there might be blind
spots, eventually leading to decision-making bias. Therefore, the authors also used other
evaluation methods, including the confusion matrix series of metrics, AUC-ROC curve, and
Kolmogorov–Smirnov chart (KS). Lastly, Student’s t-test was applied to determine whether
the performance of the best model is significantly better than its next-ranked models.

P2P platforms face various risks, including default risk, operational risk, legal risk,
liquidity risk, and information asymmetry. This research mainly aims to improve P2P
default risk and information asymmetry. The former is the risk that a lender bears if the
borrower does not meet their obligations. Since P2P lending is unsecured, the platform has
difficulty grasping the borrower’s other assets, resulting in a low recovery rate. The latter
is the risk that borrowers and lenders lack information about one another’s situation; thus,
it is impossible to accurately judge the other party’s credit level. Information asymmetry
results in excessive reliance on credit rating systems of the platform [7]. This study aimed to
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build prediction models so that investors can obtain borrowers’ credit levels early, increase
information transparency, and reduce default risk and information asymmetry. Investors
can also handle risky debts in advance to reduce losses by selling them.

Our study contributes to the literature review of this topic by covering and comparing
the most recent advanced AI and statistical models and nearly all of the appropriate
evaluation methods, both theoretically and experimentally. In addition, we also identify
and fix weaknesses in previous studies concerning variable selection and data processing.

2. Literature Review

Researchers have previously developed many statistical and machine learning models
to predict the default risk of P2P lending platforms, and studies based on the LC dataset
account for the majority. Therefore, it can be said that LC data are a benchmark dataset in
P2P lending.

2.1. Studies Using LC Dataset

Petr Teply et al. [8] exploited the LC dataset from 2009 to 2013 to build a ranking
score system among ten classifiers, including Logistic Regression, ANN, LDA, Linear
SVM, Random Forest, Bayesian net, radio SVM, Naïve Bayes, classification and regression
tree, and k-Nearest Neighbor. The results showed that Logistic Regression was ranked
number 1 based on the Percentage Correctly Classified measurement. In the study of Milad
Malekipirbazari et al. [9], Random Forest was more effective in evaluating LC’s risk than
Logistic Regression and FICO credit scores. Sriharsha Reddy [10] applied the Boosted
Tree classification method to the LC dataset to predict the probability of delinquency. The
findings revealed that XGboost had the best performance, with 99% accuracy for both the
training set and test set. LightGBM and XGboost were used to predict the default risk of
LC in the paper of Xiaojun Ma et al. [11]. The results prove that LightGBM and XGboost
are both effective methods; however, the running time of LightGBM is much faster than
XGboost, and the difference is more than ten times.

Duan Jing [12] used a three-hidden-layer neural network trained by the back-propagation
algorithm to test the LC dataset in the 2007–2015 period. Loans were classified into safe debt,
risky debt, and bad debt. Because most of the debts in the dataset are safe, the author applied
the Synthetic Minority Oversampling Technique to improve the model accuracy and achieve a
rate of 93%. Golnoosh Babaei et al. [13] designed a data-driven investment decision-making
framework by adopting ANN and Logistic Regression to estimate the internal rate of return and
the chance of default of each loan in the LC dataset. In the study of Ji-Yoon Kim et al. [14], a deep
dense convolutional network was proposed for LC default prediction. This method obtained an
accuracy of 79.6% by checking the flow of loan information through dense connectivity and
automatically deriving discriminative features by convolution and pooling operations.

Van-Sang Ha et al. [15] built classification models using LDA based on feature selection
combined with restricted Boltzmann machines (RBMs) for credit scoring tasks. The model
was tested on Australian credit, German credit, and LC datasets. After the feature selection
process, 12 features were chosen for the Australian credit dataset, 22 were selected for
the German credit dataset, and the number for the LC dataset was 80, respectively. The
accuracy rates were 86.09%, 76.7%, and 81.53%. In their study, Luis Eduardo Boiko Ferreira
et al. [16] examined the creditworthiness of LC borrowers in the period from 2007 to 2016.
The authors combined ensemble, cost-sensitive, and sampling methods with Logistic Re-
gression, Decision Tree, and Bayesian learning models. Overall, the sampling techniques
surpassed ensemble and cost-sensitive approaches. Yufei Xia [17] combined outlier de-
tection techniques with a gradient boosting decision tree algorithm to establish a credit
scoring model for LC and We.com datasets, effectively reducing information asymmetry.

2.2. Studies Using Other Datasets

In their study, Yuejin Zhang et al. [18] used Logistic Regression to determine whether
borrowers will ultimately be able to get loans via Paipaidai—the largest P2P platform in
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China. Their findings indicate that the annual interest rate, repayment period, description,
credit grade, the number of successful loans, the number of failed loans, gender, and credit
score are significant factors for a successful loan. An accuracy rate of 94% was achieved.
Using Naïve Bayes and data from both core credit and social network information on
the Prosper platform, Radha Vedal et al. [19] categorized good and bad borrowers with
an average accuracy rate of 82%. Binjie Luo et al. [20] conducted interesting research to
examine the impact of herd behavior on the P2P lending market. They used Decision Tree to
test the Prosper dataset. Investors can place bids on their friend’s listing through Prosper’s
social network service. This study showed that investors are more inclined to follow herd
behavior if they strongly prefer public information and the cost of acquiring and studying
extra information. Moreover, herding on listings with more bids hurts investors.

It is noticeable that some studies on the P2P lending topic produce relatively high
results; however, we also find a few problems. Included in the models of these studies were
post-event variables, which are created after the loan request is approved, such as “total
payment” (total_pymnt), “the month in which the loan was funded” (month_iss), or “last
month payment was received” (last_pymnt). These variables severely affect the prediction
outcome of classification models, as post-event variables usually give higher results (e.g.,
a person who has paid off all of their debts is naturally classified as risk-free). Moreover,
post-event variables have no meaning in assisting investors in decision making because
lenders must determine whom to lend their money to before a debt is established.

