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Abstract: With the goal of understanding if the information contained in node metadata can help in
the task of link weight prediction, we investigate herein whether incorporating it as a similarity feature
(referred to as metadata similarity) between end nodes of a link improves the prediction accuracy
of common supervised machine learning methods. In contrast with previous works, instead of
normalizing the link weights, we treat them as count variables representing the number of interactions
between end nodes, as this is a natural representation for many datasets in the literature. In this
preliminary study, we find no significant evidence that metadata similarity improved the prediction
accuracy of the four empirical datasets studied. To further explore the role of node metadata in
weight prediction, we synthesized weights to analyze the extreme case where the weights depend
solely on the metadata of the end nodes, while encoding different relationships between them using
logical operators in the generation process. Under these conditions, the random forest method
performed significantly better than other methods in 99.07% of cases, though the prediction accuracy
was significantly degraded for the methods analyzed in comparison to the experiments with the
original weights.

Keywords: link weight prediction; node metadata; supervised machine learning

1. Introduction

The term “node metadata” refers to “observed discrete features or descriptors of nodes
in a network” [1]. For example, in a network of co-authorships, an author’s country of
origin, area of research, etc., could be examples of node metadata. Similarly, in an air traffic
network, where airports are nodes and links are flights connecting them, the size of the
population of the city where an airport is located and whether or not it is an airline’s hub
can be used as node metadata. As the amount and quality of information about networks
is made available, understanding the role of node metadata (or node attributes) in the
prediction of network properties becomes increasingly important, given that they can carry
relevant information about how nodes interact in a network [2].

In that sense, we would like to understand whether incorporating the information
provided by node metadata can aid in the task of link weight prediction. As a step towards
this objective, we investigate herein whether including it as a similarity feature (referred to
as metadata similarity) between the nodes of a link increases the prediction accuracy of link
weights when applied with common supervised learning methods.

We focus solely on the problem of link weight prediction, assuming that the existence
of links is known. In line with Zhu et al. [3], we consider that link prediction and weight
prediction are different problems and should be tackled separately, according to the “no free
lunch” theorem [4]. More specifically, in a supervised learning setting, link prediction is
more akin to a classification problem with a binary output, whereas link weight prediction
better resembles a regression problem, since, in general, link weights assume real values.
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This is a relevant issue in cases where there is incomplete information due the nature
of data acquisition, for example, through surveys or automated processes. In social network
analysis, survey responders may have indicated their connections to other members of an
organization (i.e., the existence of links), but failed to provide information regarding the
frequency of contact with them (i.e., missing weights). In recommendation systems, users
may have indicated that they visited a place or bought an item but not how they rated it,
and it might be desirable to predict this for future recommendations. The reasons for this
can also be due to data anonymization, temporal or bandwidth limitations, etc. In these
contexts, the fact that a weight is predicted to be zero would not indicate the non-existence
of an edge but could indicate a low level of interaction between nodes or a low rating given
by a user, for example.

To the best of our knowledge, the analysis of whether incorporating the information
provided by node metadata can improve prediction accuracy has not been studied in the
link weight prediction literature. In this work, we analyze whether including metadata
similarity features in a baseline set of local topological similarity features increases the
prediction accuracy of common supervised machine learning methods. We also analyze
the performance of the same methods and set of features on synthesized weights generated
to represent the extreme case in which the weights depend solely on the metadata of the
end nodes, while expressing different relationships between them using logical operators
in the generation process.

The literature on link weight prediction has concentrated on predicting link weights
mapped to the [0, 1] interval. The reasoning provided for this is that link weights are “analo-
gous to link-existence probabilities” [5]. However, the majority of datasets considered in the
link weight prediction literature have link weights that are count variables indicating the
number of interactions observed between end nodes, as in [6–9]. In these cases, normalizing
weights to values in [0, 1] can hurt prediction accuracy given the arbitrary nature of the
normalization function and the occurrence of rounding errors from scaling and re-scaling
original weights and predictions. Following these observations, we argue that, in most
cases, link weights should be treated as positive integer values.

The rest of this paper is organized as follows: Section 2 discusses related work, Section 3
describes the problem formulation and the metrics used for prediction accuracy comparison,
Section 4 outlines the supervised learning methods analyzed, Section 5 presents metadata
similarity features and the set of baseline topological features, Sections 6 and 7 describe and
analyze the experimental results on real-world and synthesized datasets, respectively,
and finally Section 8 discusses the results and future work.

2. Related Work

We briefly explain the main branches of research related to link weight prediction and
the use of node metadata/attributes.

Link prediction. The link prediction problem is a widely known and studied problem in
the literature, having been introduced in pioneering works such as [10–13]. Most of the
traditional approaches use similarity indices (e.g., local, global, quasi-local) or maximum
likelihood methods (e.g., hierarchical structure and stochastic block models) [14]. More
recently, other approaches have appeared, such as the use of network embeddings, matrix
completion, ensemble learning, etc. For a more comprehensive view of traditional and
more recent methods, we refer the interested reader to the reviews presented in [14,15],
respectively.
Link weight prediction. Few studies have analyzed the task of link weight prediction.
Aicher et al. [16] proposed a weighted generalization of the stochastic block model to
generate weighted networks, which can be used for weight prediction. Zhao et al. [5]
proposed weighted extensions of unweighted local similarity metrics to predict both links
and link weights using reliable routes as a motivation. Zhu et al. [3] used the assumption
that link weights are locally homogeneous to propose a method to predict link weights
based on the weights of neighbor sets. Fu et al. [17] compared a set of supervised learning
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methods on a large set of topological features derived from local and global similarity
metrics derived from the original network and the line graph, and learned features using
deep learning methods. None of these studies analyzed the use of node metadata to
improve weight predictions.
Link weight prediction in weighted signed networks. Two recent papers have tackled
the problem of link weight prediction in signed social networks [18,19], with the weights
taking any value on a [−1, 1] interval. These papers extend the problem of predicting the
signs of edges on signed social networks, where agents rate others positively or negatively,
with a focus on also predicting the extent of a “like” or “dislike”. This problem differs from
the one studied here because the methods are highly tailored to social networks, where
weights assume continuous values and represent the opinion of one node about another
node in the network, whereas in our work weights are integer-valued and represent a
notion of frequency, such as a number of interactions, etc.
Use of node metadata in link or link weight prediction: Leveraging node metadata can
be found mostly in the link prediction literature. Zhao et al. [20] added a regularization
term in the loss function that enforced link predictions to take into account similarity
measures, which could be derived from node metadata. In a different approach, relational
models also included node metadata information in link prediction. Initial works such
as that of Popescul and Ungar [21] leveraged relational information between authors and
venues in regression models for the prediction of co-authorships, and Taskar et al. [22]
used probabilistic relational models for link prediction with relational data. More recently,
a number of papers have shown improved link prediction accuracy using node metadata in
conjunction with relational models, such as [23–25]. Moreover, in the graph representation
learning literature, Zhang and Chen [26] have shown improvements when using node
attributes for link prediction using graph neural networks (GNNs). To the best of our
knowledge, there are no such results for link weight prediction but the improvements seen
in the link prediction literature would lead us to believe that improvements in weight
prediction could be obtained through the use of node metadata as well.

