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Abstract: In this paper, a generalized information-theoretic framework for the emergence of multi-
resolution hierarchical tree abstractions is developed. By leveraging ideas from information-theoretic
signal encoding with side information, this paper develops a tree search problem which considers
the generation of multi-resolution tree abstractions when there are multiple sources of relevant and
irrelevant, or possibly confidential, information. We rigorously formulate an information-theoretic
driven tree abstraction problem and discuss its connections with information-theoretic privacy and
resource-limited systems. The problem structure is investigated and a novel algorithm, called G-tree
search, is proposed. The proposed algorithm is analyzed and a number of theoretical results are
established, including the optimally of the G-tree search algorithm. To demonstrate the utility of the
proposed framework, we apply our method to a real-world example and provide a discussion of the
results from the viewpoint of designing hierarchical abstractions for autonomous systems.

Keywords: hierarchical abstractions; hierarchical tree abstractions; information bottleneck method;
information-theoretic privacy; multi-resolution abstractions

1. Introduction

Driven by the human ability to discern pertinent details from immense amounts
of perceptual information, the process of identifying task-relevant structures from data
has long been considered a cornerstone to the development of intelligent systems [1–4].
To this end, researchers in the autonomous systems community have spend a great deal
of effort studying abstractions, which is a problem generally viewed as an information-
removal procedure to discard details that are not relevant for a given task [1–5]. The central
motivation for the employment of abstractions is to simplify the problem domain by
removing details that can be safely ignored, thereby creating a new representation of
the problem for which reasoning and decision making requires fewer computational
resources [1–3]. Despite their importance, autonomous systems thus far seldom design
abstractions on their own, instead relying on system designers and prior domain knowledge
to provide hand-crafted rules for the emergence of abstractions as a function of task in
various domains [3,5]. In spite of these shortcomings, abstractions have seen wide-spread
use in a number of autonomous systems applications.

Perhaps the most notable field of research where abstractions have seen particular
success is within the planning community [1]. Examples of work that employ the power
of abstract representations in planning for autonomous systems include [6–14]. The idea
of utilizing abstractions in planning is to form reduced graphs on which classical search
algorithms, such as A∗ and Dijkstra, are implemented. By reducing the number of vertices
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in the graph, the computational burden of executing these search algorithms is reduced.
However, while the cited works all leverage graph abstractions to ease the computational
cost of planning, the methods by which they generate these abstractions differ. For example,
in [7–11] the environment abstractions are created via the wavelet transform. In contrast, the
works of [12–14] generate abstractions of the environment in the form of multi-resolution
quadtree and octree data structures. Notably, the work of [12,13] develops a framework that
incorporates sensor uncertainty in robotic systems by merging ideas from multi-resolution
planning and probabilistic tree structures introduced in [15]. Today, the use of probabilistic
trees in robotics is ubiquitous, and has led to the development of open-source software
packages for their implementation [16].

Motivated by the possibly dynamic nature of the environment as well as sensing limita-
tions inherent to autonomous systems, the abstractions employed in all the aforementioned
works maintain high resolution nearest the autonomous agent (e.g., robotic ground vehicle),
while aggregating other portions of the environment at various resolution levels. In this way,
the region nearest to the vehicle is considered the most relevant, and thus preserved through
the process of abstraction. To strike a balance between path-optimality (system performance)
and the computational cost of planning, agents recursively re-plan as they traverse the world.

The design of abstractions has also been considered by information theorists in the context
of optimal signal encoding for communication over capacity-limited channels [17]. In order to
formulate mathematical optimization problems that yield optimal encoders it is required to
identify the relevant structure of the original signal necessary to guarantee that a satisfactory
system performance can be achieved. To this end, the framework of rate-distortion theory
approaches the optimal encoder problem by measuring the degree of compression via the
mutual information between the compressed representation and the original signal, whereas
the performance of the system is quantified by a user-provided distortion function [17]. In this
way, the distortion function implicitly specifies which aspects of the original signal are relevant,
and should be retained, in order to guarantee low distortion. A notable drawback to the
rate-distortion framework is, however, the need to specify the distortion function, which may
be difficult and non-intuitive for a given task [18].

In contrast, the information bottleneck (IB) method developed in [18] approaches the
optimal encoder problem to preserve relevant information more directly. That is, the IB
method considers an optimal encoder problem where the degree of achieved compression
is captured by the mutual information between the compressed and original signals, and
the model quality is measured by the mutual information between the compressed repre-
sentation and an auxiliary variable which is assumed to contain task-relevant information.
The IB approach is entirely data-driven, requiring only the joint distribution of the original
signal and relevant information (i.e., the data) in order to be applied.

Owing to its general statistical formulation, the IB method, or some variation of it,
has been considered in a number of studies [19–26]. Among these works, reference [19]
develops an approach to obtain deterministic encoders to an IB-like problem motivated
by reducing the number of clusters in the compressed space as opposed to designing en-
coders for communication. Consequently, the deterministic IB [19] measures the degree of
achieved compression not by the mutual information between the original and compressed
representations, as in communication systems, but by the entropy of the reduced space.
The work of [20] considers the IB problem with side-information, allowing for both rel-
evant and irrelevant structures to be provided to aid the identification of task-relevant
information during the creation of signal encoders. The authors of [21,23] consider a
multivariate extension of the IB principle, employing the use of Bayesian networks to
specify the compression-relevance relations between the random variables to be main-
tained through the abstraction process. It should be noted that, while it does not directly
employ the IB principle in its formulation, the empirical coordination problem [27,28] con-
siders an information-theoretic compression problem over a graph, where interconnections
between vertices represent communication links that agents may use to correlate their
sequence of outcomes. Much like the multi-IB method [21,23], the network (communi-
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cation) topology specifies the statistical dependencies that are possible in the empirical
coordination problem. Observe, however, that the objective of the empirical coordination
problem is to characterize the set of achievable joint distributions that are possible with
various network topologies and communication (code) rates between vertices, whereas
the multi-IB problem is a generalization of the encoder-design problem considered by the
IB method to multivariate settings where the Bayesian networks are used to specify the
relationships between source, reproduction and prediction (relevance) variables.

Other variants of the IB principle include the work in [22], where the authors consider
the development of a bottom-up, agglomerative, hard clustering approach that employs the
IB objective in determining which clusters to myopically merge at each step of the proposed
algorithm. In related work inspired by the AIB problem, the authors of [29] exploit the structure
of the AIB merging rule to design algorithms that form compressed representations of images
by performing a sequence of greedy merges based on minimizing the stage-wise loss of relevant
information at each iteration. Crucially, however, the algorithms developed in [29] do not
consider the IB problem as they aim to design a sequence of myopic merges so as to minimize
the loss of only relevant information, as compared with the much more challenging IB problem
of simultaneously balancing information retention and information-theoretic compression.
Moreover, in contrast to the work presented in this paper, the algorithms developed in [29]
are not accompanied by theoretical performance guarantees that certify the optimality
of the abstractions, nor are the methods readily extendable to cases where information
from multiple sources must be considered in the design of compressed representations.
Finally, the research conducted by the authors of [24] considers the IB problem in the setting
of jointly-Gaussian data. More specifically, the authors of [24] established that when the
original signal and the auxiliary (relevant) variable are jointly Gaussian, the solution to the
IB problem is a noisy linear projection. For completeness, we note that when the data are
not jointly Gaussian, or are described by a general probability density function, a solution to
the IB problem is difficult to obtain. However, a number of studies have proposed methods
leveraging variational inference in order to obtain approximate solutions to the IB problem
in these cases [30–33].

Employing a unified viewpoint between abstractions in autonomy and those driven
by information-theoretic principles, the authors of [34–37] developed frameworks for the
emergence of abstractions in autonomous systems via methods inspired by information-
theoretic signal compression. For example, the work of [34] employs the use of the IB
principle to generate multi-resolution quadtree abstractions for planning, developing a
framework that couples environment resolution, information and path value. Moreover, the
research conducted in [35] utilizes environment abstractions to reduce the computational
cost of evaluating mutual-information objective functions in active sensing applications.
Of the reviewed works, those most closely related to the developments in this paper is that
of [36,37], where the authors develop algorithms to select multi-resolution trees that are
optimal with respect to the IB objective in both the soft-constrained (Lagrangian) [36] and
hard-constrained [37] settings of the IB problem.

Inspired by the recent developments in information-theoretic driven approaches for
generating abstractions for autonomous agents for the purposes of planning, the contri-
bution of this paper is the development of a generalized information-theoretic framework
that allows for multi-resolution tree abstractions to be obtained when multiple sources
of relevance and irrelevance are specified. The incorporation of irrelevant information al-
lows for connections between our framework and notions of information-theoretic privacy.
Moreover, our generalized approach allows for abstractions to be refined by removing
aspects of the relevant variables that are correlated with the irrelevant information structure,
thus allowing for more compressed representations to emerge. This is especially critical in
resource-constrained systems, which must make the best use of scarce on-board memory
and bandwidth-limited communication channels.

The remainder of the paper is organized as follows. We begin in Section 3 with a brief
overview of information-theoretic signal compression and detail the connection between
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hierarchical trees and signal encoders. Section 4 contains our formal problem statement.
We propose and discuss solution approaches in Section 5. In Section 6, we present a dis-
cussion and comparison between the information-bottleneck method and the information-
bottleneck problem with side-information (IBSI) in the setting of hierarchical tree abstractions.
Examples and results are discussed in Section 7 before concluding remarks in Section 8.
Proofs for the theoretical results presented in this paper are provided in the appendices.

2. Notation

Let R denote the set of real numbers and, for any integer n > 0, let Rn denote
the n-dimensional Euclidean space. The set of non-negative real numbers is denoted by
R+ = {x ∈ R : x ≥ 0}. For any vector x ∈ Rn, [x]i is the ith element of the vector x for
i ∈ {1, . . . , n}. For any integer n > 0, the collection of all non-negative n-dimensional
vectors is denoted Rn

+ = {x ∈ Rn : [x]i ≥ 0, 1 ≤ i ≤ n}. Given any two vectors x, y ∈ Rn,
the notation x ≤ y is understood component-wise; that is x ≤ y implies [x]i ≤ [y]i for all
i ∈ {1, . . . , n}. Unless otherwise stated, all logarithms are base e.

3. Preliminaries

The development of a framework for generating information-theoretic multi-resolution
abstractions requires the introduction of concepts from both information theory and graph
theory in order to rigorously define trees and encoder problems. We begin by introducing
necessary topics from information theory before proceeding to introduce hierarchical trees
and their connection to multi-resolution representations of the environment. In the interest
of succinctness, we only introduce the relevant topics from information theory necessary
for the developments of our framework, and refer the interested readers to [17,38] for a
more comprehensive exposition of information theoretic principles and classical signal
compression frameworks. We close this section by elucidating how multi-resolution trees
can be viewed as deterministic encoders having a special structure, thereby allowing us to
employ information-theoretic concepts from signal encoding theory to formulate the tree
abstraction problem we consider in this paper.