In addition, most of the datasets of P2P lending companies are often imbalanced, in
which the number of safe debts is much higher than the number of risky debts. However,
many studies have not addressed this issue in their classification problems, which leads
to biased results. For example, a naïve classifier may focus on learning the characteristics
of safe debts only and neglect the bad debts, which is, in fact, what we should really pay
attention to.

Our study fills these gaps by eliminating all post-event variables and also considering
the problem of data imbalance by adopting the under-sampling technique.

3. Research Process
The research process in this study is divided into three main steps: data pre-processing,

model construction, and results analysis. In order to increase the robustness of the models,
we first observed the dataset, removed empty data, screen features, and converse data
types, and used 10-fold cross-validation to divide the dataset into training sets and test sets
randomly; the data imbalance issue was also taken into consideration. Our next step was to
construct three statistical models and five AI models, which we evaluated by the confusion
matrix series of metrics, AUC-ROC curve, Kolmogorov–Smirnov chart (KS), and Student’s
t-test. The research flow chart is shown in Figure 1.
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4. Research Data

We utilized public information from Lending Club—the largest P2P platform in the
USA—and examined data from 2018 Q3 to 2019 Q2. Figure 2 shows the trend of LC’s
default rates from 2018-07 to 2019-06. We can observe that LC’s default rates have declined
over the years; however, they are still higher than 14%.
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4.1. Feature Screening

This paper only studies loan results after expiration. Therefore, two types of loans,
“Fully-Paid” and “Charged-Off,” were selected from the original dataset. The term “Fully-
Paid” indicates that a loan has been fully repaid when due, and “Charged-Off” indicates
a bad debt. Other statuses of loans that are generated when the loan is not due were
excluded. When feeding data into the models, “Fully-Paid” loans were labeled as 0, and
“Charged-Off” loans were labeled as 1. Table 1 shows how loans are classified.

Table 1. Number of samples in “Fully-Paid” and “Charged-Off” classes.

Loan Status Quantity Proportion

Fully-Paid 52,117 85.45%
Charged-Off 8876 14.55%

Total 60,993 100%

In order to reduce the burden of computational cost, more than 50% of the features
with empty values, those that provided little information, and those that were irrelevant
to the experiment were deleted. In addition, this research aimed to determine whether
lenders should provide loans to borrowers; therefore, features that are created after the loan
decision, such as “total repayment” (total_pymnt), were also excluded. After this process,
63 features remained. A detailed description of these features is given in Appendix A.

4.2. Data Conversion

Because features differ in their underlying nature and significance, this paper converts
those features based on their Scales of Measurement to meet the data input requirements of
the models.

• Nominal data: On a nominal scale, events or objects are divided into distinct categories
without considering order or ranking. Instead, these categories are given unique labels,
and calculations for adding, subtracting, multiplying, and dividing the nominal scales
are meaningless. Therefore, this study converts nominal-scale variables into the
quantitative scale to feed into the model.



Entropy 2022, 24, 801 6 of 23

• Ordinal data: The ordinal scale represents the hierarchical relationship among levels on
a scale. However, it cannot measure the distance between different levels. This paper
converts ordinal data such as debt level, duration of the loan, etc., into numerical data.

• Numerical data: Most of the data in this research are discrete and not highly correlated;
i.e., the degree of mutual influence between customers is low. Therefore, missing data
are replaced by the average values. After that, data are scaled in the range 0–1 using
min–max normalization as follows:

xi =
xi − xmin

xmax − xmin
(1)

where

xi is the normalized value;
xmin is the minimum value of the series to be normalized;
xmax is the maximum value of the series to be normalized.

This method eliminates the problem of inconsistencies in the range of variables,
allowing algorithms to extract features and improve the accuracy of the models.

4.3. Ten-Fold Cross-Validation

Unlike time series data, the data used for this study have little correlation; that is, the
behavior of an individual borrower is not highly related to the behavior of others. Therefore,
we used cross-validation to resample the dataset, and 10-fold stratified cross-validation
is proved to be the best method for real-world datasets [21]. Using the random grouping
method, we divided the LC dataset into 10 groups (9 training sets and 1 test set) in order
to prevent the occurrence of overfitting while improving the reliability and validity of the
models, as shown in Figure 3.
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The average value of the 10-group results was calculated to estimate the
model’s performance.

4.4. Data Balancing

The ratio between “Fully-Paid” and “Charged-Off” loans in our dataset is about 85:15,
resulting in the problem of imbalanced data (also known as data skewness). Thus, we used
the undersampling technique to balance the dataset by maintaining all of the data in the
“Charged-Off” class and decreasing the size of the “Fully-Paid” class to a ratio of 1:1. This
process was adopted for the ten datasets divided in the previous step.
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5. Model Construction
5.1. Statistical Models

Statistical models use mathematics and statistics to classify and predict data. Based
on a previous article [8], this study employed three statistical models: Logistic Regression,
Bayesian Classifier, and LDA. These three classic and straightforward models work quickly
and do not require too much training. Despite their simplicity, these models prove to be
effective in classification tasks.

5.1.1. Logistic Regression

Logistic Regression is a learning algorithm used to minimize the error between its
predictions and the training data in a supervised learning problem. The basic assumptions
and regression equations of Logistic Regression are shown in Equation (2).