3. Problem Definition and Accuracy Metrics
3.1. Problem Definition

Suppose that G = (V, E, W) is an undirected, weighted network, with V, E and W
representing the set of nodes, links and link weights, respectively. Furthermore, G has no
self-loops or multi-edges. The problem is to predict the missing weights in the network,
given that all links are known.

Formally, we assume that the weight wuv ∈ Z+ on a link (u, v) is sampled i.i.d. from
a probability distribution P(w|x, θ), where P is any distribution, x ∈ Rp are link features
and θ ∈ Rq are distribution parameters. The goal is to obtain θ̂ that solves the minimization
of the loss function:

minimize
θ

L = ED[dist(w, f (x, θ))], (1)

where f : Rp ×Rq → R is any function that estimates P(w|x, θ), dist : R×R→ R is any
distance function and the expectation is computed over the samples D.

Since the expectation in Equation (1) cannot be directly computed, we estimate it as an
average over the samples available. For this purpose, we randomly divide 90% of the weight
samples W into a training set Wtrain and 10% into a testing set Wtest, with the ratios in line
with previous works [3,5,17]. As usual, Wtrain ∩Wtest = ∅ and Wtrain ∪Wtest = W. Then,
we train the supervised learning methods on Wtrain to learn the parameters θ̂, and calculate
the average loss over Wtest as an estimate of the expectation.

3.2. Accuracy Metrics

In this section, we present the metrics used to measure the quality of our predictions,
i.e., that will fill the role of the dist function in Equation (1). The most common metrics
used in the literature have been the Pearson correlation coefficient (PCC) and the root
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mean squared error (RMSE) [3,5]. Although we will use the PCC as one of the accuracy
metrics, we replace the RMSE with the relative squared error (RSE). Given that we are
not considering normalized weights to [0, 1], the relative squared error (RSE) is a more
appropriate metric, because it normalizes the error by indicating how much better (or
worse) a method performs compared to merely predicting each weight as the average of
the observed weights.

To simplify the notation and without the loss of generality, we assume that the sample
links have an order and thus we merge the indices u, v in wuv to k, with k = 1, . . . , N,
and N is the number of elements in Wtest. We denote wk as the weight value and ŵk as is its
predicted value.

1. Pearson Correlation Coefficient (PCC): Computes the degree of correlation between
two sets of data, and outputs values in a [−1,1] interval. Positive values indicate posi-
tive correlation (opposite for negative values) and zero values indicate no correlation.

PCC =
1

N − 1

N

∑
k=1

(
wk − w̄

σw

)(
ŵk − ¯̂w

σŵ

)
(2)

where w̄ = ∑N
k=1 wk

N is the average of the observed weights wk ∈Wtest, and ¯̂w = ∑N
k=1 ŵk

N
is the average of the predicted weights ŵk.

2. Relative Squared Error (RSE): Computes the sum of the squared error between the
original and predicted weights normalized by the sum of the squared error between
the original weights and the average of the weights in the test data.

RSE =
(∑N

k=1 wk − ŵk)
2

(∑N
k=1 wk − w̄)2

. (3)

All the abbreviations introduced throughout the text (such as RMSE and RSE above),
along with their definitions, can be found in Abbreviations.

4. Supervised Learning Methods

Because of the assumption that weights are integers that represent counts, the most
natural distribution to model them is a Poisson distribution. Therefores, we use the Poisson
regression as a baseline supervised learning method. To allow for more flexibility, we
compare this baseline to the performance of Poisson mixture models, thus permitting
subpopulations following different Poisson distributions within the broader population.

A caveat of the Poisson distribution is that it is associated with rigid assumptions, such
that the mean equals the variance, which may not hold for weights in real-world networks.
Thus, we encourage the investigation of the fitness of other distributions that model count
variables, such as negative binomial regression, and leave this task for future works.

Regression-based methods have the main advantage of statistical interpretability.
Thus, we address the question of whether regression-based methods, given the topological
features analyzed, can make predictions that are at least as good as the predictions of other
common methods. For this purpose, we compare the prediction performance of Poisson
regression and its mixture models to the performance of random forest and support vector
machine, two methods that have been previously used in the link weight prediction
literature [17], and of neural networks, which have achieved state-of-the-art results in many
complex tasks in machine learning.

We now formalize each of the methods, according to the notation defined in Section 3.

4.1. Regression-Based Methods

• Poisson regression (Poi): The baseline constrains the model to a single Poisson distri-
bution; thus it is the least flexible model. It provides an adequate baseline given the
assumption that link weights are positive integers representing a frequency, such as the
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number of encounters, etc. In this case, P(w|x, θ) = Poisson(w|x, λ(x)) = e−λ(x)λ(x)w

w! ,
where λ(x) = exp(βTx) and θ = β.

• Poisson mixture models (Mix#): These methods generalize the baseline method
by modeling subpopulations (components), where each follows a Poisson distribu-
tion with a different rate. In this work, the total number of components is known.
Formally, P(w|x, θ) = ∑C

c=1 πcPoisson(w|x, λc(x)), where the mixture weights πc
satisfy 0 ≤ πc ≤ 1, c = 1, . . . , C, and ∑C

c=1 πc = 1, λc(x) = exp(βT
c x) and θ =

(π1, . . . , πC, βT
1 , . . . , βT

C), where C is the total number of subpopulations. We will refer
to this method as Mix#, where # is the number of components.