Information-theoretic frameworks for compression model signals according to their
statistical structure. Consequently, we require the introduction of a probability space. To
this end, let (Ω,F ,P) be a probability space with finite sample space Ω, σ-algebra F and
probability measure P. We define the random variables X : Ω → R, Y : Ω → R, and
T : Ω → R, where the random variable X has probability distribution (mass function)
assigned according to p(x) = P({ω ∈ Ω : X(ω) = x}), with the mass functions for Y and
T defined analogously.

3.1. Mutual Information

Given two distributions p(x) and ν(x) over the same set of outcomes, the Kullback-
Leibler (KL) divergence between the distributions p(x) and ν(x) is

DKL(p(x), ν(x)) , ∑
x

p(x) log
p(x)
ν(x)

. (1)

The KL-divergence is non-negative and equals zero if and only if p(x) = q(x) for
all outcomes x [17]. The mutual information between two random variables X and T is
defined in terms of the KL-divergence as

I(T; X) , DKL(p(t, x), p(t)p(x)) = ∑
t,x

p(t, x) log
p(t, x)

p(t)p(x)
. (2)

The mutual information is symmetric (i.e., I(T; X) = I(X; T)), non-negative, and
equals zero if and only if p(t, x) = p(t)p(x). The mutual information plays an important
role in signal compression theory where it represents the code rate, or average number of
bits per source symbol. Consequently, if T is a compressed representation (or reproduction)
of X, then lower values of I(T; X) correspond to greater degrees of achieved compression.
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In the more general setting, the mutual information is a measure of the degree of statistical
correlation between the random variables X and T, where I(T; X) = 0 if and only if X and
T are independent. The mutual information also satisfies

I(T; X) = H(X)− H(X|T) = H(T)− H(T|X), (3)

where H(X) is the Shannon entropy (the Shannon entropy of the random variable X is
H(X) = −∑x p(x) log p(x)) of the random variable X and H(T|X) is the conditional entropy,
measuring the average uncertainty in T when given knowledge of X. Lastly, the Jensen-
Shannon divergence between a collection of probability distributions {p1(x), . . . , pn(x)}with
weights Π ∈ Rn

+ is given by

JSΠ(p1(x), . . . , pn(x)) =
n

∑
i=1

[Π]iDKL(pi(x), p̄(x)), (4)

where 0 ≤ [Π]i ≤ 1 for all i ∈ {1, . . . , n}, ∑n
i=1[Π]i = 1 and p̄(x) = ∑n

i=1[Π]i pi(x) [22,39,40].

3.2. Trees and Trees as Encoders

Our goal in this paper is to leverage information-theoretic signal compression principles
in order to generate abstractions for autonomous systems in the form of multi-resolution
tree structures. However, existing frameworks for signal encoding, such as rate-distortion
theory [17] or the information bottleneck (IB) method [18], do not impose any structural
constraints on the resulting encoder in order to guarantee that the solution corresponds to a
tree representation. The added constraint poses a significant challenge, as existing methods do
not consider such limitations on the set of feasible encoders. To tackle this problem, we will
elucidate how trees can be viewed as encoders with a specific structure.

We assume that the environment W ⊂ Rd is a d-dimensional grid-world and that
there is an integer ` > 0 such that the environment is contained within a hypercube of
side length 2`. A hierarchical, multi-resolution depiction ofW can be represented as a tree
(a tree is a connected acyclic graph [41]) T = (N (T ), E(T )) where N (T ) is a collection
of nodes and E(T ) is a collection of edges that describe the nodal interconnections [41].
We will henceforth limit the discussion to the case when the tree structure is that of a
quadtree, however it should be noted that the theory developed in this paper applies
straightforwardly to general tree structures. Given an environmentW , we will take T Q to
denote the set of all feasible quadtree representations ofW , and let TW ∈ T Q be the tree
whose leafs define the finest resolution depiction ofW . An example is shown in Figure 1.
In the sequel, we follow the notation and definitions of [36,37]. To this end, we let Nk(Tq)

denote all the nodes of the tree Tq ∈ T Q at depth k ∈ {0, . . . , `}, and, for any t ∈ N (TW ),
C(t) will denote the set of children of t. The set of leafs of Tq ∈ T Q is given by Nleaf(Tq)
and the interior node set is Nint(Tq) = N (Tq) \ Nleaf(Tq).

Given a formal definition of a tree, we are now ready to discuss the connection between
hierarchical trees and signal encoders. To this end, it was noted in [36,37] that hierarchical
tree abstractions ofW can be viewed as deterministic encoders having a specific structure.
To this end, notice from Figure 1 that by changing the tree T ∈ T Q we alter the multi-
resolution representation of the environmentW . Moreover, any tree T ∈ T Q can be created
by aggregating finest resolution cells to some parent node in the tree in such a way that the
resulting tree is in the space T Q.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

TW

x1 x2

x3 x4

x5 x6

x7 x8

x9 x10

x11 x12

x13 x14

x15 x16

t1 t2 t3 t4 x5 x6 x7 x8 x9 x10 x11 x12 t7 t8 t9 t10

t5 t6

T

t1 t2

t3 t4

t7 t8

t9 t10

t5

t6

Figure 1. (top) The tree TW together with 4× 4 grid world representation. (bottom) Multi-resolution
abstraction of the world W in the form of a quadtree. Notice that the tree T ∈ T Q is formed by
aggregating finest resolution cells that are leafs of TW to their parent nodes, which are leafs of T .
Aggregated nodes are shown in grey shading. In both figures, black filled nodes are those nodes that
are part of the set Nint(·), whereas nodes with no fill comprise the set Nleaf(·).

To make the connection to an information-theoretic framework for compression more
precise, we let X : Ω→ R be the random variable corresponding to the uncompressed signal.
In our setting, the uncompressed signal can be the original map of the environment, and
therefore the outcomes of X are the finest resolution grid cells ofW . For example, in the
full-resolution (4× 4) environment TW depicted in Figure 1, we have X : Ω→ {x1, . . . , x16}.
Notice that each tree Tq ∈ T Q defines a compressed random variable Tq : Ω→ R whose
outcomes are the elements of the set Nleaf(Tq). The relationship between X and Tq can
be characterized by a deterministic encoder pq(t|x) where pq(t|x) = 1 if and only if the
finest resolution cell x ∈ Nleaf(TW ) is aggregated to the node t ∈ Nleaf(Tq) in the tree Tq.
However, it is important to note that not all deterministic encoders correspond to valid
tree representations ofW , which is a challenge we will discuss in the development of our
proposed solution approach.

The observation that a tree can be represented as a deterministic encoder, allows us to
express information-theoretic quantities as a function of the tree, described next. Consider,
for example, the case when a given joint distribution p(x, y) is provided, describing how the
finest resolution cells are correlated with a specified random variable Y, which we assume
contains task-relevant information. Imagine now that we wish to compress the signal X in
the form of a hierarchical tree so that the resulting tree is maximally retentive regarding the
relevant variable Y. The resulting joint distribution pq(t, x, y) can be computed according
to pq(t, x, y) = pq(t|x)p(x, y), which is a function of the tree Tq ∈ T Q, where we have
employed the fact that Tq is conditionally independent of Y when given X. From this, we
note that the distributions pq(t, y), pq(t, x), pq(t), p(x) and p(y) can be obtained via the
appropriate marginalization of the joint distribution pq(t, x, y). Therefore, we can write the
mutual information as a function of the tree as

IX(Tq) , I(Tq; X) = ∑
t,x

pq(t, x) log
pq(t, x)

pq(t)p(x)
, (5)

and

IY(Tq) , I(Tq; Y) = ∑
t,y

pq(t, y) log
pq(t, y)

pq(t)p(y)
, (6)

where IX(Tq) quantifies the degree of compression and IY(Tq) quantifies the amount of
relevant information contained in the tree Tq. In this setting, we note that the distributions
p(x) and p(y) do not depend on the tree Tq, as they can be obtained directly from the input
distribution p(x, y). In an analogous manner, one may also define the amount of irrelevant
information, represented by a random variable Z, contained in the tree Tq ∈ T Q as
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IZ(Tq) , I(Tq; Z) = ∑
t,z

pq(t, z) log
pq(t, z)

pq(t)p(z)
, (7)

where we assume that p(x, y, z) is provided and pq(t, x, y, z) = pq(t|x)p(x, y, z).
The expressions (5)–(7) may be generalized to the case where we have a collection

{Y1, . . . , Yn} of relevant and {Z1, . . . , Zm} of irrelevant variables, respectively, as follows.
Given the joint distribution p(x, y1, . . . , yn, z1, . . . , zm) specifying the correlations between
relevant and irrelevant variables, the information of each variable contained in the tree
Tq ∈ T Q is given by

IYi (Tq) = I(Tq; Yi) = ∑
t,yi

pq(t, yi) log
pq(t, yi)

pq(t)p(yi)
, i ∈ {1, . . . , n}, (8)

and

IZj(Tq) = I(Tq; Zj) = ∑
t,zj

pq(t, zj) log
pq(t, zj)

pq(t)p(zj)
, j ∈ {1, . . . , m}, (9)

where pq(t, x, y1, . . . , yn, z1, . . . , zm) = pq(t|x)p(x, y1, . . . , yn, z1, . . . , zm). Having related
trees to signal encoders and showing how mutual information terms can be written as a
function of the tree Tq ∈ T Q, we now turn to formally state the problem we consider for
the remainder of the paper.

4. Problem Formulation

In Section 3, we discussed the relation between trees and signal encoders and showed
how the observation that a tree Tq ∈ T Q can be represented as a deterministic encoder
pq(t|x) allows us to quantify the information contained in the tree. With these observations,
we can now formally state the problem we consider in this paper.

Problem 1. Given the environmentW , vectors β ∈ Rn
+ and γ ∈ Rm

+, a scalar α ≥ 0 and the joint
distribution p(x, y1, . . . , yn, z1, . . . , zm), consider the problem of maximizing

max
Tq∈T Q

n

∑
i=1

[β]i IYi (Tq)−
m

∑
j=1

[γ]j IZj(Tq)− αIX(Tq).

It should be noted that Problem 1 cannot be solved by applying existing algorithms
(e.g., the Blahut-Arimoto algorithm [17,18] or the iterative IB method [18,39]) from signal
encoding theory as the set of feasible solutions is discrete, in addition to the presence of the
constraint that pq(t|x) must correspond to a tree Tq ∈ T Q. The added constraint poses
significant technical challenges, as it is not obvious how this constraint can be represented
mathematically so as to render Problem 1 solvable via numerical methods. Moreover, as a
result of the discrete nature of T Q, it follows that Problem 1 cannot be solved via standard
(sub-)gradient approaches from optimization theory, as it belongs to a class of combinatorial
optimization problems. Despite these challenges, in the next section we propose a novel and
tractable numerical algorithm to find a solution to Problem 1 with theoretical guarantees.