ŷi = P(yi = 1|xi ), where 0 ≤ ŷi ≤ 1 (2)

where

xi is the input feature vector of the ith instance;
yi is the actual observation of the ith instance, yi ∈ 0, 1 (yi = 1 indicates a default event;
yi = 0 indicates a non-default event);
ŷi is the probability of default of the ith instance, given xi;
ŷi follows the Sigmoid function in Equation (3):

ŷi = S(zi) =
1

1 + e−zi
(3)

where zi = α + βxi (α is the constant term; β is the regression coefficient).

If ŷi > 0.5, we predict yi = 1; otherwise, we predict yi = 0. Figure 4 demonstrates the
Sigmoid function.
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5.1.2. Bayesian Classifier

The Bayesian Classifier is a simple probability classifier based on Bayes’ theorem,
which is represented as the following function.

P(C | F1, F2, . . . , Fk) =
P(C)P(F1, F2, . . . , Fk | C)

P(F1, F2, . . . , Fk)
(4)

where

C represents the target (“Fully-Paid” or “Charged-Off” loan);
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F1, F2, . . . , Fk represent k features.

In the Bayesian Classifier, features are assumed to be independent of each other with
no correlation. However, this is not the case in real life, so this model is sometimes referred
to as “naïve”.

5.1.3. Linear Discriminant Analysis (LDA)

R. Fisher initially proposed LDA in 1936 as an analysis method to identify different
kinds of flowers [22]. LDA focuses on finding a projection hyperplane that maximizes the
ratio of the between-class variance to the within-class variance to ensure optimal separabil-
ity. LDA is very similar to Principal Component Analysis (PCA): both methods find the
linear combination of features that best explain the data. However, PCA is a type of unsu-
pervised learning, which does not consider the label, while LDA is a supervised learning
algorithm that can be used for dimensionality reduction and classification problems.

For two-dimensional data, LDA is illustrated in Figure 5. There are two data classes, A
and B, and then all of the data points of the two classes are projected onto a straight line Y,
which is perpendicular to the straight line G generated by the intersection of the two data
classes. The intersection of lines Y and G is b. The projected result on the straight line Y
provides the frequency distribution of the A and B classes. At this point, the optimal ratio
of the between-class variance to the within-class variance will be higher than that of other
projections. Point b is called the critical point, where line Y is divided into two parts to
complete the construction of the two-class model.
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5.2. AI Models

Artificial Intelligence (AI) models are used for prediction and classification purposes
by training data and analyzing features. This study adopted Decision Tree, Random Forest,
LightGBM, ANN, and CNN to predict the default risk of P2P lending.

5.2.1. Decision Tree

A Decision Tree is a supervised learning technique that uses a tree-based model.
Internal nodes represent tests over an attribute, branches represent the test results, and
leaf nodes represent the labels. An example of a Decision Tree for default risk prediction is
shown in Figure 6.
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The Decision Tree has some advantages, such as being easy to understand and inter-
pret; however, it also bears a common disadvantage of overfitting if an overly complex tree
is created.

5.2.2. Random Forest

In Random Forest, data samples are randomly selected to create decision trees, and
these trees are merged together so that they can make better predictions. When dealing
with a regression problem, we can average out the predictions of each tree (mean); when
dealing with a classification problem, we can take the majority of the classes that each tree
voted for (mode). Figure 7 illustrates an example of Random Forest.
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5.2.3. LightGBM

Gradient Boosting Decision Tree (GBDT), which was developed from Decision Trees,
Random Forests, and other methods, has been widely used in recent years. Among them,
Light Gradient Boosting Machine (LightGBM) shows excellent performance in classification
prediction.

The Gradient Boosting algorithm uses decision trees as its weak learners (week learners
are classifiers that produce predictions that are just a bit better than random guessing). Each
model in Gradient Boosting is learned sequentially and based on the prediction error of the
previous one. GBDT has some conventional implementations, such as XGBoost and pGBRT;
however, these methods have high computational costs and are therefore time-consuming.
LightGBM, which Microsoft developed, is a lightweight framework for implementing
GBDT. This algorithm has advantages, such as faster training speed, higher accuracy,
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and large-scale data handling. Unlike traditional level-wise algorithms, LightGBM grows
leaf-wise. The comparison of the two methods is shown in Figures 8 and 9 as follows:
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5.2.4. Artificial Neural Network (ANN)

ANNs, or neural networks for short, are computational models based on biological
neural networks, which make up the brains of animals or humans. ANNs combine multiple
processing elements based on predefined activation functions that receive inputs and
generate outputs. This process is shown in Figure 10.
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The neural network has n input features and L hidden layers. Each of the hidden or
output nodes is calculated by Equation (5), where fl is the activation function (usually a
non-linear function) of the lth layer; wl is the weight vector, and bl is the bias vector of the
lth layer; and the input vector x is considered vector a0.

al = fl(wlal−1 + bl) (5)

Values of the two outputs lie between 0 and 1. If the result is [1,0], it indicates a
“Charged-Off” loan; on the contrary, if the result is [0,1], it indicates a “Fully-Paid” loan.

5.2.5. Convolutional Neural Network (CNN)

CNN is a deep learning algorithm, originally developed for computer vision by Y.
Lecun et al. [23]. In CNN, input data are transformed into matrices (input channels), and
then the input channels are filtered by the kernel channel in the Convolution Operation
step. The process is shown in Figure 11.
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Figure 11. Convolutional Operation.

The convolved feature matrix then goes through the Pooling Operation to reduce its
dimension, which helps lower the computational cost and extract dominant features. There
are two types of Pooling: Max Pooling and Average Pooling. The convolved feature matrix
is divided into smaller parts (usually at a size of 2 × 2). In Max Pooling, the maximum
values of each smaller part are returned, and in Average Pooling, the average values are
returned. Figure 12 illustrates the Max Pooling Operation.
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The output of the above processes is then fed into a regular neural network to solve
the classification problem.