4.2. Comparison Methods

• Random Forest (RF): This is an ensemble method that combines the outputs of many
decision trees to avoid overfitting. In a previous work [17], it achieved the best
performance in link weight prediction when compared to other supervised learning
methods, though with a different set of features. Formally, the decision tree model is
described as: E[w|x] = ∑M

m=1 hmI(x ∈ Rm) = ∑M
m=1 hmφ(x, ym), where hm is the mean

response in the mth region Rm, and ym denotes the variable and its threshold value to
split the tree into the mth leaf. Thus, θ = (y1, . . . , ym).

• Support Vector Machine (SVM): In regression tasks, SVM aims to estimate the line
that best fits the data within an arbitrary boundary. Differently from the previous
methods, it does not have a probabilistic perspective. The method solves the follow-
ing minimization problem: minimize

β

1
2 ||β‖2 s.t.

∣∣∣wi − βTxi

∣∣∣ ≤ ε, ∀i ∈ 1, . . . , |Wtrain|,

for some ε > 0.
• Artificial Neural Network (NN#): The structure of an artificial neural network with

n hidden layers is given by:

f (x, θ) = f (n)
(

f (n−1)(. . . f (2)( f (1)(x; θ1); θ2), . . . ); θn−1); θn

)T
θn+1 + βn+1,

where f (i)(x, θi) ≡ f (i)(x, θi, βi) = σ(θT
i x + βi), σ is a nonlinear activation function

(e.g., sigmoid), and θ = (θ1, . . . , θn+1, β1, . . . , βn+1). For more details, see Chapter 6
in [27]. We will refer to this method as NN#, where # is the number of hidden layers n.

For the methods above, we use the R built-in function glm and packages flexmix,
randomForest (with ntree = 500), e1071 (with the radial kernel and default hyperparame-
ters), and H2o (with distribution = ‘poisson’, epochs = 500, with each hidden layer
composed of ten neurons, and other hyperparameters as default), respectively.

5. Proposed Features

In this section, we describe the features used for link weight prediction, which are
based on node metadata or the network topology. We describe how we incorporate
metadata about the nodes as a feature for link weight prediction. We also present the
similarity features derived from local topology.

The notation for this section is defined as follows: we denote the similarity between
nodes as u and v according to a metric z by sz

u,v, where the metric z can be based on the
node metadata or network topology. Then, for a link k = (u, v), the feature vectors used
for prediction will be of the form xk = [sz1

u,v, . . . , s
zp
u,v], where each z1, . . . , zp is one of the

similarity metrics described.

5.1. Metadata Similarity Features: Incorporating Node Metadata

The metadata available are assumed to convey extra information about the nodes in
the network, not the links. Given a link (u, v), let yu, yv ∈ Rt denote vectors that store
metadata information about end nodes u and v, respectively.

However, we want to predict the values of link weights, so we need to process the
node metadata available for the end nodes into a feature of the links. This could be achieved
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in multiple ways. In this study, for any link (u, v), we calculate the similarity between
end nodes with respect to their metadata yu and yv, and utilize the output as one of the
link’s features in the supervised methods considered. We will later refer to this feature as
metadata similarity.

Furthermore, for the calculation of the similarity between vectors yu and yv, there
are many metrics that could be used. We consider the cosine similarity and the Pearson
correlation coefficient for that purpose, which are described below.

1. Cosine Similarity (CS): This takes two vectors as its input and outputs a value in the
interval [−1, 1]. Its mathematical definition is given by:

sCS
u,v =

∑t
n=1 y(n)u y(n)v√

∑t
n=1 y(n)u

2
√

∑t
n=1 y(n)v

2
(4)

where t is the size of the metadata vector, and y(n)u is the nth entry of yu.
It can be interpreted as the cosine of the angle between two vectors yu and yv, where
sCS

u,v = 1 means that the vectors have the same orientation, sCS
u,v = −1 that they are

diametrically opposed and sCS
u,v = 0 that they are orthogonal to each other, irrespective

of their magnitude.
2. Pearson Correlation Coefficient (PCC): For completeness, we repeat the definition

expressed as a similarity measure between the metadata vectors yu and yv:

sPCC
u,v =

1
t− 1

t

∑
n=1

(
y(n)u − ȳu

σyu

)(
y(n)v − ȳv

σyv

)
(5)

where ȳu is the sample mean of yu, and σyu is the standard deviation of yu.

When the vector of metadata contains distinct variable types (categorical, numerical
and/or ordinal), we first replace the categorical variables with their one-hot encoding, then
metadata similarity is computed over this new vector. For example, if a patient metadata
is given by (age, blood type, Rh) = (64, A, positive), then the transformed vector
with one-hot encoding would be given by (age, A, B, AB, O, Rh+, Rh-) = (64, 1, 0,
0, 0, 0, 1, 0), where the continuous variable age remains unchanged. A limitation of
this approach is that the number of categories assumed by a categorical value has to be
comparatively lower than the sample size. There is no need to transform ordinal variables,
such as university rank, into a one-hot encoding, as the difference between their original
values already serves as a distance measure between two nodes.

5.2. Topological Features

We investigate if the prediction accuracy increases when we include metadata similar-
ity features to the supervised learning methods analyzed. Previous works have studied
many topological metrics for link weight prediction [5,17]. As a set of baseline features, we
focus on a set of topological features based on neighbors in common and neighbor degrees,
as described in Table 1.
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Table 1. Topological similarity measures used as baseline features. Notation: Γ(v) denotes the set
of neighbors of a node v, kv the degree of a node v and | · | denotes a set’s cardinality.

Measure Definition Description

Common neighbors [28] sCN
u,v = |Γ(u) ∩ Γ(v)| Number of neighbors in common between two nodes.

Jaccard [29] sJ I
u,v =

|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)| Number of neighbors in common divided by the total

number of neighbors of the two nodes.

Adamic Adar [30] sAA
u,v = ∑

z∈Γ(u)∩Γ(v)

1
log kz

Number of common neighbors of the vertices, weighted
by the inverse logarithm of their degrees.

Salton [31] sSA
u,v =

|Γ(u) ∩ Γ(v)|√
kukv

Measures the angle between two vectors.

Resource allocation [12] sRA
u,v = ∑

z∈Γ(u)∩Γ(v)

1
kz

Number of common neighbors of the vertices, inversely
weighted by their degrees.