Before proceeding, we provide a few comments regarding the relation of Problem 1 to
other areas of research. Namely, Problem 1 is similar to problems considered in the information-
theoretic security community [42–44] where {Z1, . . . , Zm} are viewed as private variables
whose information content we wish not to disclose to an un-trusted party. In this setting, the
value of IZj(T ) represents the amount of private information disclosed by the tree T ∈ T Q
and the vector of weights γ ∈ Rm

+ encodes the relative cost of private information disclo-
sure, allowing for the privacy variables to be distinguished in their importance of revelation.
Alternatively, one may interpret the privacy aspects of Problem 1 via conditional entropy.
Using (3) and (7), we can write IZj(Tq) = H(Zj) − H(Zj|Tq) and note that H(Zj) is con-
stant, given the data p(x, y1, . . . , yn, z1, . . . , zm). Consequently, performing the maximization
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in Problem 1 encourages solutions Tq ∈ T Q for which H(Zj|Tq) is as large as possible,
amounting to trees that attempt to make Zj and Tq independent since H(Zj|Tq) ≤ H(Zj).
Then, Fano’s inequality ([17], pp. 37–41) implies that the lower bound of the error probability
of any estimator designed to infer Zj from Tq increases as a function of H(Zj|Tq). It follows
that when H(Zj|Tq) large, the probability of error when estimating the value of Zj from Tq
increases [17,42]. Consequently, information regarding Zj remains protected.

It should be noted that the incorporation of additional irrelevant variables when design-
ing abstractions has been considered in other works. Previous approaches that introduce irrel-
evance variables when forming abstractions, such as the IBSI method [20], employ the view-
point that the information provided via {Z1, . . . , Zm} is general task-irrelevant information,
with no motivation from an information-theoretic security standpoint. In the IBSI approach,
the incorporation of irrelevant information helps improve the quality of abstractions with
respect to the task-relevant variable, as aspects of the task-relevant variable that are correlated
with the irrelevant information can be discarded when forming the compressed representa-
tions. In summary, we note that, while our formulation given by Problem 1 can be interpreted
from an information-theoretic security standpoint, the main motivation for our approach is
not one of security. Rather, it is the development of a general information-theoretic framework
that allows for both relevant and irrelevant information to be specified and balanced ver-
sus compression in the design of multi-resolution tree abstractions for autonomous systems.
However, as the discussion above shows, the proposed framework could also be useful in
obscuring private information contained in quadtree abstractions.

5. Solution Approach

In this section, we discuss an approach to find a solution to Problem 1 and introduce a
tractable numerical algorithm that searches for an optimal tree as a function of the weight
parameters β ∈ Rn

+, γ ∈ Rm
+, and α ≥ 0. In what follows, it will be convenient to write the

objective of Problem 1 in terms of the function J : T Q ×Rn
+ ×Rm

+ ×R+ → R, defined by

J(Tq; β, γ, α) =
n

∑
i=i

[β]i IYi (Tq)−
m

∑
j=1

[γ]j IZj(Tq)− αIX(Tq). (10)

Then our problem is one of selecting a tree Tq̃ ∈ T Q such that

Tq̃ ∈ argmax
Tq∈T Q

J(Tq; β, γ, α). (11)

The evaluation of the objective (10) for a given tree Tq ∈ T Q may be computationally
expensive, as it requires the computation of each joint distribution p(t, yi), i ∈ {1, . . . , n}, and
p(t, zj), j ∈ {1, . . . , m}, as well as the evaluation of the mutual information terms (8) and (9),
each of which requires summation over the sample spaces of ΩTq , ΩYi and ΩZj for each
i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Such a computation is especially burdensome if the sample
spaces have a large number of elements. Instead, we seek an easier, less computationally costly
incremental approach toward evaluating the objective (10) for any Tq ∈ T Q.

To this end, we write the objective (10) for any Tq ∈ T Q as

J(Tq; β, γ, α) = J(T0; β, γ, α) +
q−1

∑
u=0

[J(Tu+1; β, γ, α)− J(Tu; β, γ, α)], (12)

where {T0, . . . , Tq−1} ⊆ T Q is a collection of trees in the space T Q. While the relation (12) is
valid for any tree Tq ∈ T Q and any collection {T0, . . . , Tq−1} ⊆ T Q, it was noted in [36,37]
that when the tree T0 ∈ T Q and the sequence {T0, . . . , Tq−1} ⊆ T Q is selected in a specific
way, the objective (12) reduces to a special form. Specifically, if we select T0 ∈ T Q as the
tree consisting of a single node where all finest resolution cells are aggregated, and the
sequence {T0, . . . , Tq−1} ⊆ T Q is constructed by expanding a leaf node of Tu to create
Tu+1 for u ∈ {0, . . . , q− 1}, then (12) can be expressed in terms of the local changes made
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in moving from the tree Ti to Ti+1. Formally, when the tree T0 ∈ T Q is selected to be
the root tree (the root tree RW is the tree RW ∈ T Q such that Nint(RW ) = ∅), and the
sequence {Tu}q

u=0 is constructed so that N (Tu+1) \ N (Tu) = C(t) = {t′1, . . . , t′4} for some
t ∈ Nleaf(Tu) for all u ∈ {0, . . . , q− 1}, the objective (12) takes the form

J(Tq; β, γ, α) = ∑
s∈Nint(Tq)

∆J(s; β, γ, α), (13)

where

∆J(t; β, γ, α) =
n

∑
i=1

[β]i∆IYi (t)−
m

∑
j=1

[γ]j∆IZj(t)− α∆IX(t), (14)

and ∆IYi (t) = IYi (Tu+1) − IYi (Tu), ∆IZj(t) = IZj(Tu+1) − IZj(Tu), ∆IX(t) = IX(Tu+1) −
IX(Tu) are given by

∆IYi (t) = p(t)JSΠ(p(yi|t′1), . . . , p(yi|t′4)), i ∈ {1, . . . , n}, (15)

∆IZj(t) = p(t)JSΠ(p(zj|t′1), . . . , p(zj|t′4)), j ∈ {1, . . . , m}, (16)

∆IX(t) = p(t)H(Π), (17)

p(yi|t) =
4

∑
u=1

[Π]u p(yi|t′u), (18)

p(zj|t) =
4

∑
u=1

[Π]u p(zj|t′u), (19)

p(t) =
4

∑
u=1

p(t′u), (20)

Π =
[

p(t′1)
p(t) , p(t′2)

p(t) , p(t′3)
p(t) , p(t′4)

p(t)

]
. (21)

The relations (15)–(21) are computed via direct calculation in terms of the difference
in mutual information between two encoders corresponding to the trees Tu+1, Tu ∈ T Q
that satisfy N (Tu+1) \ N (Tu) = C(t) for some t ∈ Nleaf(Tu). Observe that the condition
N (Tu+1) \ N (Tu) = C(t) for some t ∈ Nleaf(Tu) implies that the trees Tu+1 and Tu differ
only by a single nodal expansion. An example is shown in Figure 2. To show that the term
J(T0; β, γ, α) = 0 in (12) when the tree T0 is taken to be the root tree, we note from (3) that
0 ≤ I(T0; Yi) ≤ H(T0), 0 ≤ I(T0; Zj) ≤ H(T0) and 0 ≤ I(T0; X) ≤ H(T0). Then, since the
root tree has only a single leaf node, it follows that the distribution p0(t) is deterministic.
As a result, H(T0) = 0 and thus J(T0; β, γ, α) = 0.

It is important to note that the incremental relations (15)–(21) depend only on the
node t ∈ Nleaf(Tu) expanded in moving from the tree Tu to Tu+1, and not on any other
nodes in the tree. As a result, the evaluation of the incremental changes in information
are dependent only on the changes induced by expanding the node t ∈ Nleaf(Tu), thereby
alleviating the need to sum over all the outcomes of the random variable Tu as otherwise
required in order to evaluate the mutual information. Furthermore, the observation that the
objective and information terms can be decomposed into an incremental form according
to (13)–(21) allows for tractable algorithms to be designed in order to obtain a solution
to Problem 1. Lastly, it is important to note that there is no loss of generality in using the
expression (13). To see why this is the case, we present the following definition.

Definition 2 ([41]). A tree G = (N (G), E(G)) is a subtree of the tree H = (N (H), E(H)),
denoted by G ⊆ H, if N (G) ⊆ N (H) and E(G) ⊆ E(H).
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t t̂

Tq

(a)

t t̂

Tq̂

(b)

Figure 2. Two trees that differ by only a single leaf node expansion. In moving from tree (a) to (b),
the node t̂ is expanded, adding its children as leafs to create the tree shown in (b). Interior nodes
are shown in black, whereas leaf nodes are white. (a) Some tree Tq ∈ T Q for which t̂ ∈ Nleaf(Tu).
(b) The tree Tq̂ ∈ T Q which is created by expanding the node t̂ ∈ Nleaf(Tu).

Note that the root tree is a subtree of every tree in the space T Q. As a result, one can
always express the cost (10) as (13), since each tree Tq ∈ T Q can be obtained by starting at
the root tree T0 ∈ T Q and creating a sequence {Tu}q

u=0 such that N (Tu+1) \ N (Tu) = C(t)
for some t ∈ Nleaf(Tu) and all u ∈ {0, . . . , q− 1}. Next, we leverage the structure of our
problem to design a tractable algorithm in order to find the solution to Problem 1.

5.1. The Generalized Tree Search Algorithm (G-Tree Search)

In this section, we show how the structural properties of Problem 1 discussed in the
previous section can be exploited in order to yield a tractable algorithm to find a multi-
resolution tree that is a solution to (11). Specifically, among all trees T ∈ T Q, we seek those
trees that ensure no improvement of (10) is possible, as these trees provide the best trade-off
between relevant information retention, irrelevant information removal, and compression.
The following definition establishes the notion of optimality we employ throughout this paper.

Definition 3. A tree T ∈ T Q is optimal with respect to J if J(T̃ ; β, γ, α) ≤ J(T ; β, γ, α) for
all trees T̃ ∈ T Q.

To differentiate between candidate solutions, we specify additional properties consid-
ered favorable for an optimal multi-resolution tree. One such property is that the tree be
minimal, which is defined as follows.

Definition 4. A tree T ∈ T Q is minimal with respect to J if J(T̃ ; β, γ, α) < J(T ; β, γ, α) for
all trees T̃ ∈ T Q such that T̃ ⊂ T .

A tree that is both optimal and minimal will be called an optimal minimal tree.
Importantly, an optimal minimal tree is guaranteed to not contain any redundant nodal
expansions. In other words, removing any portion of an optimal minimal tree is guaran-
teed to result in a pruned tree that is strictly worse with respect to the objective function.
In contrast, if an optimal tree is not minimal, then some portion(s) of the tree can be pruned
with no loss in the objective value, indicating that the non-minimal tree contains redundant
nodal expansions. Thus, of all optimal trees, the minimal solution is preferred as it contains
the fewest number of leaf nodes among solution candidates and also requires the least
amount of resources to store in memory. Our goal is then to design an algorithm that
returns, as a function of β ∈ Rn

+, γ ∈ Rm
+ and α ≥ 0, an optimal minimal tree.