6. Evaluation Measures

In this section, the confusion matrix series of metrics, AUC-ROC curve, Kolmogorov–
Smirnov chart (KS), and Student’s t-test are adopted to measure the efficiency of models in
Section 5.

6.1. The Confusion Matrix Series of Metrics

The confusion matrix is used to summarize the performance of a classification al-
gorithm. Since classification accuracy alone can be misleading, a confusion matrix can
help better evaluate a model’s pros and cons. The confusion matrix is divided into four
categories: true positive (TP), false positive (FP), true negative (TN), and false negative
(FN). False positive (FP) and false negative (FN) correspond to Type I error and Type II
error. Table 2 demonstrates the confusion matrix.
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Table 2. Confusion matrix.

Actual “Charged-Off” Actual “Fully-Paid”

Predicted “Charged-Off” True Positive (TP) False Positive (FP)
Type I error

Predicted “Fully-Paid” False Negative (FN)
Type II error True Negative (TN)

The confusion matrix elements used in this paper can be interpreted as follows:

• TP: the number of “Charged-Off” loans correctly predicted;
• FP: the number of “Charged-Off” loans incorrectly predicted (Type I error);
• TN: the number of “Fully-Paid” loans correctly predicted;
• FN: the number of “Fully-Paid” loans incorrectly predicted (Type II error).

A series of metrics are derived to evaluate the models from the above four elements in
the confusion matrix. This paper adopts the ratios of specificity, negative predictive value
(NPV), precision, recall, F-measure, and Kappa.

6.1.1. Specificity (True Negative Rate—TNR)

Specificity measures the proportion of actual negative cases (“Fully-Paid” loans) that
are correctly identified.

Specificity =
TN

TN + FP
(6)

6.1.2. Negative Predictive Value (NPV)

The negative predictive value (NPV) measures the proportion of predicted negative
cases that are correctly identified.

NPV =
TN

TN + FN
(7)

6.1.3. Precision (Positive Predictive Value—PPV)

Precision measures the proportion of predicted positive cases (“Charged-Off” loans)
that are correctly identified.

Precision =
TP

TP + FP
(8)

6.1.4. Recall (Sensitivity)

The recall rate measures the proportion of actual positive cases that are correctly identified.

Recall =
TP

TP + FN
(9)

The above metrics are relatively effective measurements for the models; however, each
of them in isolation does not provide the complete picture of the performance of classifiers,
especially in imbalanced datasets. Although in the data pre-processing step, this study
already handled the problem of data imbalance, we still introduced two other metrics
called F-measure and Kappa, as follows.

6.1.5. F-Measure

It is common to summarize precision and recall as a single metric, the F-measure,
which is the harmonic mean. The value of the F-measure lies between 0 and 1; 0 indicates
the worst, and 1 indicates a perfect value.

F-measure = 2× Precision× Recall
Precision + Recall

(10)
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6.1.6. Kappa (Cohen’s Kappa Coefficient)

The following formula calculates Cohen’s kappa coefficient [24]:

Kappa =
p0 − pe

1− pe
(11)

where p0 is the observed accuracy of the model, and pe is the expected accuracy (the
accuracy that any random classifier is expected to achieve based on the confusion matrix).
p0 is computed as follows:

p0 =
TP + TN

TP + TN + FP + FN
(12)

To calculate pe, we need two other ratios: p1 and p2.
p1 represents the random probability that a sample in the dataset is an actual “Charged-

Off” loan. From the confusion matrix, we can calculate p1 as follows:

p1 =
TP + FN

TP + FN + FP + TN
(13)

(1 − p1) is the random probability that a sample in the dataset is an actual “Fully-
Paid” loan.

p2 represents the probability that our model predicts a “Charged-Off” loan. From the
confusion matrix, we can calculate p2 as follows:

p2 =
TP + FP

TP + FP + TN + FN
(14)

(1 − p2) is the probability that our model predicts a “Fully-Paid” loan.
Expected accuracy measures the agreement between our model predictions and the

actual class values, which is shown in Equation (15).

pe = p1 × p2 + (1− p1)× (1− p2) (15)

Basically, the Kappa coefficient demonstrates how much better one classifier does
compared to another classifier that just guesses at random using the frequency of each class.
The Kappa value ranges from −1 to +1. If the value is less than or equal to 0, the classifier is
impractical. For Kappa values greater than 0, Landis et al. [25] proposed a measurement for
the value: 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1 as almost perfect.

6.2. AUC-ROC Curve

The Receiver Operator Characteristic (ROC) curve is a probability curve used as an
evaluation metric for binary classification problems. The ROC curve plots the true positive
rate against the false positive rate, which is shown in Figure 13.
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The Area Under the Curve (AUC) is defined precisely by its name; it is the area under
the ROC curve. AUC measures the ability of a model to distinguish between classes and
is used as a summary of the ROC curve. The higher the AUC, the better the classifier’s
performance at distinguishing between “Fully-Paid” and “Charged-Off” classes.

6.3. Kolmogorov–Smirnov Chart (KS)

The KS test examines whether two random variables have the same probability distri-
bution. In this study, the KS test looked at the maximum difference between the cumulative
distribution of “Fully-Paid” loans and the cumulative distribution of “Charged-Off” loans,
which is shown in Figure 14.
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The blue curve represents the cumulative distribution of “Fully-Paid” loans, and the
orange curve represents the cumulative distribution of “Charged-Off” loans. The KS value
is the maximum difference between the two curves, and the higher the KS value, the better
the model separates the two classes.

6.4. Student’s t-Test

This study used a two independent samples t-test [26] to verify the differences between
each model using the above metrics. The formula is as follows:

t =
x1 − x2 − µ0√

∑n
i=1(x1i−x1)

2+∑n
i=1(x2i−x2)

2

(n−1)×n

(16)

where

x1, x2: The means of the two samples;
µ0: The difference between the means of the two populations, where µ0 is expected to be 0;
i = 1, 2 . . . n;
n: sample size.