Sørensen [32] sSI
u,v =

2|Γ(u) ∩ Γ(v)|
ku + kv

Two times the number of common neighbors divided by
the sum of the vertices’ degrees.

Hub depressed [33] sHDI
u,v =

|Γ(u) ∩ Γ(v)|
max(kukv)

Links adjacent to hubs are have lower scores, since the
denominator depends only on the higher degree.

Hub promoted [33] sHPI
u,v =

|Γ(u) ∩ Γ(v)|
min(ku, kv)

Links adjacent to hubs have higher scores, since the denom-
inator depends only on the lower degree.

Leicht-Holme-
Newman [34]

sLHN
u,v =

|Γ(u) ∩ Γ(v)|
kukv

Pairs of nodes with more common neighbors as a propor-
tion of the expected number of common neighbors have
higher scores.

Preferential attachment
[35]

sPA
u,v = kukv Product of the degrees of the two nodes.

6. Experimental Results on Empirical Data
6.1. Description of Empirical Datasets

For each empirical dataset, we describe the network in terms of the nodes, links and
the metadata available for each of the nodes. All networks are weighted and undirected,
where link weights indicate the number of interactions between two nodes. In addition, we
provide some topological details of the datasets in Table 2.

1. BusFac [11]: A network of transfers of business faculty between university depart-
ments. Nodes are university departments (in this case, business departments), links
exist when at least one transfer occurred from one university to another (indepen-
dently of direction) and weights indicate the quantity of transfers between them.
Node metadata consist of: region where university is located (Northeast, Southeast,
etc.), university’s 2021 US News rank, incoming and outgoing assistant professor
percentage and incoming and outgoing male percentage.

2. CompSciFac [11]: This network has the same interpretation of nodes and links as
BusFac. In this dataset, faculty transfers are related to computer science departments.

3. HistFac [11]: This network has the same interpretation of nodes and links as BusFac
and CompSciFac. In this dataset, faculty transfers are related to history departments.

4. BookCross [36]: This is a subset of the Book Crossing network of book reviews. Each
node is a user, which is linked to another user if they have a book review in common.
The weights denote the quantity of books reviewed in common. Node metadata
consist of country and age.
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Table 2. Topological information of real-world networks. Notation: |V| is the number of nodes,
|E| the number of links, 〈k〉 the average degree, 〈S〉 the average link weight, and r the assortativity
coefficient [37].

|V | |E| 〈k〉 〈S〉 r

BusFac 113 3515 62.212 2.572 −0.173
CompSciFac 206 2865 27.816 1.741 −0.109

HistFac 145 2334 32.193 1.944 −0.245
BookCross 240 26,380 219.833 3.656 −0.050

6.2. Results Obtained with Empirical Datasets

We now describe in detail the experiments and present their results on the empirical
datasets. For each dataset, we predicted the weights of each of the supervised learning
methods on the set of baseline topological features and compared the performance between
methods (Section 6.2.1). Then, we included the metadata similarity features in the set of
baseline features, and assessed whether there was an increase in prediction accuracy for
each of the methods (Section 6.2.2).

For each experiment, we present the mean of 30 trials for both PCC and RSE, where
each trial consists of a random sample of 90% of the data for training and 10% for testing,
according to Section 3.2. To statistically compare the prediction accuracy obtained in
different scenarions, we performed two-sided t-tests with 5% significance, where the null
hypothesis was that the averages of the two samples were the same.

6.2.1. Comparison between Methods

We analyzed the prediction accuracy of the supervised methods when using the
baseline topological similarity features (described in Section 5.2). For the Poisson mixture
models, we varied the number of components in our experiments from two to five, and then
determined the optimal number of components by comparing their prediction accuracy.
This may not be feasible for large datasets, where other approaches for assessing the number
of modes could be more appropriate.

We display the results according to the accuracy metrics—the Pearson correlation
coefficient and relative squared error—for each empirical dataset in Figure 1. Both metrics
provide a consistent ranking of the methods, when ordered from highest to lowest accuracy.

In the networks of faculty transfers BusFac, CompSciFac and HistFac, the Poisson mix-
ture models had, on average, the best performance (with statistical significance) when
compared to other methods, but the number of components that achieved the best per-
formance varied. On BusFac, the mixture model with three components outperformed
(with 0.818 for PCC and 0.342 for RSE), on average, the baseline Poisson regression (0.547
for PCC and 0.716 for RSE), random forest (0.565 for PCC and 0.712 for RSE) and SVM
(0.609 for PCC and 0.696 for RSE). It also outperformed the neural networks with one (0.605
for PCC and 0.682 for RSE) and two hidden layers (0.597 for PCC and 0.674 for RSE). In
the CompSciFac dataset, the mixture model with four and five components outperformed
(0.804 for PCC and 0.372 for RSE, and 0.805 for PCC and 0.368, respectively), on average,
the Poisson regression (0.554 for PCC and 0.705 for RSE), random forest (0.574 for PCC
and 0.724 for RSE) and SVM (0.609 for PCC and 0.696 for RSE). The mixture models also
outperformed both neural networks with one and two hidden layers, which had 0.565 for
PCC and 0.724 for RSE, and 0.552 and 0.793 for RSE, respectively. Similarly, for HistFac,
the mixture model with five components (0.774 for PCC and 0.415 for RSE) outperformed,
on average, the Poisson regression (0.65 for PCC and 0.599 for RSE), random forest (0.602 for
PCC and 0.653 for RSE) and SVM (0.627 for PCC and 0.642 for RSE). It also outperformed
the neural networks with both one hidden layer (0.659 for PCC and 0.619 for RSE) and
two hidden layers (0.649 for PCC and 0.633 for RSE). When comparing the mixture models
among themselves, for most cases, we failed to reject the null hypothesis that the mean
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of the sample errors was different for pairs of mixture models with different numbers
of components.

Figure 1. PCC (top) and RSE (bottom) for methods with topological features. For each dataset
and accuracy metric, the above figure presents a boxplot comparison of 30 iterations of the results.
The best mean prediction accuracy is indicated with an asterisk. The mixture models with three,
five and five components had the highest accuracy among the methods for both metrics for the
BusFac, CompSciFac and HistFac datasets, respectively. Meanwhile, SVM had the highest accuracy
among methods for both metrics for the BookCross dataset. Thus, with the benefit of statistical
interpretability, mixture models can achieve the best performance in comparison to other common
supervised learning methods for some datasets.