In theory, one may take a number of approaches to find a solution (not necessar-
ily optimal) to Problem 1. One approach is the brute-force method of generating each
tree in the space T Q and picking one that satisfies (11); a process which is akin to grid-
search methods in optimization theory. However, such an exhaustive approach does not
scale well to large environments. Alternatively, one may notice that the node-wise struc-
ture of the cost (14) renders the implementation of a greedy approach straightforward.
Specifically, given any tree Tu ∈ T Q one may expand the leaf node t ∈ Nleaf(Tu) that
results in the greatest change in the cost ∆J(t; β, γ, α). By expanding a node t ∈ Nleaf(Tu),
we remove {t} and add its children C(t) to the leaf set to generate the tree Tu+1, leaving
other nodes unchanged. One may continue this process until a tree is reached for which no
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further improvement is possible, as quantified by the one-step incremental objective value
∆J(t; β, γ, α). This myopic steepest-ascent-like approach is not guaranteed to find an opti-
mal solution, however, as the process may fail to identify expansions that are suboptimal
with respect to the one-step objective ∆J(t; β, γ, α), but lead to higher-valued expansions in
future iterations. Consequently, we seek to incorporate the value of expansions-to-come
when deciding whether or not to expand a leaf node of the current tree.

To this end, we introduce a generalized tree search algorithm we call G-tree search.
The G-tree search algorithm works from top-down, starting at the root treeRW ∈ T Q and
utilizing the function G : N (TW )×Rn

+ ×Rm
+ ×R+ → R+, defined as

G(t; β, γ, α) =

{
max{∆J(t; β, γ, α) + ∑t′∈C(t) G(t′; β, γ, α), 0}, if t ∈ Nint(TW ),
0, otherwise,

(22)

in order to decide which nodes to expand. Specifically, given any tree Tu ∈ T Q, G-tree
search will inspect the G-values, computed according to (22), for each node t ∈ Nleaf(Tu)
and expand a node t ∈ Nleaf(Tu) for which G(t; β, γ, α) > 0. Once a node t ∈ Nleaf(Tu) is
selected for expansion, a new tree Tu+1 ∈ T Q is defined by removing the node t and adding
its children, C(t), to the set of leafs, leaving the other nodes in the tree Tu unchanged. In this
way, the tree Tu+1 is related to Tu via Nleaf(Tu+1) = (Nleaf(Tu) \ {t}) ∪ C(t). The process
then repeats until we find a tree Tq̃ ∈ T Q for which there does not exist t ∈ Nleaf(Tq̃) such
that G(t; β, γ, α) > 0. Note that by designing the algorithm in this way, the constraint T ∈
T Q is naturally enforced. The G-tree search method is detailed in Algorithm 1. Note that
the pseudo-code for a greedy tree search is identical to that of G-tree search in Algorithm 1
with each G(t; β, γ, α) replaced by ∆J(t, β, α, γ). We will discuss the shortcomings of the
greedy approach in more detail in Section 6.1.

Algorithm 1 The G-tree Search Algorithm.
input : p(x, y1, . . . , yn, z1, . . . , zm), β ∈ Rn

+, γ ∈ Rm
+, α ≥ 0

output :a tree Tq̃ ∈ T Q

G(t; β, γ, α)← ComputeGvalues(p(x, y1, . . . , yn, z1, . . . , zm), β, γ, α);

initialize: Nleaf(T0) = Nleaf(RW ), u = 0;

while there exists t ∈ Nleaf(Tu) such that G(t; β, γ, α) > 0 do
Select any node t ∈ {t̂ ∈ Nleaf(Tu) : G(t; β, γ, α) > 0};
Create the tree Tu+1: Nleaf(Tu+1)← (Nleaf(Tu) ∪ C(t)) \ {t};
(IYi (Tu+1), IZj(Tu+1), IX(Tu+1))← UpdateInformation(t);
u← u + 1;

end
Set Tq̃ = Tu and return solution;

A few comments are in order regarding the G-tree search method. First, the rou-
tine ComputeGvalues(·) populates the G-values, as follows. The routine utilizes the
joint distribution p(x, y1, . . . , yn, z1, . . . , zm) in order to compute the values of ∆IYi (t),
∆IZj(t) and ∆IX(t) for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m} and t ∈ Nint(TW ). Given
the weights (β, γ, α) ∈ Rn

+ × Rm
+ × R+ one may compute ∆J(t; β, γ, α) and apply the

rule (22) to obtain the G-values via a recursion that begins at the leafs of TW . The
pseudo-code for the ComputeGvalues procedure is shown in Algorithm 2. Lastly, the
function UpdateInformation(t) updates the information contained in the tree at the cur-
rent time-step of the solution. It does so by utilizing the values of ∆IYi (t), ∆IZj(t) and
∆IX(t) for each i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, which were computed in the process
of evaluating the nodal G-values described above. The information contained in the tree
Tu+1 is then given by IYi (Tu+1) = IYi (Tu) + ∆IYi (t), IZj(Tu+1) = IZj(Tu) + ∆IZj(t) and
IX(Tu+1) = IX(Tu) + ∆IX(t) where i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Recall that start-
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ing the algorithm at the root tree T0 ∈ T Q implies, for all i and j, we have IYi (T0) = 0,
IZj(T0) = 0 and IX(T0) = 0.

Algorithm 2 The ComputeGvalues routine.
input : p(x, y1, . . . , yn, z1, . . . , zm), β ∈ Rn

+, γ ∈ Rm
+, α ≥ 0, depth `.

output : G(t; β, γ, α) for all t ∈ N (TW )

initialize: G(t; β, γ, α) = 0 for all t ∈ N (TW );

for k = `− 1 to 0 do
for t ∈ Nk(TW ) do
{t′1, . . . , t′4} = C(t);
p(t) = p(t′1) + . . . + p(t′4);
if p(t) > 0 then

Π =
[

p(t′1)
p(t) , . . . , p(t′4)

p(t)

]
;

p(zj|t) = ∑4
u=1[Π]u p(zj|t′u), p(yi|t) = ∑4

u=1[Π]u p(yi|t′u);
∆IX(t) = p(t)H(Π);
∆IYi (t) = p(t)JSΠ(p(yi|t′1), . . . , p(yi|t′n));
∆IZj(t) = p(t)JSΠ(p(zj|t′1), . . . , p(zj|t′n));

else
∆IYi (t) = 0, ∆IZj(t) = 0, ∆IX(t) = 0;

end
∆J(t; β, γ, α) = ∑n

i=1[β]i∆IYi (t)−∑m
j=1[γ]j∆IZj(t)− α∆IX(t);

G(t; β, γ, α) = max{∆J(t; β, γ, α) + ∑4
u=1 G(t′u; β, γ, α), 0};

end
end
return G(t; β, γ, α);

5.2. Theoretical Analysis of the G-Tree Search Algorithm

In this section, we discuss the theoretical properties of the G-tree search algorithm
introduced in Section 5.1. Our main result is that the G-tree search algorithm returns an
optimal minimal tree. In our analysis, we will oftentimes refer to the part of a tree Tq ∈ T Q
that is descendant (or rooted) at some node t ∈ N (Tq). To make this notion precise, we
have the following definition.

Definition 5 ([36]). Let t ∈ N (Tq) be a node in the tree Tq ∈ T Q. The subtree of Tq ∈ T Q
rooted at node t is denoted by Tq(t) and has node set

N
(
Tq(t)

)
=
{

t′ ∈ N (Tq) : t′ ∈
⋃

i
Di

}
,

where D1 = {t}, Di+1 = A(Di), and

A(Di) =
{

t′ ∈ N (TW ) : t′ ∈
⋃

t̂∈Di

C
(
t̂
)}

.

An example of a subtree is shown in Figure 3. Each time the G-tree search visits and
expands a node t ∈ Nint(TW ), the algorithm can be viewed as determining the part of the
subtree rooted at t for which a net increase in the objective can be achieved. For example,
consider the case when the algorithm is provided with a tree Tq ∈ T Q. In order to determine
whether or not expanding some t ∈ Nleaf(Tq) will lead to a tree of greater objective value
than Tq, the algorithm must determine if expanding the node t leads to future expansions
that result with a tree Tq̃ ∈ T Q for which J(Tq̃; β, γ, α) > J(Tq; β, γ, α). Of course, if
∆J(t; β, γ, α) > 0 for some t ∈ Nleaf(Tq), then it is clear that expanding the node t leads
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to a tree that improves the value of the objective. However, when ∆J(t; β, γ, α) ≤ 0, the
decision of whether or not to expand t ∈ Nleaf(Tq) is not so clear, as the algorithm must
then consider if, by continuing the expansion process along the children of t, can result
in a tree that improves of the overall objective value. In essence, we are interested in
investigating how the G-function in (22) relates to the incremental objective value of a
subtree rooted at any t ∈ Nint(TW ) and to show that, if there exists a subtree rooted at t
that results in a overall improvement of the objective, then G(t; β, γ, α) > 0. To answer this
question, we have the following results.

Lemma 6. Let t ∈ Nint(TW ), β ∈ Rn
+, γ ∈ Rm

+ and α ≥ 0. Then,
G(t; β, γ, α) ≥ ∑s∈Nint(Tq(t))

∆J(s; β, γ, α) for all Tq ∈ T Q.

Proof. The proof is presented in Appendix A.

Corollary 7. Let t ∈ Nint(TW ), β ∈ Rn
+, γ ∈ Rm

+ and α ≥ 0. If there exists a tree Tq ∈ T Q such
that ∑s∈Nint(Tq(t))

∆J(s; β, γ, α) > 0 then G(t; β, γ, α) > 0.

Proof. The result is immediate from Lemma 6.

t

Tq

(a)

t
Tq(t)

Tq

(b)

Figure 3. Example of a tree Tq ∈ T Q and the subtree Tq(t) rooted at t. (a) The tree Tq ∈ T Q

together with a node t ∈ Nint(Tq) shown. (b) the subtree Tq(t) rooted at t with original tree Tq shown
in background.

As a result of Lemma 6 and Corollary 7, we are guaranteed that, if there is a subtree
rooted at t for which an increase in the overall objective is possible, then G(t; β, γ, α) > 0.
Furthermore, we are guaranteed that the value of the G-function (22) is bounded below by
the incremental value of the objective contributed by any subtree rooted at t. The converse
to Lemma 6 and Corollary 7 is also of important; namely if we know G(t; β, γ, α) > 0 for
some t ∈ Nint(TW ), then it is of interest in establishing whether or not this implies that
there is a subtree rooted at t for which a net increase in the objective is possible. This leads
us to the following results.