The null hypothesis and the alternative hypothesis are as follows:

H0 : x1 − x2 = µ0 (17)

H1 : x1 − x2 6= µ0 (18)

Based on the degrees of freedom (n – 1) and the significance levels (0.10, 0.05, and
0.01), the t-test can reject the null hypothesis if the p-value is less than each significance
level, indicating a significant difference between the two models.
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7. Results Analysis

In this study, each model was ranked based on the average results of the 10-fold
validation process. After that, we used Student’s t-test to determine whether each model is
significantly different from the others using the evaluation metrics. This research adopted
the t-test with 90%, 95%, and 99% confidence levels.

The first common-sense metric is accuracy, which summarizes the model’s perfor-
mance by dividing the number of correct predictions by the total number of input samples.
In terms of this measurement, empirical results from Table 3 show that LightGBM performs
the best at 68.57%. The p-values from Table 4 also prove that LightGBM is significantly
better than all other models at the 99% confidence level. The comparison in Table 5 further
clarifies this difference.

Table 3. Empirical results of all models.

LightGBM CNN Logistic Regression LDA ANN Bayesian Classifier Random Forest Decision Tree
Accuracy 68.57% 67.27% 66.87% 66.81% 66.85% 64.27% 63.89% 63.63%

AUC value 74.92% 73.56% 72.82% 72.76% 73.63% 68.58% 69.06% 65.59%
KS value 38.37% 35.81% 34.97% 34.90% 36.22% 30.49% 28.93% 27.93%

Specificity 71.47% 69.53% 67.32% 67.40% 69.28% 56.41% 57.56% 67.62%
NPV 67.55% 66.58% 66.73% 66.62% 66.28% 67.11% 65.92% 62.60%

Recall 65.66% 64.94% 66.44% 66.23% 64.50% 72.16% 70.23% 59.62%
Precision 69.73% 68.24% 67.05% 67.03% 67.91% 62.44% 62.33% 64.87%

F-measure 67.62% 66.43% 66.72% 66.61% 65.95% 66.82% 66.04% 62.11%
Kappa 37.13% 34.49% 33.75% 33.62% 33.75% 28.56% 27.79% 27.24%

Table 4. The p-values for model accuracy.

LightGBM CNN Logistic
Regression LDA ANN Bayesian

Classifier
Random

Forest
Decision

Tree

LightGBM 1.0000

CNN 0.0034 *** 1.0000

Logistic
Regression 0.0005 *** 0.3593 1.0000

LDA 0.0012 *** 0.3450 0.9011 1.0000

ANN 0.0006 *** 0.3425 0.9606 0.9378 1.0000

Bayesian
Classifier 0.0000 *** 0.0000 *** 0.0000 *** 0.0001 *** 0.0000 *** 1.0000

Random
Forest 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.4524 1.0000

Decision
Tree 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.2859 0.6431 1.0000

*** Significant at the 1% level.

Table 5. LC’s revenue improvement based on model accuracy.

LightGBM CNN Logistic
Regression LDA ANN Bayesian Classifier Random Forest Decision Tree

67.27% 66.87% 66.81% 66.85% 64.27% 63.89% 63.63%
Accuracy 68.57%

Average: 65.66%
Difference 2.91%

LC’s revenue USD 818,600,000

Revenue
improvement USD 23,821,260

As demonstrated in Table 5, other models have an average accuracy of 65.66%, which is
2.91% lower than the accuracy of LightGBM (68.57%). This number means that if LightGBM
is chosen over other models, it will save 2.91% of the platform’s total debts from being
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mispredicted. Imagine that if we misclassify a “Fully-Paid” loan as a “Charged-Off” loan,
we will lose a revenue stream from that potential customer. Conversely, if we misclassify a
“Charged-Off” loan as a “Fully-Paid” loan, the lender will lose the corresponding amount
from the borrower. Under the assumption that all of the loans contribute equally to
LC’s revenue, a 2.91% improvement in loan classification accuracy will also improve the
revenue proportionally.

According to LC’s financial reports [27], the company’s 2021 revenue was USD 818,600,000,
so an improvement of 2.91% will result in a revenue increase of USD 23,821,260—an
impressive number.

Besides accuracy, Table 3 also shows that LightGBM outperforms other models for
most evaluation metrics, except for recall rate, where the result of the Bayesian Classifier
is the highest. Similar to Table 4, the p-values of Student’s t-test for all other metrics are
available in Appendix B. We summarize the top models under each measurement in Table 6.
In terms of specificity, Student’s t-test does not demonstrate a significant difference between
LightGBM and its next-ranked models—CNN and ANN. Similarly, there is no evidence
that LightGBM is significantly better than the Bayesian Classifier, Logistic Regression, LDA,
and ANN according to the NPV metric. The Bayesian Classifier’s recall rate significantly
dominates those of other models, except for Random Forest. For the F-measure, LightGBM
is also not significantly superior to the Bayesian Classifier.

Table 6. The top model(s) under each metric.

The Best Model Model(s) Have No Significant Difference from the Best Model

Accuracy LightGBM
AUC value LightGBM

KS value LightGBM
Specificity LightGBM CNN, ANN

NPV LightGBM Bayesian Classifier, Logistic Regression, LDA, ANN
Recall Bayesian Classifier Random Forest

Precision LightGBM
F-measure LightGBM Bayesian Classifier

Kappa LightGBM

This research aims to minimize the probability of default risk—the risk that occurs
when actual “Charged-Off” loans are incorrectly predicted as “Fully-Paid” loans. In other
words, we want to minimize false negatives (Type II error). Therefore, the key metrics
in this research are accuracy, AUC value, KS value, F-measure, and Kappa. Using these
metrics, Table 6 demonstrates that LightGBM dominates all other models. Other metrics,
such as specificity and NPV, measure the model’s ability to identify “Fully-Paid” loans
(to fix Type I error). Although this study does not focus on Type I error, these metrics
also help to prevent some research bias. Overall, we recommend LightGBM as the most
promising loan classification model for LC. For details of the model’s parameters, please
refer to Appendix C.