In the BookCross dataset, SVM, NN1 and NN2 had the best prediction accuracy, on av-
erage, with a PCC of 0.918, 0.918 and 0.916 and RSE of 0.16, 0.162 and 0.17, respectively. All
methods performed, on average, better than the baseline Poisson regression (0.906 for PCC
and 0.182 for RSE).

Based on the results in Figure 1, we can see that mixture models performed comparably
to the comparison methods, achieving the best performance in many cases, for both metrics.
Thus, their use should be considered especially when statistical interpretability is a valuable
property. Even for the BookCross dataset, the mixture model with three components had
a very close prediction accuracy to SVM, with PCCs of 0.912 and 0.918 and RSEs of 0.17
and 0.12, respectively. Still, this comparison was limited to four datasets, but further
investigation into the comparison of mixture models with other methods on a larger and
more diverse set of datasets is highly encouraged.
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6.2.2. Comparison Using Metadata Similarity

In this section, we discuss the results from the inclusion of metadata similarity features
(as described in Section 5.1) in the set of features used for prediction. We analyzed whether
the prediction accuracy increased when we expanded the set of features to include the
metadata similarity features in addition to the baseline topological features.

We show the outputs of the regression-based methods in Table 3 and the comparison
methods in Table 4. For each method “X”, we show the average accuracy with both
topological and metadata similarity features (denoted by “mX”) side by side to the average
accuracy on the set of topological features (denoted as “tX”). The best-performing set of
features is indicated in bold, and the pairs for which we rejected the null hypothesis that
means were equal with 5% statistical significance are highlighted in gray.

Table 3. PCC (top) and RSE (bottom) comparisons for Poisson regression and mixture models
with and without metadata similarity features. Notation: mPoi indicates the method Poi with meta-
data and topological features, and tPoi indicates the method Poi with only topological features
(analogous notation for Mix#). For each method and dataset, the best-performing set of features
is shown in bold, and the pairs for which we rejected the null hypothesis are highlighted in gray.
Although not statistically significant most of the time, the regressions with only the topological
features had higher accuracy than those obtained after the inclusion of metadata similarity in the
majority of cases.

mPoi tPoi mMix2 tMix2 mMix3 tMix3 mMix4 tMix4 mMix5 tMix5
BusFac 0.5804 0.5469 0.7889 0.8004 0.8131 0.8176 0.8038 0.8126 0.807 0.8105

CompSciFac 0.5542 0.5397 0.7322 0.7727 0.7581 0.7749 0.803 0.804 0.8179 0.805
HistFac 0.6261 0.6358 0.6956 0.7168 0.7042 0.7623 0.759 0.7431 0.7449 0.7576

BookCross 0.9076 0.91 0.9106 0.912 0.9116 0.9121 0.913 0.9112 0.9126 0.9106
mPoi tPoi mMix2 tMix2 mMix3 tMix3 mMix4 tMix4 mMix5 tMix5

BusFac 0.6434 0.7162 0.3954 0.3695 0.3901 0.3421 0.3732 0.3494 0.3598 0.3501
CompSciFac 0.7251 0.7049 0.4847 0.4906 0.4715 0.3812 0.3815 0.3724 0.3292 0.368

HistFac 0.5944 0.5988 0.5362 0.5849 0.4601 0.4852 0.4767 0.4851 0.4385 0.4152
BookCross 0.1786 0.1817 0.1727 0.1694 0.1705 0.1703 0.168 0.1724 0.1691 0.1726

For the regression-based methods (Table 3), it is not possible to draw the conclusion
that including metadata similarity features resulted in accuracy gains. For some combina-
tions of datasets and methods, the addition of metadata significantly improved accuracy.
For example, Poisson regression on BusFac improved to 0.58 from 0.55 for PCC, and to 0.64
from 0.72 for RSE. On the other hand, mixture models with three components exhibited a
decrease in accuracy with the inclusion of metadata similarity on CompSciFac from 0.775 to
0.758 for PCC, and 0.381 to 0.471 for RSE.

For the random forest and SVM methods (Table 4), it was not possible to draw the
conclusion that including metadata similarity features improved the prediction accuracy.
The results were mixed for all the methods and datasets. For example, the prediction
accuracy improved for random forest on the BusFac dataset, from 0.566 to 0.672 for PCC
and from 0.712 to 0.568 for RSE, and on the CompSciFac dataset from 0.575 to 0.652 for PCC
and from 0.724 to 0.61 for RSE. On the other hand, the accuracy decreased for SVM on
BookCross after including metadata features from 0.918 to 0.916 for PCC, and 0.156 to 0.163
for RSE.

For the neural networks with one and two hidden layers (NN1 and NN2, respectively),
most of the comparisons were not statistically significant. In the cases where the comparison
was statistically significant, the accuracy improved with the inclusion of metadata similarity
features. On the BusFac dataset, the prediction accuracy improved both for NN1 (from
0.605 to 0.661 for PCC, and from 0.682 to 0.605 for RSE) and for NN2 (from 0.597 to 0.68 for
PCC, and from 0.674 to 0.582 for RSE). Furthermore, on BookCross, the prediction with NN2
significantly improved from 0.916 to 0.919 for PCC and 0.1697 to 1.1615 with RSE.
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Table 4. PCC (top) and RSE (bottom) comparison for RF, SVM and NNs with and without meta-
data similarity features. Notation: mSVM indicates the method SVM with metadata and topological
features, and tSVM indicates the method SVM with only topological features (analogous notation
for RF). For each method and dataset, the best-performing set of features is shown in bold, and the
pairs for which we rejected the null hypothesis are highlighted in gray. RF performed significantly
better after the inclusion of metadata similarity features on BusFac and CompSciFac. On the other
hand, SVM performed significantly worse with the inclusion of metadata features on BookCross. Most
of the other comparisons did not have statistically significant results.

mRF tRF mSVM tSVM mNN1 tNN1 mNN2 tNN2
BusFac 0.6719 0.5655 0.6308 0.6086 0.6607 0.6049 0.6805 0.5968