Lemma 8. Let t ∈ Nint(TW ), β ∈ Rn
+, γ ∈ Rm

+ and α ≥ 0. If G(t; β, γ, α) > 0, then there exists
a tree Tq ∈ T Q such that G(t; β, γ, α) = ∑s∈Nint(Tq(t))

∆J(s; β, γ, α).

Proof. The proof is presented in Appendix B.

Corollary 9. Let t ∈ Nint(TW ), β ∈ Rn
+, γ ∈ Rm

+ and α ≥ 0. If G(t; β, γ, α) > 0, then there
exists a tree Tq ∈ T Q such that ∑s∈Nint(Tq(t))

∆J(s; β, γ, α) > 0.

Proof. The proof follows from Lemma 8.

Importantly, Lemma 8 establishes the connection between the G-function and the
incremental objective value, as well as the existence of a subtree rooted at t ∈ Nint(TW )
for which a net positive objective increment is possible, in the case when G(t; β, γ, α) > 0.
Moreover, Lemma 8 and Corollary 9 together guarantee that if the G-value of a node is
strictly positive, then there exists a subtree rooted at the node t ∈ Nint(TW ) such that
expanding t (and possibly continuing the expansions process along the children of t) will
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result in a tree that has strictly greater objective value. Also, observe that by combining the
results of Corollaries 7 and 9 we obtain the following lemma.

Lemma 10. Let t ∈ Nint(TW ), β ∈ Rn
+, γ ∈ Rm

+ and α ≥ 0. Then G(t; β, γ, α) > 0 if and only
if there exists a tree Tq ∈ T Q such that ∑s∈Nint(Tq(t))

∆J(s; β, γ, α) > 0.

Proof. The result is a consequence of Corollaries 7 and 9.

Lemma 10 is important, as it provides necessary and sufficient conditions linking
the existence of a subtree rooted at any node t ∈ Nint(TW ) to the value of the nodal
G-function value. We are now in a position to prove the optimality of the solution returned
by G-tree search, as stated by the following theorem.

Theorem 11. Assume β ∈ Rn
+, γ ∈ Rm

+ and α ≥ 0. Then, the G-tree search algorithm returns an
optimal minimal tree with respect to J.

Proof. The proof is given in Appendix C.

As a consequence of Theorem 11, we can guarantee that for any set of parameters
(β, γ, α) ∈ Rn

+ ×Rm
+ ×R+, the G-tree search algorithm will return a tree that is the optimal

and minimal solution to Problem 1.

5.3. Complexity Analysis

While Theorem 11 establishes that the G-tree search algorithm introduced in Section 5.1
returns an optimal minimal tree that satisfies (11), it is also important to characterize
the number of operations required to execute the algorithm, in the worst case. To this
end, we note that a tree TW ∈ T Q corresponding to some grid in the d-dimensional
space with side-length 2` has N = ∑`

k=0 2dk total nodes, where N = 2d` ∑`
k=0 2d(k−`) =

|Nleaf(TW )|(∑`
k=0 2d(k−`)) ≤ |Nleaf(TW )|(2d/(2d−1)) ≤ 2|Nleaf(TW )| for any integer d > 0.

As a result, the number of nodes in the tree is on the order of the number of leaf nodes of TW .
Thus, executing the G-tree search algorithm in Algorithm 1 once the G-function is known,
requires order |Nleaf(TW )| operations, as the search may visit, in the worst case, every node
in the tree. Now, note that for a given number of relevant variables n > 0 and irrelevant
variables m ≥ 0, the computation of the G-function requires on the order of n + m + 2
operations per node in the tree, corresponding to the calculation of ∆IYi (t), ∆IZj(t) and
∆IX(t) and G-function values. Thus, visiting each node in the tree requires on the order of
(n + m + 2)|Nleaf(TW )| operations. Consequently, updating the G-values and running the
G-tree search requires on the order of (n + m + 3)|Nleaf(TW )| operations in the worst case
for a given setting of the problem.

6. The IB and IBSI Principles as Special Cases

In this section, we show how obtaining multi-resolution trees via the information
bottleneck (IB) [18] and the information bottleneck with side-information (IBSI) [20] are
special cases of Problem 1. Moreover, we establish a relation between these two approaches,
showing how a tree solution to the IBSI problem can be obtained from the solution of the
IB problem, the latter of which does not consider the removal of irrelevant information
from the abstractions. Facilitating a theoretical connection between these two approaches
helps us understand the impact of irrelevant information on the resulting tree solutions,
and furthermore allows us to incorporate irrelevant information after-the-fact, which is
useful in applications when only relevant details are known ahead of time. We begin with
a brief overview of the IB and IBSI problems in the context of our problem.



Entropy 2022, 24, 809 15 of 29

6.1. Multi-Resolution Trees via the IB Principle and Drawbacks of Myopic Tree Search

Recall from Section 3 that the IB problem furnishes an approach to design compressed
representations of the original signal that are maximally informative regarding task-relevant
information. The IB method was first introduced in [18] and considers the optimization problem

min
p(t|x)

I(T; X)− βI(T; Y), (23)

where the minimization is over all conditional distributions p(t|x), and β ≥ 0 trades the
importance of compression and relevant information retention. It is important to note
that the original formulation of the IB problem does not impose any constraints on the
encoder p(t|x) beyond those required to ensure that p(t|x) is a valid probability distribution.
However, as discussed in Section 3, multi-resolution trees can be viewed as deterministic
encoders that have special structure. Consequently, one may employ the IB principle in
order to generate multi-resolution abstractions that compress the environment and retain
task-relevant information, which is given by the problem

max
T ∈T Q

IY(T )−
1
β

IX(T ), (24)

where (24) is obtained by multiplying (23) by the constant−1/β for β > 0 and restricting the
search to the space T Q. Recently, the problem (24) was considered by the authors of [36],
who introduce an algorithm called Q-tree search that returns, as a function of β > 0, an
optimal solution to (24). Interestingly, the Q-tree search algorithm emerges as a special case
of the more general G-tree search method developed in this paper by defining

∆L(t; β) = ∆J(t; 1, 0, 1/β), (25)

and by taking

Q(t; β) = G(t; 1, 0, 1/β). (26)

As a result, we see that the Q-tree search method in [36] is a special case of G-tree
search, where there is only a single relevant variable with unit weight, there is no irrelevant
information, and α = 1/β.

The single variable case also provides some intuition into the differences between
G-tree search and an approach that relies on a one-step steepest-ascent (greedy) method to
find a solution to (24). The pseudo-code for a greedy tree search is the same as that of G-tree
search in Algorithm 1 with each G(t; β, γ, α) replaced with ∆J(t; β, γ, α). Implementing a
greedy approach, a visited node is expanded only if the one-step cost ∆J(t; β, γ, α) > 0.
In the single variable case, this means from (25) that

∆L(t; β) = p(t)
[

JSΠ(p(y|t′1), . . . , p(y|t′4))−
1
β

H(Π)

]
> 0, (27)

or, equivalently (it can be shown that ∆L(t; β)→ 0 as p(t)→ 0. See ([36], Proposition 1) for
more details), JSΠ(p(y|t′1), . . . , p(y|t′4))−

1
β H(Π) > 0, where t′i ∈ C(t) for all i ∈ {1, . . . , 4}.

By changing β > 0, we alter the preference between trees that represent highly compressed
versions of X (low β) and trees that are more informative regarding Y (large β). From (27),
we see that the critical value of β > 0 for the node t ∈ Nint(TW ), denoted βcr : Nint(TW )→
[0, ∞], is given by

βcr(t) =

{ H(Π)
JSΠ(p(y|t′1),...,p(y|t′4))

, if JSΠ(p(y|t′1), . . . , p(y|t′4)) > 0,

∞, otherwise,
(28)

where C(t) = {t′1, . . . , t′4}. The node-wise critical β-values, βcr(t), determine at what point
the node will be expanded, should it be visited by the greedy search algorithm. Namely, if
β ≤ βcr(t) then the node t ∈ N (TW ) will not be expanded, even if the algorithm were
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to visit the node during the search. Moreover, we see from (28) that among those nodes
for which H(Π) is constant, those that have a greater diversity among the distributions
{p(y|t′1), . . . , p(y|t′4)} will have lower critical β-values than those nodes with less diver-
sity in the conditional distributions {p(y|t′1), . . . , p(y|t′4)}. Intuitively, what this means
is that nodes that provide more Y-information for a fixed amount of X-information will
be expanded at lower values of β compared with those that provide less Y-information
(e.g., more homogeneous cells), should these nodes be reached.

On the other hand, (28) also shows why a greedy approach may fail to find an optimal
solution, even in the single variable setting. To see why this is the case, consider the 4× 4
environment in Figure 4. In this example, Y : Ω → {0, 1} is the relevant variable, where
the grid shading shows the distribution p(y|x). The environment is symmetric in the sense
that each of the quadrants contains one cell for which p(y|x) = c for some 0 < c ≤ 1.
If we assume p(x) to be a uniform distribution, then when t is taken to be the root node of
TW , one will find that JSΠ(p(y|t′1), . . . , p(y|t′4)) = 0, H(Π) > 0, where {t′1, . . . , t′4} = C(t).
Consequently, from (28), we have βcr(t) = ∞. As a result, a greedy implementation will
never expand the root node and one will always recover the trivial abstraction, even though
there is relevant information in the environment. In contrast, the G-tree search method does
not suffer from this drawback, as it incorporates the reward-to-come of future expansions,
thereby allowing it to find trees that recover all the relevant information in the environment
for finite values of β.

TW

Figure 4. Tree (left) and grid (right) of a 4× 4 example where greedy (myopic) tree search fails.
Shading of red scales with p(y|x) (all red shades are equal). Note that, in this environment, parents
of leaf nodes contain relevant information, whereas the root node does not, as each of the quadrants
is equal in their prediction of Y due to environment symmetry.

6.2. Multi-Resolution Trees via the IB and IBSI Principles

In a similar manner to the IB method considered in Section 6.1, the IBSI approach [20]
considers the problem

min
p(t|x)

I(T; X)− βI(T; Y) + γI(T; Z), (29)

where the minimization is over all conditional distributions p(t|x), and γ ≥ 0 weights the
relative importance of relevant information retention and irrelevant information removal.
Constrained to the space of multi-resolution tree abstractions, we obtain the IBSI problem
over the space of trees given by

max
T ∈T Q

IY(T )−
1
β
[γIZ(T )− IX(T )]. (30)

The IBSI problem over the space of trees is therefore a special case of Problem 1 where
the relevant information has unit weight, the irrelevant information has weight γ/β and
α = 1/β for β > 0. In (30), the scalar γ ≥ 0 specifies the relative importance of relevant
information retention and irrelevant information removal, whereas β > 0 balances the
importance of compression. We can solve (30) via G-tree search by defining

∆M(t; β, γ) = ∆J(t; 1, γ/β, 1/β), (31)

and taking the function S : N (TW )× (0, ∞)×R+ → R+ to be given by the rule
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S(t; β, γ) = G(t; 1, γ/β, 1/β). (32)

We will call the special case of the G-tree search algorithm implemented with the
G-function in (32) S-tree search. As a result of (26) and (32), we see that multi-resolution
trees via the IB or IBSI principles are obtained by employing the G-tree search. Moreover,
the resulting abstractions are guaranteed to be minimal and optimal with respect to their
objectives, as specified by Theorem 11.