8. Discussion and Conclusions
8.1. Discussion

The operation of P2P platforms is still in its development stage. When this study was
proposed, many P2P platforms still had no specific legal adjustments or guarantees for
personal credit. While charging handling fees to match lenders and borrowers, they offer
only primary regulations to protect their customers’ rights. If there is a dispute between the
two parties, it falls under civil law related to lending and borrowing. There are almost no
mortgage or other guarantees for debt release, debt recovery, or similar issues. Therefore,
this research aimed to develop a default prediction model to serve investors and P2P
platforms to reduce default risks and information asymmetry risks so that all parties can
trust each other and thus liquidate this emerging financial market.
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Despite being the largest P2P lending platform in the USA, the default rate of LC, as
demonstrated in Figure 2, is still very high, which proves that this platform has not been
effective in debt classification. Thus, it is not difficult to recognize the similar potential
risk of other smaller P2P lending companies. By solving this problem of LC in particular,
and P2P lending platforms in general, our paper contributes to other subjects as well. All
eight models selected to predict the default risk of LC produce relatively good results.
Although the difference in accuracy between models is not too high, it is significant when
applied to a sizeable P2P lending platform because “even when the default rate increases
by 0.1 percent, it will cause large losses to the platform and investors” and “even a 0.1
percent improvement is significant for P2P platforms.” [11]. In addition, other financial
institutions such as banks or policymakers may also consider applying AI and statistical
models to solve similar problems, depending on their dataset and the techniques available.

We adopted nine different metrics to measure the performance of the models. Except
for the recall rate, all metrics prove that LightGBM almost outperforms the other models.
We also carefully applied Student’s t-test to reinforce the significance of this conclusion.
Therefore, we suggest that LightGBM be widely applied in credit rating in the P2P lending
industry. Other financial institutions can also utilize LightGBM on their datasets to test the
effectiveness of this model.

8.2. Conclusions

This study contributes to predicting the default risk of P2P lending platforms, both in
theory and in practice.

For theoretical contributions, based on the data disclosed by Lending Club, four data
pre-processing steps are proposed to improve data quality. In comparison to previous
studies, we selected features by excluding post-event variables and balanced the dataset
to a ratio of 1:1. We adopted eight methods to construct default prediction classifiers,
including three statistical models and five AI models. These models were evaluated by the
confusion matrix series of metrics, AUC-ROC curve, and KS chart, and lastly, Student’s
t-test was used to examine whether there were significant differences between the models.
Our study synthesizes almost all theoretically necessary steps, from data processing to
building default risk prediction models and evaluation methods, the concepts of which are
explained in a systematic and easy-to-understand manner. Thus, by referencing our paper,
readers new to AI or statistics can grasp the fundamental knowledge and be relatively up
to date with the most recently applied models.

For practical contributions, this study finds that LightGBM significantly outperforms
the other models by 2.91% using the accuracy metric. For a large-scale P2P platform such
as Lending Club, even a slight improvement in default prediction can significantly impact
revenue. However, although Lending Club manages to collect big data from its customers,
it has not adequately utilized the dataset [8]. In the Results Analysis section, we prove that
if LightGBM is applied, it is expected to increase the revenue of Lending Club by nearly
USD 24 million compared to other models. Besides that, if the effectiveness of information
can be enhanced, the accuracy of auditing can be improved, the risk of default on the
platform can be reduced, and the lender’s rights can also be indirectly protected, so lenders
will be more willing to invest funds in the P2P market. Borrowers will also be more likely
to participate in a healthy financial environment.

Due to the limitations of this research, there are still some issues that require further
study: (1) This study does not focus on optimizing the parameters or conducting sensi-
tivity analyses, so we recommend that future studies deploy algorithms to automate the
optimization of parameters for better results. (2) The pre-processing procedures proposed
in this study can be improved by optimizing the proportion of data samples. Besides the
undersampling technique, future research can try oversampling or the Synthetic Minority
Oversampling Technique (SMOTE). (3) Future studies may exploit feature selection meth-
ods such as genetic algorithms (GA), stepwise regression, or particle swarm optimization
(PSO). (4) The same research process can be applied to other datasets in various P2P lending
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markets or by screening the time periods. Finally (5), we encourage further studies to
use innovative models or combinations of multiple algorithms to predict P2P lending
default risks.
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Appendix A. Detailed Description of Features

Table A1. Detailed description of features.

ORDER FEATURES DESCRIPTONS

1 acc_open_past_24mths Number of trades opened in past 24 months.
2 annual_inc The self-reported annual income provided by the borrower during registration.

3 application_type Indicates whether the loan is an individual application or a joint application with two
co-borrowers.

4 chargeoff_within_12_mths Number of Charged-Offs within 12 months.
5 collections_12_mths_ex_med Number of collections in 12 months excluding medical collections.

6 delinq_2yrs The number of 30+ days past-due incidences of delinquency in the borrower’s credit file for the
past 2 years.

7 delinq_amnt Accounts on which the borrower is now delinquent.
8 fico_range_high The upper boundary range that the borrower’s FICO at loan origination belongs to.
9 fico_range_low The lower boundary range that the borrower’s FICO at loan origination belongs to.
10 funded_amnt The total amount committed to that loan at that point in time.
11 funded_amnt_inv The total amount committed by investors to that loan at that point in time.
12 grade LC-assigned loan grade.