CompSciFac 0.6522 0.5745 0.5358 0.561 0.5700 0.5653 0.5641 0.5520
HistFac 0.6128 0.6024 0.6611 0.6274 0.64014 0.6594 0.6460 0.6493

BookCross 0.9091 0.9097 0.9158 0.9178 0.9175 0.9183 0.9190 0.9157
mRF tRF mSVM tSVM mNN1 tNN1 mNN2 tNN2

BusFac 0.5677 0.7116 0.6395 0.6957 0.6050 0.6818 0.5823 0.6741
CompSciFac 0.6103 0.7239 0.7684 0.7461 0.7235 0.7240 0.7560 0.7440

HistFac 0.6481 0.6526 0.6044 0.6419 0.6218 0.6195 0.6437 0.6327
BookCross 0.174 0.173 0.1631 0.1597 0.1659 0.1618 0.1615 0.1697

Moreover, the null hypothesis—that the average accuracy for the two sets of features,
for each method and dataset, was the same—was not rejected in the majority of cases.
Due to the restricted number of public datasets of weighted networks that contain node
metadata, this work was restricted to four real-world datasets. We encourage further
studies with a large number of networks to obtain more generalizable conclusions.

7. Experimental Results Obtained with Synthesized Datasets

We aimed to investigate the degree to which the performance of supervised learning
methods with the same set of topological and metadata similarity features as before was
affected when the link weights were generated using different weight generation processes.
In the following, we describe in detail how we generated the synthesized weights and the
experimental results for these datasets.

7.1. Description of Synthesized Datasets

Given that our focus was on the role of node metadata in weight prediction, we
generated weights that were determined by the application of a logical operator (AND, OR,
XOR) to the pair of vector metadata of the end nodes of a link. More specifically, given a
link (u, v), where yu, yv ∈ Rt denote the vectors that store metadata information about end
nodes i and j, respectively, the generated weights are given by:

w̃uv =
t

∑
n=1

(y(n)u ⊕ y(n)v ), (6)

where ⊕ is a placeholder for a specific logical operator (either AND, OR or XOR).
In the synthesized datasets, the same node and edge structure from the empirical

datasets described in Section 6.1 is kept. For each empirical dataset (BusFac, CompSci-
Fac, HistFac, BookCross), we create a set of synthesized weights using each of the logical
operators (AND, OR and XOR), according to Equation (6). We note that the metadata
for the incoming/outgoing male percentage and incoming/outgoing assistant professor
percentage and region was not used for BusFac, CompSciFac and HistFac. Moreover, if the
resulting sum between two nodes in the structure is zero, then the weight is defined as
w̃uv = 0.

Note that all metadata must be a binary digit to be appropriately used by a logical
operator for weight generation. Thus, any continuous or ordinal variable needs to be
transformed into binary values for the experiment. To accomplish this, we assign each
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continuous or ordinal variable to its quartile number and then create a one-hot encoding of
the quartiles. For example, if the age of a user falls in the 2nd quartile, then the transformed
age of this user would be equal to (0,1,0,0), with a “1” in the index corresponding to the
second quartile. Any categorical variable is directly transformed via a one-hot encoding,
as was performed in Section 5.1. Following this process, all metadata assume a binary
value, which can then be compared using logical operators.

Given this weight generation process, the weights generated using the AND logical
operator test whether the methods (with the features analyzed) are effective in predict-
ing weights that are directly related to the number of identical metadata (for categorical
variables) and similar metadata (for continuous variables) between these two nodes. Mean-
while, the weights generated using the XOR logical operator test the performance of the
prediction methods on link weights that are directly related to the number of distinct
metadata between them. Finally, the weights generated using the OR logical operator test
whether the analyzed methods can predict weights between nodes of which the “proximity”
regarding their metadata is somewhere between the AND and XOR operators, given that
the generated weights are higher when their metadata are different and lower (but not
zero) when their metadata are similar.

We note that there are many ways one could encode link weight dependencies on node
metadata in a weight generation process. The logical operators preserve the assumption
that weights are integer values, thus allowing direct comparisons with the original weights
in the empirical datasets analyzed. A downside of this generation process is that some
granularity in the metadata is lost due to the truncation of continuous variables into
quartiles. However, we consider that general (dis)similarities between nodes are still
captured and allow for a sufficient distinction between different relationships (obtained by
applying different logical operators) between link weights and the metadata of end nodes.

7.2. Results Obtained with Synthesized Datasets

We present the results of the experiments using the synthesized weights based on
the logical operators AND, OR and XOR (henceforth collectively referred to as logical
groups). First, for the same logical operator, we compare the performance of each of the
methods in each dataset (Section 7.2.1). Then, we compare the prediction accuracy over the
original weights versus the synthesized weights (Section 7.2.2). Finally, we compare the
performance between logical operators, highlighting how different relationships between
weight and node metadata can affect prediction performance (Section 7.2.3).

As with the empirical datasets, we used both the metadata similarity features and
topological features for all the predictions, as described in Sections 5.1 and 5.2, respectively.
Likewise, for each experiment with synthesized data, we show the average prediction
accuracy of 30 trials for both PCC and RSE, where 90% of data were randomly sampled for
training and 10% for testing, as explained in Section 3.1.

To make comparisons of the prediction accuracy obtained in different scenarions, we
performed two-sided t-tests with a significance level of 5%, where the mean of the PCC
and RSE for each of the weights generated using a logical operator (AND, OR and XOR)
was compared to the mean of the PCC and RSE obtained for the original weights. We also
performed a pairwise comparison of the logical groups AND, OR and XOR with respect to
their mean PCC and RSE using two-sided t-tests with the same significance level. The null
hypothesis in all cases was that the mean over any two given groups was equal.

7.2.1. Comparison between Methods on Synthesized Weights

In this section, we aimed to understand which methods performed best in each dataset,
given a logical operator (AND, OR and XOR). The results for BusFac, CompSciFac, HistFac
and BookCross are displayed in Figures 2–5, respectively, using the PCC and RSE metrics.
Furthermore, we analyzed whether there was any dataset in which a method exhibited a
better performance across all logical operators. Notably, for each logical operator, we were
able to identify the best and worst performing methods across all datasets, with very few



Entropy 2022, 24, 842 13 of 25

exceptions. Moreover, those methods tended to be the same for all logical operators, as we
detail below.