While (26) and (32) show how trees via the IB and IBSI principles can be obtained as
special cases of G-tree search, these relations do not provide us with an understanding
of how the introduction of irrelevant information changes the solution of the problem.
Thus, to better understand the impact of the presence of irrelevant information on the
resulting tree abstractions, we present the following results.

Lemma 12. Let t ∈ N (TW ). Then S(t; β, γ) ≤ Q(t; β) for all γ ≥ 0 and β > 0.

Proof. The proof is presented in Appendix D.

Corollary 13. Let γ ≥ 0, β > 0 and assume Tq∗Q
, Tq∗S

∈ T Q are the trees returned by Q-tree
search and S-tree search respectively. Then Tq∗S

⊆ Tq∗Q
.

Proof. The proof is presented in Appendix E.

Corollary 13 essentially states that trees that emerge as a solution to (30) contain no
more leaf nodes than those that solve (24), since Tq∗S

⊆ Tq∗Q
. Consequently, for fixed β > 0,

the presence of irrelevant information works to reduce the number of leaf nodes of the
resulting abstraction. This is consistent with the original motivation for the inclusion of
irrelevant information discussed in [20]. Namely, the purpose of introducing irrelevant
information is so as the improve the quality of the abstractions (or reduce the rate of the
code in communication systems) by removing the aspects of the relevant information
that are correlated with the irrelevance variable Z [20]. In this way, a higher degree of
compression can be achieved since we may remove the irrelevant components of the
relevant information, a process which is not considered in the IB framework. When applied
to multi-resolution tree abstractions, as in our case, this is manifested as a reduction in the
number of leaf nodes, as established by Corollary 13.

Having established the influence of irrelevant information on the resulting abstrac-
tions, it is also practical to derive an explicit relation between the Q- and S-functions, so that
a multi-resolution abstraction that considers irrelevant information can be obtained from the
Q-tree search solution. For this result, we define the function
P : N (TW )× (0, ∞)× [0, ∞)→ R according to the rule

P(t; β, γ) = Q(t; β)− γ∆IZ(t)− ∑
t′∈Bc

t

Q(t′; β) + ∑
t′∈Bt

[
P(t′; β, γ)−Q(t′; β)

]
, (33)

when t ∈ Nint(TW ), where P(t; β, γ) = 0 for t ∈ Nleaf(TW ), and Bt = {t′ ∈ C(t) :
P(t′; β, γ) > 0}, Bc

t = C(t) \ Bt.

Lemma 14. Let γ ≥ 0 and β > 0. Then P(t; β, γ) ≤ Q(t; β) for all t ∈ N (TW ).

Proof. The proof is presented in Appendix F.

We then have the following result.

Proposition 15. Let γ ≥ 0, β > 0. If the function Q(t; β) is known for every t ∈ N (TW ) then

S(t; β, γ) = max{P(t; β, γ), 0}.
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Proof. The proof is presented in Appendix G.

Proposition 15 allows us to obtain a multi-resolution tree that incorporates irrelevant
information from knowledge of only the Q-function employed by Q-tree search, as well
as the values of ∆IZ(t) for each t ∈ Nint(TW ), but does not require ∆IX(t) or ∆IY(t) for
t ∈ Nint(TW ). Furthermore, Proposition 15 allows us to incorporate irrelevant information
after initially designing a tree that is maximally task-relevant via the IB principle (24).
We now turn our attention to demonstrating the utility of the G-tree search method on a
non-trivial numerical example.

7. Numerical Example and Discussion

In this section, we demonstrate the utility of our approach on a real-world example.
We consider the image shown in Figure 5a, which is of size 256 × 256. The image in
Figure 5a is then segmented, so that each pixel in the original image is classified into one
of six distinct categories; the segmented image together with the original image is shown
in Figure 5b. Segmented images such as the one shown in Figure 5b arise frequently in
autonomous driving scenarios, where it is of interest to remove irrelevant details from
the representation so as to focus available resources on only those aspects of the image
that are considered important (e.g., the location of the obstacles or the shape of the road).
In the segmented image shown in Figure 5c, we see that the task of maintaining relevant
information regarding the road corresponds to retaining the red color while the remaining
colors, such light green and yellow, are not relevant to the task of identifying the road and
should be removed from the representation.

(a) (b) (c)

Figure 5. (a) Original 256 × 256 image. (b) Segmented 256 × 256 image with original image in
background. (c) Segmented 256× 256 image passed to G-tree search.

The input data are provided to the G-tree search algorithm as follows. We consider each
finest-resolution pixel as an outcome of the uncompressed random variable X. Since the
agent may not, in general, have the resources (time, computational, etc.) in order to
determine the color (or category) information of each pixel with certainty, we model each
color in Figure 5c as a random variable. To this end, for each color in Figure 5c we introduce
a random variable, where colors that are assumed to be relevant are denoted as Yi and
those considered irrelevant as Zj. For example, if we would like to generate abstractions
where red and blue are relevant (and therefore should be retained) and yellow as irrelevant
(and should be removed), we may define Y1 to correspond to the category (or color) red
and Y2 to blue, whereas Z1 may represent yellow.

Strictly speaking, knowledge of the distributions p(yi|x), p(zj|x) and p(x) is sufficient
to apply our method, as from relations (15)–(21) we see that these distributions allow the
determination of ∆IYi (t), ∆IZj(t) and ∆IX(t) for all i, j and t. The conditional distributions
p(yi|x) and p(zj|x) are obtained from the image segmentation step, where p(yi|x) is the
probability that the cell x has the color corresponding to Yi, with an analogous interpretation
for p(zj|x) and Zj.In this example, p(x) is assumed to be uniform, although any valid
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distribution is permissible in our framework (the G-tree search approach can handle any
valid distribution p(x) without modification. The use of a non-uniform p(x) will lead to
region-specific abstraction, where the G-tree search algorithm refines in regions only where
p(x) > 0. For more information, the interested reader is referred to [36]). The joint distributions
p(x, yi) and p(x, zj) are then assigned according to p(x, yi) = p(yi|x)p(x) and p(x, zj) =
p(zj|x)p(x), respectively. In the more general setting where the input is the joint probability
mass function p(x, y1, . . . , yn, z1, . . . , zm), the distributions p(x, yi), p(x, zj) and p(x) can be
obtained via marginalization, and the conditional distributions p(yi|x) and p(zj|x) required to
compute (15)–(17) are acquired by applying standard rules for conditional probability.

In order to provide a basis for the discussion that follows, we show in Figure 6
a selection of abstractions obtained by trading relevant information and compression
(i.e., the IB problem setting) in the case where red is the relevant variable. A number of
observations can be deduced from the abstractions in Figure 6. Firstly, it should be noted
that G-tree search finds a tree that retains all the available red information and contains only
about 1.42% of the nodes of the finest-resolution space. Next, notice that by changing the
parameter α, we change the relative importance of compression and information retention.
Consequently, at larger values of α, we obtain abstractions that contain less red information
but contain fewer leaf nodes (achieve a greater degree of compression) as compared to the
abstractions that arise as α is decreased.

(a) (b) (c)

Figure 6. Sample abstractions obtained via the generalized tree search algorithm by defining the color
red as relevant and ignoring other colors. In this scenario, the G-tree search method reduces to the IB
problem (see Section 6). We assume the (scalar) weighing parameter β = 1 and change only α in (10) to
generate the abstractions shown. (a) α = 0.14, IY(T )/I(X;Y) = 0.9346, 0.647% of leaf nodes. (b) α = 0.05,
IY(T )/I(X;Y) = 0.9874, 1.23% of leaf nodes. (c) α = 0.01, IY(T )/I(X;Y) = 1, 1.42% of leaf nodes.

Furthermore, observe from Figure 6 that regions in the image that contain both no
red information and are homogeneous in red color remain aggregated even at high values
of α. This occurs for two reasons. Firstly, observe from (15) that if a node t ∈ Nint(TW )
has children C(t) = {t′1, . . . , t′4} for which p(y|t′1) = . . . = p(y|t′4) for all y, then ∆IY(t) = 0
as JSΠ(p(y|t′1), . . . , p(y|t′4)) = 0. Consequently, regions that either contain no red or that
are homogeneous in red color contain no relevant information. Intuitively, if a region
in the finest resolution is homogeneous in the color red, then no information is lost by
aggregating homogeneously-colored finest resolution cells (i.e., given the aggregated cell
we can perfectly predict the color of the descendant nodes). Thus, nodes t ∈ Nint(TW ) for
which all descendant nodes are homogeneous in red color provide no additional relevant in-
formation, and thus one can see from (22) that G(t; β, γ, α) = 0 for these nodes. Notice that
the reason regions with no or homogeneous relevant information remain aggregated is
due to Theorem 11. To see why, consider the scenario when compression is ignored α = 0.
In this case, regions that contain no relevant information may be expanded at no cost,
but would not contribute to an increase in the objective value as seen by relation (13).
However, such expansions would lead to a non-minimal tree to be returned by the G-tree
search algorithm, which is precluded by Theorem 11. As a result, G-tree search will return
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the tree with the least number of leaf-nodes that attains the optimal objective function value.
This implies that the tree returned by G-tree search maintains regions with no relevant
information aggregated.

Next, we generate multi-resolution tree abstractions by employing G-tree search to not
only retain relevant information, but also remove information that is considered irrelevant.
To this end, we continue our example of considering red as the relevant variable of in-
terest, now letting light green and yellow be irrelevant variables and represented by
Z1 and Z2, respectively. Example abstractions obtained in this case are shown in Figure 7.
Notice that the case shown in Figure 7c corresponds to the standard IB problem with red as
relevant and no penalty on compression.

(a) (b) (c)

Figure 7. Multi-resolution trees returned by G-tree search in the case when red is relevant and yellow
and light green are considered irrelevant for the environment shown in Figure 5. (a) Solution for
α = 0, β = 1, [γ]1 = [γ]2 = 1.2. (b) Solution for α = 0, β = 1, [γ]1 = [γ]2 = 0.84. (c) Solution for
α = 0, β = 1, [γ]1 = [γ]2 = 0.