13 home_ownership The home ownership status provided by the borrower during registration or obtained from the
credit report. Our values are: RENT, OWN, MORTGAGE, and OTHER.

14 initial_list_status The initial listing status of the loan. Possible values are—W, F.
15 inq_fi Number of personal finance inquiries.
16 inq_last_12m Number of credit inquiries in past 12 months.
17 inq_last_6mths The number of inquiries in past 6 months (excluding auto and mortgage inquiries).
18 installment The monthly payment owed by the borrower if the loan originates.
19 int_rate Interest rate on the loan.
20 issue_d The month in which the loan was funded.

21 loan_amnt The listed amount of the loan applied for by the borrower. If at some point in time, the credit
department reduces the loan amount, then it will be reflected in this value.

22 max_bal_bc Maximum current balance owed on all revolving accounts.
23 mo_sin_old_rev_tl_op Months since oldest revolving account opened.
24 mo_sin_rcnt_rev_tl_op Months since most recent revolving account opened.
25 mo_sin_rcnt_tl Months since most recent account opened.
26 mort_acc Number of mortgage accounts.
27 num_accts_ever_120_pd Number of accounts ever 120 or more days past due.
28 num_actv_bc_tl Number of currently active bankcard accounts.
29 num_actv_rev_tl Number of currently active revolving trades.
30 num_bc_sats Number of satisfactory bankcard accounts.
31 num_bc_tl Number of bankcard accounts.
32 num_il_tl Number of installment accounts.
33 num_op_rev_tl Number of open revolving accounts.
34 num_rev_accts Number of revolving accounts.
35 num_rev_tl_bal_gt_0 Number of revolving trades with balance >0.
36 num_sats Number of satisfactory accounts.
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Table A1. Cont.

ORDER FEATURES DESCRIPTONS

37 num_tl_90g_dpd_24m Number of accounts 90 or more days past due in last 24 months.
38 num_tl_op_past_12m Number of accounts opened in past 12 months.
39 open_acc The number of open credit lines in the borrower’s credit file.
40 open_acc_6m Number of open trades in last 6 months.
41 open_act_il Number of currently active installment trades.
42 open_il_12m Number of installment accounts opened in past 12 months.
43 open_il_24m Number of installment accounts opened in past 24 months.
44 open_rv_12m Number of revolving trades opened in past 12 months.
45 open_rv_24m Number of revolving trades opened in past 24 months.
46 pct_tl_nvr_dlq Percent of trades never delinquent.
47 pub_rec Number of derogatory public records.
48 pub_rec_bankruptcies Number of public record bankruptcies.
49 purpose A category provided by the borrower for the loan request.
50 revol_bal Total credit revolving balance.
51 term The number of payments on the loan. Values are in months and can be either 36 or 60.
52 title The loan title provided by the borrower.
53 tot_coll_amt Total collection amounts ever owed.
54 tot_cur_bal Total current balance of all accounts.
55 tot_hi_cred_lim Total high credit/credit limit.
56 total_acc The total number of credit lines currently in the borrower’s credit file.
57 total_bal_ex_mort Total credit balance excluding mortgage.
58 total_bal_il Total current balance of all installment accounts.
59 total_bc_limit Total bankcard high credit/credit limit.
60 total_cu_tl Number of finance trades.
61 total_il_high_credit_limit Total installment high credit/credit limit.
62 total_rev_hi_lim Total revolving high credit/credit limit.
63 verification_status Indicates if income was verified by LC, not verified, or if the income source was verified.

Appendix B. Model’s p-Values for Each Metric

Table A2. The p-values for AUC metric.

Bayesian
Classifier CNN Random Forest LDA LightGBM Logistic

Regression ANN Decision Tree

Bayesian
Classifier 1.0000

CNN 0.0000 *** 1.0000
Random

Forest 0.2521 0.0000 *** 1.0000

LDA 0.0000 *** 0.1008 0.0000 *** 1.0000
LightGBM 0.0000 *** 0.0110 ** 0.0000 *** 0.0001 *** 1.0000

Logistic
Regression 0.0000 *** 0.1115 0.0000 *** 0.8963 0.0001 *** 1.0000

ANN 0.0000 *** 0.8995 0.0000 *** 0.0627 * 0.0103 ** 0.0684 * 1.0000
Decision

Tree 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 1.0000

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

Table A3. The p-value for KS metric.

Bayesian
Classifier CNN Random Forest LDA LightGBM Logistic

Regression ANN Decision Tree

Bayesian
Classifier 1.0000

CNN 0.0000 *** 1.0000
Random

Forest 0.0596 * 0.0000 *** 1.0000

LDA 0.0000 *** 0.2967 0.0000 *** 1.0000
LightGBM 0.0000 *** 0.0046 *** 0.0000 *** 0.0002 *** 1.0000

Logistic
Regression 0.0000 *** 0.3013 0.0000 *** 0.9358 0.0001 *** 1.0000

ANN 0.0000 *** 0.6565 0.0000 *** 0.1491 0.0175 ** 0.1459 1.0000
Decision

Tree 0.0176 ** 0.0000 *** 0.3528 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 1.0000

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table A4. The p-value for specificity metric.

Bayesian
Classifier CNN Random Forest LDA LightGBM Logistic

Regression ANN Decision Tree

Bayesian
Classifier 1.0000

CNN 0.0000 *** 1.0000
Random

Forest 0.5197 0.0000 *** 1.0000

LDA 0.0000 *** 0.2096 0.0000 *** 1.0000
LightGBM 0.0000 *** 0.2349 0.0000 *** 0.0002 *** 1.0000

Logistic
Regression 0.0000 *** 0.1868 0.0000 *** 0.9341 0.0001 *** 1.0000

ANN 0.0000 *** 0.9130 0.0000 *** 0.3059 0.2236 0.2803 1.0000
Decision

Tree 0.0000 *** 0.2980 0.0000 *** 0.8565 0.0027 *** 0.8007 0.3979 1.0000

*** Significant at the 1% level.

Table A5. The p-value for NPV.