Figure 2. PCC (left) and RSE (right) comparison of weight generation processes for the BusFac
dataset. Each column represents a comparison of the results for each accuracy metric and the BusFac
dataset. For the BusFac dataset, the methods with highest accuracy for the PCC metrics were the
mixture model with 5 components for the ORIG weights and random forest for the AND weights,
OR weights and XOR weights. For the BusFac dataset, the methods with the highest accuracy for the
RSE metrics were the mixture model with 5 components for the ORIG weights and random forest for
the AND weights, OR weights and XOR weights.

Figure 3. PCC (left) and RSE (right) comparison of the weight generation processes for the Comp-
SciFac dataset. Each column represents a comparison of the results for 30 iterations for each accuracy
metric and the CompSciFac dataset. For the CompSciFac dataset, the methods with the highest accuracy
for the PCC metrics were the mixture model with four components for the ORIG weights and random
forest for the AND weights, OR weights and XOR weights. For the CompSciFac dataset, the methods
with highest accuracy for the RSE metrics were the mixture model with four components for the
ORIG weights and random forest for the AND weights, OR weights and XOR weights.
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Figure 4. PCC (left) and RSE (right) comparison of the weight generation processes for the Hist-
Fac dataset. Each column represents a comparison of the results for 30 iterations for each accuracy
metric and the HistFac dataset. For the HistFac dataset, the methods with the highest accuracy for the
PCC were the mixture model with 5 components for the ORIG weights and random forest for the
AND weights, OR weights and XOR weights. For the HistFac dataset, the methods with the highest
accuracy for the RSE metrics were the mixture model with 5 components for the ORIG weights and
random forest for the AND weights, OR weights and XOR weights.

Figure 5. PCC (left) and RSE (right) comparison of the weight generation processes for the
BookCross dataset. Each column represents a comparison of the results for 30 iterations for each
accuracy metric and the BookCross dataset. For the BookCross dataset, the methods with the highest
accuracy for the PCC metrics were the support vector machines for the ORIG weights, the mixture
model with 2 components for the AND weights and random forest for the OR weights and XOR
weights. For the BookCross dataset, the methods with the highest accuracy for the RSE metrics were
the mixture model with 5 components for the ORIG weights, the mixture model with 2 components
for the AND weights and random forest for the OR weights and XOR weights.

In terms of PCC, random forest was the best performing method over the logical
groups, outperforming the Poisson regression, the mixture models with two to five compo-
nents, SVM and neural networks with one and two hidden layers in 99.07% of combinations
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of logical groups (AND, OR, XOR) and all of the four datasets. For example, for the weights
generated using the AND logical operator on the CompSciFac dataset, the random forest
method had a PCC of 0.4922 and an RSE of 0.7633. Meanwhile, for the AND logical operator
and dataset CompSciFac, Poisson regression had a PCC of 0.3138 and RSE of 0.9054, whereas
the mixture model methods with two, three, four and five components had a PCC of 0.3175,
0.3300, 0.3278 and 0.3371, and an RSE of 0.9033, 0.8959, 0.8982 and 0.8911, respectively.
SVM had a PCC of 0.3742 and an RSE of 1.0005. Neural Networks with one and two hidden
layers had a PCC of 0.3562 and 0.3506 and an RSE of 0.8928 and 0.8938, respectively. The
only instance where random forest did not outperform the other methods in the logical
groups was for BookCross with the AND logical operator (see Figure 5), where the mixture
model with two components performed best (0.8811 for PCC, 0.2369 for RSE); random
forest had a lower PCC of 0.8443 and a higher RSE of 0.2875.

On the other hand, Poisson regression and the neural network with one hidden
layer were the worst performing methods on the logical groups in terms of the PCC
metric. Poisson regression was outperformed by the mixture model methods with two
to five components, random forest, SVM and neural networks with one to two hidden
layers in 74.07% of combinations of logical groups (AND, OR, XOR) and all four datasets.
For example, for the weights generated using the XOR logical operator on the BookCross
dataset, the Poisson regression method had a PCC of 0.3109. Meanwhile, in the same
context, for the weights generated by the operator XOR on the BookCross datset, the mixture
models with two, three, four and five components had PCC values of 0.5389, 0.5464, 0.5592,
and 0.5781, respectively; the random forest method had a PCC of 0.8429; the SVM method
had a PCC of 0.7253 and the neural networks with one to two hidden layers had PCC values
of 0.4948 and 0.4850, respectively. Additionally, the neural network with one hidden layer
method was outperformed by the Poisson regression, the mixture model methods with two
to five components, random forest, SVM and the neural networks with two hidden layers
in 79.63% of combinations of logical groups (AND, OR, XOR) and datasets. For instance,
for the weights generated using the XOR logical operator on the BusFac dataset, the neural
network with one hidden layer had a PCC of 0.0208; the Poisson regression method had
a PCC of 0.0642; the mixture models with two, three, four and five components had PCC
values of 0.0546, 0.0623, 0.0534 and 0.0561, respectively; the random forest method had a
PCC of 0.3303; the SVM method a PCC of 0.0331 and the neural network with two hidden
layers had a PCC of 0.0243.

When comparing the performance across datasets, each method on the logical groups
performed better on the BookCross dataset, which had the highest PCC and lowest RSE
in 100% (in terms of PCC) and 99.07% (in terms of RSE) of combinations of methods and
weight generation process (with AND, OR and XOR operators). For example, the mixture
model method with two components over the weights generated using the AND logical
operator had a PCC of 0.8811 and an RSE of 0.2369 on the BookCross dataset. For the same
generation process with the AND operator and the mixture model with two components,
the predictions on the other datasets had a lower PCC and a higher RSE. For instance, on the
BusFac dataset, this combination had a PCC of 0.0527 and an RSE of 1.0041, on CompSciFac
a PCC of 0.3175 and an RSE of 0.9033 and, finally, on HistFac a PCC of 0.3091 and an RSE
of 0.9154.

In contrast, the prediction accuracy of the synthesized weights was worse on the
BusFac dataset than in other datasets in 100% of methods on the logical groups in terms of
the PCC metric and in 96.3% of cases in terms of the RSE metric. For example, for the SVM
method, the weights generated with the OR logical operator on the BusFac dataset had
a PCC of 0.0310 and an RSE of 1.2303. For the same logical operator OR, the predictions
of the SVM had a higher PCC and a lower RSE in all the other datasets. On CompSciFac,
the combination had a PCC of 0.3734 and an RSE of 0.9995, on HistFac a PCC of 0.1493 and
an RSE of 1.2084, and on BookCross a higher PCC of 0.7253 and a lower RSE of 0.5563.