A number of observations can be made from the sample abstractions shown in Figure 7.
First, notice that, in comparison with the abstractions shown in Figure 6 which only
consider the retention of the color red, the abstractions in Figure 7 aggregate cells along the
boundary of red and the irrelevant information (light green and yellow) so as to obscure
this information from the abstraction, while being as predictive regarding red (the relevant
information) as possible. Moreover, observe that at greater values of the vector γ, regions
of yellow and light green are shown in lower resolution as compared with the resolution of
these areas at lower values of γ. Notice also that, as the irrelevant information is ignored
([γ]1 = [γ]2 = 0), we recover an abstraction (Figure 7c) that is equivalent to the tree in
Figure 6c returned by the standard IB approach, which does not consider the removal of
the irrelevant information content. To better illustrate the differences between the standard
IB case shown in Figure 6 and the generalized tree search scenario in Figure 7, we show the
normalized information retained by each color for various settings of the weight parameters
in Figure 8. The results shown in Figure 8 are obtained by setting β = 1, α = 0 and by
varying the vector γ ∈ R2

+.
Figure 8 shows the normalized information retained in the solutions returned by G-tree

search for two cases: (i) the standard IB problem with red as relevant, and (ii) the generalized
tree search with red as relevant and light green as well as yellow as irrelevant. In the standard
IB problem, decreasing the value of α ≥ 0 leads to abstractions that are more informative
regarding the relevant information, at the cost of obtaining a tree T ∈ T Q that achieves a lower
degree of compression. Consequently, one moves from right to left in Figure 8 (left) as the value
of α ≥ 0 is increased. In contrast, in the generalized setting of maintaining red information
while removing light green and yellow, increasing the weights of the irrelevant information
leads to abstractions that achieve more compression, since the importance of information
removal increases with larger values of γ. Thus, keeping all other weights constant, we move
from right to left in Figure 8 (right) as γ ∈ R2

+ is increased.
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Figure 8. Normalized information retained vs. degree of achieved compression for each color
in Figure 5c. Two cases are shown: (i) the standard IB problem with red as relevant (left), and
(ii) generalized tree search with red as relevant and light green and yellow as irrelevant (right). The
bar color corresponds with the color in Figure 5c. Data are normalized by the information of each
color contained in the tree recovered when executing G-tree search with weights β = 1, α = 0, and
γ = 0 (i.e., the tree that retains all the relevant information).

We also see from Figure 8 that, compared with the IB tree solutions, the trees obtained
from the G-tree search approach in case (ii) retain less information regarding light green
and yellow. One may also observe from Figure 8 that when the generalized-tree search
algorithm is tasked with retaining red information while removing light green and yellow,
less red information is retained. This occurs as the importance of information removal
necessitates an abstract representation in order to obscure, or remove, the irrelevant details.
However, it is only regions that contain both relevant and irrelevant information that are
of interest to the algorithm in this case, since regions that contain no relevant information
are not refined even in the absence of irrelevant information content. In other words, one
may view the relevant information as driving refinement, while irrelevant information
promoting aggregation. It is therefore regions that contain both irrelevant and relevant
information that becomes the focus of G-tree search. We can observe this trend in the
abstractions shown in Figure 7. Specifically, notice that regions not containing any relevant
information (i.e., regions with no red) are left unchanged and aggregated in Figure 7a–c.
In contrast, when comparing the results of Figure 6, where irrelevant information is not
taken into account, to those of Figure 7, we see that the areas containing both relevant and
irrelevant information are aggregated as the relative importance of information removal
is increased. This occurs for the aforementioned reasons, namely, we must sacrifice some
relevant information in order to obscure, or remove, the irrelevant details. At the same
time, those regions containing red and no irrelevant colors are maintained with relatively
high resolution (e.g., the middle of the image where red boarders with darker green), since
these regions contain relevant information with no irrelevant details.

We conclude this section by briefly showcasing the versatility of the G-tree search algo-
rithm to remove redundancies from segmented images. Since the G-tree search algorithm
allows any integer number n ≥ 0 of relevant random variables to be defined, it is possible to
allow each color in Figure 5c to be a distinct relevant variable. In this case, G-tree search will
find trees for which the distinct colors are as distinguishable as possible while balancing the
degree of compression achieved by the abstraction. Interestingly, if one were to take [β]i = 1
for all i ∈ {1, . . . , 6} and α = 0, then G-tree search will find a multi-resolution tree that retains
all the color information, while removing as much redundancy as possible, as seen in Figure 9.
Remarkably, the abstraction in Figure 9 contains only 5% of the nodes of the finest-resolution
representation in Figure 5c while retaining all the color (semantic) information.
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Figure 9. Multi-resolution abstraction of the environment that retains all color information. The image
contains only 5% of the nodes compared to the original.

The ability to compress the environment in this way while losing no information
regarding the information content of the image represents a drastic savings in the required
on-board memory needed to store the depiction of the environment.

8. Conclusions

In this paper, we developed a generalized information-theoretic framework for the
emergence of multi-resolution abstractions for autonomous agents. To achieve our goal,
we formulated the problem of selecting a multi-resolution tree by considering an objective
that aims to maximally retain task-relevant information, while simultaneously removes
task-irrelevant, or confidential, information and achieves as much compression as possible.
Motivated by its use in signal compression theory, we employ the mutual information in
order to measure the degree of achieved compression as well as the amount of relevant and
irrelevant information retained in the resulting abstract representation. We rigorously inves-
tigate the mathematical properties and structure of the problem and discuss the connections
between hierarchical tree abstractions and deterministic signal encoders. Moreover, it is
shown that the problem we consider has a special structure, whereby the relevant and
irrelevant information contained in a hierarchical tree can be expressed in terms of the incre-
mental information contributions of the non-leaf (interior) nodes of the tree. This special,
incremental, structure of the problem facilitates the design of the G-tree search algorithm,
which searches over the space of multi-resolution abstractions for a solution that maxi-
mizes an information-theoretic objective. We detail our proposed algorithm and prove
a number of theoretical results, including that the proposed G-tree search algorithm is
guaranteed to return an optimal multi-resolution tree. The complexity of the proposed
G-tree search algorithm is analyzed and it is shown that multi-resolution tree abstractions
via the information bottleneck (IB) method and the information bottleneck problem with
side-information (IBSI) are recovered as special cases of our formulation. A non-trivial
numerical example is presented to demonstrate the utility of the proposed approach.
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Appendix A

Proof of Lemma 6. The proof is given by induction. Consider a node t ∈ N`−1(TW ) and a
tree Tq ∈ T Q. For the tree Tq and the node t, there are two options: EitherNint(Tq(t)) = {t}
or Nint(Tq(t)) = ∅. If Nint(Tq(t)) = {t}, then

∑
s∈Nint(Tq(t))

∆J(s; β, γ, α) = ∆J(t; β, γ, α) ≤ max{∆J(t; β, γ, α), 0} = G(t; β, γ, α).

If, instead, Nint(Tq(t)) = ∅, then

∑
s∈Nint(Tq(t))

∆J(s; β, γ, α) = 0 ≤ max{∆J(t; β, γ, α), 0} = G(t; β, γ, α).

Assume the result holds for all t′ ∈ Nk(TW ) and some k ∈ {1, . . . , `− 1}, and consider
any node t ∈ Nk−1(TW ) and tree Tq ∈ T Q. If Nint(Tq(t)) 6= ∅, then

∑
s∈Nint(Tq(t))

∆J(s; β, γ, α) = ∆J(t; β, γ, α) + ∑
t′∈C(t)

∑
s∈Nint(Tq(t′))

∆J(s; β, γ, α),

≤ ∆J(t; β, γ, α) + ∑
t′∈C(t)

G(t′; β, γ, α),

where the first step follows from writing the set Nint(Tq(t)) = {t} ∪
(⋃

t′∈C(t)Nint(Tq(t′))
)

,

and the second step is a result of invoking the induction hypothesis, since t′ ∈ C(t) ⊆
Nk(TW ). We then have

∑
s∈Nint(Tq(t))

∆J(s; β, γ, α) ≤ ∆J(t; β, γ, α) + ∑
t′∈C(t)

G(t′; β, γ, α),

≤ max{∆J(t; β, γ, α) + ∑
t′∈C(t)

G(t′; β, γ, α), 0} = G(t; β, γ, α).

If Nint(Tq(t)) = ∅, then

∑
s∈Nint(Tq(t))

∆J(s; β, γ, α) = 0 ≤ max{∆J(t; β, γ, α) + ∑
t′∈C(t)

G(t′; β, γ, α), 0},

= G(t; β, γ, α).

Thus, ∑s∈Nint(Tq(t))
∆J(s; β, γ, α) ≤ G(t; β, γ, α) for all Tq ∈ T Q and

any t ∈ Nint(TW ).

Appendix B

Proof of Lemma 8. The proof is given by induction. First, let t ∈ N`−1(TW ) be a node
such that G(t; β, γ, α) > 0. Next, consider any Tq ∈ T Q such that Nint(Tq(t)) = {t}. For
any such tree, we have

∑
s∈Nint(Tq(t))

∆J(s; β, γ, α) = ∆J(t; β, γ, α).

Since G(t; β, γ, α) > 0, it follows from the definition of G(t; β, γ, α), that



Entropy 2022, 24, 809 24 of 29

G(t; β, γ, α) = ∆J(t; β, γ, α) = ∑
s∈Nint(Tq(t))

∆J(s; β, γ, α),

and thus, there exits a tree Tq such that G(t; β, γ, α) = ∑s∈Nint(Tq(t))
∆J(s; β, γ, α).

Assume now that the result holds for all t′ ∈ Nk(TW ) and some k ∈ {1, . . . , `− 1}, and
consider any t ∈ Nk−1(TW ) for which G(t; β, γ, α) > 0. From the definition of G(t; β, γ, α),
we have that

G(t; β, γ, α) = max{∆J(t; β, γ, α) + ∑
t′∈C(t)

G(t′; β, γ, α), 0},

= ∆J(t; β, γ, α) + ∑
t′∈C(t)

G(t′; β, γ, α),

since G(t; β, γ, α) > 0. Now, let U = {t′ ∈ C(t) : G(t′; β, γ, α) > 0}. From the in-
duction hypothesis, it follows that there exists a tree Tq̂ ∈ T Q such that G(t′; β, γ, α) =

∑s∈Nint(Tq̂(t′))
∆J(s; β, γ, α) for each t′ ∈ U ⊆ C(t). Consider then any tree Tq ∈ T Q such

that the subtree rooted at t has interior node set

Nint(Tq(t)) = {t} ∪
( ⋃

t′∈U
Nint(Tq̂(t′))

)
.

Then,

G(t; β, γ, α) = ∆J(t; β, γ, α) + ∑
t′∈U

G(t′; β, γ, α),

= ∆J(t; β, γ, α) + ∑
t′∈U

∑
s∈Nint(Tq̂(t′))

∆J(s; β, γ, α) = ∑
s∈Nint(Tq(t))

∆J(s; β, γ, α).

Thus, if G(t; β, γ, α) > 0 then there exits a tree Tq ∈ T Q such that G(t; β, γ, α) =

∑s∈Nint(Tq(t))
∆J(s; β, γ, α).

Appendix C

In the following proof, we let Tq̃ ∈ T Q be the tree that is minimal and optimal with
respect to J and take TG ∈ T Q denote the tree returned by G-tree search. We will show that
Tq̃ = TG for all β ∈ Rn

+, γ ∈ Rm
+ and α ≥ 0.