Bayesian
Classifier CNN Random Forest LDA LightGBM Logistic

Regression ANN Decision Tree

Bayesian
Classifier 1.0000

CNN 0.4795 1.0000
Random

Forest 0.1473 0.3456 1.0000

LDA 0.5267 0.9475 0.3309 1.0000
LightGBM 0.5254 0.0974 * 0.0169 ** 0.1282 1.0000

Logistic
Regression 0.6185 0.8117 0.2553 0.8688 0.1677 1.0000

ANN 0.4093 0.7425 0.7113 0.7125 0.1555 0.6241 1.0000
Decision

Tree 0.0000 *** 0.0000 *** 0.0002 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0010 *** 1.0000

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

Table A6. The p-value for recall rate.

Bayesian
Classifier CNN Random Forest LDA LightGBM Logistic

Regression ANN Decision Tree

Bayesian
Classifier 1.0000

CNN 0.0029 *** 1.0000
Random

Forest 0.2565 0.0023 *** 1.0000

LDA 0.0021 *** 0.3997 0.0000 *** 1.0000
LightGBM 0.0008 *** 0.6293 0.0000 *** 0.4186 1.0000

Logistic
Regression 0.0026 *** 0.3261 0.0001 *** 0.7801 0.2542 1.0000

ANN 0.0045 *** 0.8472 0.0062 *** 0.3614 0.5326 0.3057 1.0000
Decision

Tree 0.0000 *** 0.0027 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0182 ** 1.0000

** Significant at the 5% level; *** significant at the 1% level.
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Table A7. The p-value for precision.

Bayesian
Classifier CNN Random

Forest LDA LightGBM Logistic
Regression ANN Decision

Tree

Bayesian
Classifier 1.0000

CNN 0.0000 *** 1.0000
Random

Forest 0.8778 0.0000 *** 1.0000

LDA 0.0000 *** 0.1339 0.0000 *** 1.0000
LightGBM 0.0000 *** 0.0469 ** 0.0000 *** 0.0003 *** 1.0000

Logistic
Regression 0.0000 *** 0.1155 0.0000 *** 0.9848 0.0001 *** 1.0000

ANN 0.0000 *** 0.7368 0.0000 *** 0.3504 0.0467 ** 0.3366 1.0000
Decision

Tree 0.0089 *** 0.0006 *** 0.0011 *** 0.0083 *** 0.0000 *** 0.0050 *** 0.0048 *** 1.0000

** Significant at the 5% level; *** significant at the 1% level.

Table A8. The p-value for F-measure.

Bayesian
Classifier CNN Random

Forest LDA LightGBM Logistic
Regression ANN Decision

Tree

Bayesian
Classifier 1.0000

CNN 0.6439 1.0000
Random

Forest 0.2736 0.5760 1.0000

LDA 0.7704 0.7901 0.2724 1.0000
LightGBM 0.2350 0.0812 * 0.0025 *** 0.0395 ** 1.0000

Logistic
Regression 0.8865 0.6531 0.1487 0.8115 0.0347 ** 1.0000

ANN 0.3506 0.6048 0.9170 0.4036 0.0354 ** 0.3093 1.0000
Decision

Tree 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0001 *** 1.0000

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

Table A9. The p-value for Kappa.

Bayesian
Classifier CNN Random

Forest LDA LightGBM Logistic
Regression ANN Decision

Tree

Bayesian
Classifier 1.0000

CNN 0.0000 *** 1.0000
Random

Forest 0.4293 0.0000 *** 1.0000

LDA 0.0001 *** 0.3739 0.0000 *** 1.0000
LightGBM 0.0000 *** 0.0029 *** 0.0000 *** 0.0011 *** 1.0000

Logistic
Regression 0.0000 *** 0.3938 0.0000 *** 0.8992 0.0005 *** 1.0000

ANN 0.0000 *** 0.4040 0.0000 *** 0.8964 0.0006 *** 0.9956 1.0000
Decision

Tree 0.2596 0.0000 *** 0.6309 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 1.0000

*** Significant at the 1% level.

Appendix C. AI Model’s Parameters

Parameters for statistical models are not considered. Table A10 shows the parameters
of AI models used in this study.
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Table A10. AI model’s parameters.

MODEL PARAMETERS VALUES

Decision Tree
Criterion ‘gini’
Splitter ‘best’
Min_samples_leaf 1

RandomForest
Criterion entropy
N_estimators 10
N_jobs 1

CNN

Conv1D[filters, kernel_size, activation,
input_shape] [64, 3, sigmoid, 63]

MaxPooling1D 2
Conv1D[filters, kernel_size, activation] [64, 3, sigmoid]
MaxPooling1D 2
Conv1D[filters, kernel_size, activation] [64, 3, sigmoid]
Flatten
Dense[units, activation] [64, sigmoid]
Dense[units, activation] [1, sigmoid]
Optimizer adam
Loss binary_crossentropy
Epochs 1000
Batch_size 2000

ANN

Dense[units, activation] [63, sigmoid]
Dense[units, activation] [25, sigmoid]
Dense[units, activation] [50, sigmoid]
Dense[units, activation] [100, sigmoid]
Dense[units, activation] [50, sigmoid]
Dense[units, activation] [25, sigmoid]
Dense[units, activation] [1, sigmoid]
Optimizer adam
Loss binary_crossentropy
Epochs 5000
Batch_size 2000

LightGBM

Learning_rate 0.01
Max_depth −1
Num_iteration 300
Objective binary
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