Proof of Theorem 11. We begin by showing G(t; β, γ, α) = 0 for all t ∈ Nleaf(Tq̃). Consider
the case when Tq̃ ⊂ TW (notice that if Tq̃ = TW then G(t; β, γ, α) = 0 for all t ∈ Nleaf(Tq̃)
by definition). The proof is given by contradiction. Assume that there exists a node
t ∈ Nleaf(Tq̃) for which G(t; β, γ, α) > 0. Then, from Lemma 10, it follows that there exists
a tree Tq̂ ∈ T Q such that ∑s∈Nint(Tq̂(t))

∆J(s; β, γ, α) > 0. Now, consider the tree Tq ∈ T Q

with interior node set

Nint(Tq) = Nint(Tq̃) ∪Nint(Tq̂(t)).

It then follows that

J(Tq; β, γ, α)− J(Tq̃; β, γ, α) = ∑
s∈Nint(Tq̂(t))

∆J(s; β, γ, α) > 0,

and thus there exists a tree Tq̂ ∈ T Q such that J(Tq̂; β, γ, α) > J(Tq̃; β, γ, α). However, Tq̃ is
optimal, leading to a contradiction. Thus, G(t; β, γ, α) = 0 for all t ∈ Nleaf(Tq̃). As a result,
G-tree search will terminate at the leafs of Tq̃ should it reach them during the expansion
process. However, the algorithm may terminate prior to reaching the leafs of Tq̃, and so we
conclude TG ⊆ Tq̃.
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Next, we establish that G(t; β, γ, α) > 0 for all t ∈ Nint(Tq̃). We consider the case
when Nint(Tq̃) 6= ∅ (if Nint(Tq̃) = ∅ then there does not exist t ∈ Nint(Tq̃) such that
G(t; β, γ, α) = 0). The proof is given by contradiction. To this end, assume that there exists
a node t ∈ Nint(Tq̃) such that G(t; β, γ, α) = 0. Since t 6∈ Nleaf(Tq̃) and Nint(Tq̃) 6= ∅, it
follows that Nint(Tq̃(t)) 6= ∅. Now, consider the tree Tq ∈ T Q with interior node set

Nint(Tq) = Nint(Tq̃) \ Nint(Tq̃(t)).

Then, since Tq ⊂ Tq̃ and Tq̃ is minimal, it follows that

0 < J(Tq̃; β, γ, α)− J(Tq; β, γ, α) = ∑
s∈Nint(Tq̃(t))

∆J(s; β, γ, α).

Consequently, there exists a tree Tq̃ ∈ T Q such that ∑s∈Nint(Tq̃(t))
∆J(s; β, γ, α) > 0.

However, this is a contradiction, since G(t; β, γ, α) = 0. Thus, G(t; β, γ, α) > 0 for all
t ∈ Nint(Tq̃). As a result, G-tree search will not terminate prior to reaching the leafs of Tq̃,
and so Tq̃ ⊆ TG. We have therefore established that TG ⊆ Tq̃ ⊆ TG. Thus, Tq̃ = TG.

Appendix D

Proof of Lemma 12. The proof is given by induction. Let t ∈ N`−1(TW ). Notice that for
node t, C(t) ⊆ Nleaf(TW ). Consequently, S(t′; β, γ) = 0 and Q(t′; β) = 0 for all t′ ∈ C(t).
From the definitions of S and Q we then have

S(t; β, γ) = max{∆M(t; β, γ), 0} ≤ max{∆L(t; β), 0} = Q(t; β),

where the inequality follows from the observation that ∆M(t; β, γ) = ∆L(t; β)− γ∆IZ(t) ≤
∆L(t; β) as γ∆IZ(t) ≥ 0.

Now assume that the result holds for all t′ ∈ Nk(TW ), k ∈ {1, . . . , `− 1} and consider
any t ∈ Nk−1(TW ). For node t we have, by definition and the induction hypothesis, that

S(t; β, γ) = max{∆M(t; β, γ) + ∑
t′∈C(t)

S(t′; β, γ), 0},

≤ max{∆M(t; β, γ) + ∑
t′∈C(t)

Q(t′; β), 0},

since C(t) ⊆ Nk(TW ). Then, since ∆M(t; β, γ) = ∆L(t; β)− γ∆IZ(t) ≤ ∆L(t; β), we obtain

S(t; β, γ) ≤ max{∆M(t; β, γ) + ∑
t′∈C(t)

Q(t′; β), 0},

≤ max{∆L(t; β) + ∑
t′∈C(t)

Q(t′; β), 0} = Q(t; β),

thereby establishing that S(t; β, γ) ≤ Q(t; β).

Appendix E

Proof of Corollary 13. Notice that Lemma 12 establishes that if, for some t ∈ Nint(TW ),
β > 0, and γ ≥ 0, we have S(t; β, γ) > 0, then Q(t; β) > 0. As a result, any node
t ∈ Nint(TW ) expanded by S-tree search is also expanded by Q-tree search. Thus, Tq∗S

⊆
Tq∗Q

.

Appendix F

Proof of Lemma 14. The proof is given by induction. First consider any t ∈ N`−1(TW )
and observe that for all such nodes C(t) ⊆ Nleaf(TW ). Thus, by definition, Q(t′; β) = 0 and
P(t′; β, γ) = 0 for all t′ ∈ C(t). Therefore,

P(t; β, γ) = Q(t; β)− γ∆IZ(t) ≤ Q(t; β),
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which follows since γ∆IZ(t) ≥ 0.
Assume the result holds for all t′ ∈ Nk(TW ) and some k ∈ {1, . . . , `− 1}. Consider now

any t ∈ Nk−1(TW ). Then, for the node t, we have by definition

P(t; β, γ) = Q(t; β)− γ∆IZ(t)− ∑
t′∈Bc

t

Q(t′; β) + ∑
t′∈Bt

[
P(t′; β, γ)−Q(t′; β)

]
.

Since Bt ⊆ C(t) ⊆ Nk(TW ), it follows from the induction hypothesis that

P(t; β, γ) ≤ Q(t; β)− γ∆IZ(t)− ∑
t′∈Bc

t

Q(t′; β),

since the hypothesis furnishes that P(t′; β, γ)−Q(t′; β) ≤ 0 for all t′ ∈ Nk(TW ). From the
non-negativity of the Q-function and that γ∆IZ(t) ≥ 0, we arrive at

P(t; β, γ) ≤ Q(t; β)− γ∆IZ(t)− ∑
t′∈Bc

t

Q(t′; β) ≤ Q(t; β),

and thus P(t; β, γ) ≤ Q(t; β) for all t ∈ N (TW ).

Appendix G

Proof of Proposition 15. The proof is given by induction. Consider first any t ∈ N`−1(TW ).
For the node t, it follows from the definition of S(t; β, γ), that

S(t; β, γ) = max{∆M(t; β, γ), 0} = max{∆L(t; β)− γ∆IZ(t), 0},

since S(t′; β, γ) = 0 for all C(t) ⊆ Nleaf(TW ), and ∆M(t; β, γ) = ∆IY(t) − 1
β ∆IX(t) −

γ∆IZ(t) = ∆L(t; β)− γ∆IZ(t). Furthermore, notice that, by definition of P(t; β, γ), we have

P(t; β, γ) = Q(t; β)− γ∆IZ(t).

There are two cases to consider: namely, Q(t; β) > 0 and Q(t; β) = 0. In the first case
(i.e., Q(t; β) > 0), we have that Q(t; β) = ∆L(t; β). Consequently,

S(t; β, γ) = max{∆L(t; β)− γIZ(t), 0} = max{Q(t; β)− γIZ(t), 0},
= max{P(t; β, γ), 0}.

For the second case, it follows from Lemma 12 that S(t; β, γ) = 0. Thus,

S(t; β, γ) = 0 = max{P(t; β, γ), 0},

which holds since, by Lemma 14, P(t; β, γ) ≤ 0 when Q(t; β) = 0. Consequently, S(t; β, γ) =
max{P(t; β, γ), 0} for all t ∈ N`−1(TW ).

Assume now that the result holds for all t′ ∈ Nk(TW ) and some k ∈ {1, . . . , `− 1},
and consider any t ∈ Nk−1(TW ). For the node t, we have, by definition, that

S(t; β, γ) = max{∆M(t; β, γ) + ∑
t′∈C(t)

S(t′; β, γ), 0}.

Notice that C(t) ⊆ Nk(TW ), and thus, by the induction hypothesis, we have

S(t; β, γ) = max{∆M(t; β, γ) + ∑
t′∈C(t)

max{P(t′; β, γ), 0}, 0}.

Next, define the set Bt = {t′ ∈ C(t) : P(t′; β, γ) > 0}, and write
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S(t; β, γ) = max{∆M(t; β, γ) + ∑
t′∈Bt

P(t′; β, γ), 0}

= max{∆L(t; β)− γ∆IZ(t) + ∑
t′∈Bt

P(t′; β, γ), 0},

= max{∆L(t; β) + ∑
t′∈C(t)

Q(t′; β)− ∑
t′∈C(t)

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

P(t′; β, γ), 0}.

Notice that

∆L(t; β) + ∑
t′∈C(t)

Q(t′; β)− ∑
t′∈C(t)

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

P(t′; β, γ) =

∆L(t; β) + ∑
t′∈C(t)

Q(t′; β)− ∑
t′∈S c

t

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

[P(t′; β, γ)−Q(t′; β)],

where S c
t = C(t) \ Bt. We now consider the cases when Q(t; β) > 0 and Q(t; β) = 0.

If Q(t; β) > 0 then Q(t; β) = ∆L(t; β) + ∑t′∈C(t) Q(t′; β), and so we have

∆L(t; β) + ∑
t′∈C(t)

Q(t′; β)− ∑
t′∈C(t)

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

P(t′; β, γ)

= ∆L(t; β) + ∑
t′∈C(t)

Q(t′; β)− ∑
t′∈S c

t

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

[P(t′; β, γ)−Q(t′; β)],

= Q(t; β)− ∑
t′∈S c

t

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

[P(t′; β, γ)−Q(t′; β)],

= P(t; β, γ),

where the final equality follows from the definition of P(t; β, γ). Consequently,

S(t; β, γ) =

= max{∆L(t; β) + ∑
t′∈C(t)

Q(t′; β)− ∑
t′∈C(t)

Q(t′; β)− γ∆IZ(t) + ∑
t′∈Bt

P(t′; β, γ), 0},

= max{P(t; β, γ), 0}.

In the second case, when Q(t; β) = 0, we have from Lemma 12 that S(t; β, γ) = 0.
Furthermore, from Lemma 14 we have P(t; β, γ) ≤ 0. Therefore,

S(t; β, γ) = 0 = max{P(t; β, γ), 0}.

As a result, S(t; β, γ) = max{P(t; β, γ), 0} for all t ∈ N (TW ).
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