Finally, for the methods and datasets analyzed, we also noted that the best-performing
method on the weights generated based on the logical operators on the metadata were
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different from the ones generated based on the original weights from the empirical datasets.
As described above, when the weights were determined using logical operators on the
metadata, then random forest performed better in 99.07% of cases. On the other hand,
mixture models or random forest may achieve better performance on the unknown real-
world generation process, as discussed in Section 6.2.1.

7.2.2. Comparison between Original and Synthesized Weights

In this section, we analyzed whether the prediction accuracy of the tested methods
based on the original weights was higher than that based on each of the sets of synthesized
weights generated by logical operators AND, OR and XOR on node metadata, given the
same method and dataset.

The results for the regression-based methods and comparison methods (defined in Section 4)
with the PCC metric are displayed in Tables 5 and 6, respectively. For each method X, we
display the average PCC for the original, AND, OR and XOR weight generation processes
(denoted as ORIG-X, AND-X, OR-X and XOR-X, respectively) side by side. The best-
performing weight generation processes according to the metric used are indicated in bold,
and in gray we indicate the rows for which we rejected the null hypothesis that the means
were equal between the original weight generation process and each of the logical operator
weight generation processes, with a statistical significance of 5%.

Table 5. PCC comparison of original and generated weights using regression-based methods. No-
tation: ORIG-Poi denotes the method Poi with weights generated using the original dataset, AND-Poi
denotes the method Poi with weights generated using the AND logical operator, OR-Poi denotes the
method Poi with weights generated using the OR logical operator and XOR-Poi denotes the method
Poi with weights generated using the XOR logical operator. The null hypothesis was that the means
were equal between the original weight generation process and each of the logical operator weight
generation methods with a statistical significance of 5% in each comparison.

ORIG-Poi AND-Poi OR-Poi XOR-Poi ORIG-Mix2 AND-Mix2 OR-Mix2 XOR-Mix2
BusFac 0.5784 0.0409 0.0618 0.0642 0.7792 0.0527 0.0781 0.0546

CompSciFac 0.5347 0.3138 0.2756 0.2983 0.7471 0.3175 0.2917 0.2756
HistFac 0.6465 0.1548 0.1370 0.1514 0.6916 0.3091 0.1445 0.1427

BookCross 0.9140 0.6381 0.4476 0.3109 0.9144 0.8811 0.5379 0.5389
ORIG-Mix3 AND-Mix3 OR-Mix3 XOR-Mix3 ORIG-Mix4 AND-Mix4 OR-Mix4 XOR-Mix4

BusFac 0.8030 0.0798 0.0470 0.0623 0.7951 0.0647 0.0601 0.0534
CompSciFac 0.7572 0.3300 0.3091 0.2996 0.8161 0.3278 0.2960 0.2963

HistFac 0.7252 0.3486 0.1462 0.1435 0.7593 0.2572 0.1613 0.1276
BookCross 0.9160 0.8151 0.5682 0.5464 0.9177 0.8047 0.5711 0.5592

ORIG-Mix5 AND-Mix5 OR-Mix5 XOR-Mix5
BusFac 0.8032 0.0655 0.0755 0.0561

CompSciFac 0.8022 0.3371 0.2819 0.2819
HistFac 0.7697 0.2333 0.1115 0.1546

BookCross 0.9157 0.8031 0.5760 0.5781

A side-by-side presentation of the results obtained with the RSE metric regarding
the regression-based methods and the comparison methods is included in the Appendix A in
Tables A1 and A2, respectively, since the results obtained with the RSE metric were mostly
consistent with the PCC metric. As with the PCC results, the average RSE for the original,
AND, OR and XOR weight generation processes (denoted as ORIG-X, AND-X, OR-X and
XOR-X, respectively) are presented side-by-side for each method X.

For both the regression-based methods (Table 5) and the comparison methods (Table 6),
we concluded that, for each dataset, method and metric, the prediction accuracy based on
the original weights was higher than for each of the logical operator groups (for both PCC
and RSE metrics). In all cases, we rejected the null hypothesis at a significance level of 5%.
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Table 6. PCC comparison of original and generated weights using comparison methods RF, SVM,
NN1 and NN2. Notation: ORIG-RF denotes the method RF with weights generated using the original
dataset, AND-RF denotes the method RF with weights generated using the AND logical operator,
OR-RF denotes the method RF with weights generated using the OR logical operator and XOR-RF
denotes the method RF with weights generated using the XOR logical operator. The null hypothesis
was that the means were equal between the original weight generation process and each of the logical
operator weight generation methods with a statistical significance of 5% in each comparison.

ORIG-RF AND-RF OR-RF XOR-RF ORIG-SVM AND-SVM OR-SVM XOR-SVM
BusFac 0.6473 0.3338 0.3254 0.3303 0.6376 0.0332 0.0310 0.0331

CompSciFac 0.6510 0.4922 0.5120 0.4957 0.5554 0.3742 0.3734 0.3615
HistFac 0.6306 0.3599 0.3513 0.3503 0.6511 0.1589 0.1493 0.1514

BookCross 0.9133 0.8443 0.8442 0.8429 0.9197 0.7270 0.7253 0.7253
ORIG-NN1 AND-NN1 OR-NN1 XOR-NN1 ORIG-NN2 AND-NN2 OR-NN2 XOR-NN2

BusFac 0.6607 0.0431 -0.0032 0.0208 0.6805 0.0499 0.0109 0.0243
CompSciFac 0.5700 0.3562 0.2960 0.3165 0.5641 0.3506 0.3051 0.3251

HistFac 0.6401 0.1751 0.1233 0.1306 0.6460 0.1772 0.0950 0.1331
BookCross 0.9175 0.4268 0.3329 0.4948 0.9190 0.4270 0.3378 0.4850

As an illustration, for the Poisson regression method, the prediction accuracy was
worse than for the original weights for each of the generation processes with AND, OR
and XOR operators, with the latter having lower PCC values. For example, on the BusFac
dataset, the prediction accuracy over the original weights (ORIG) had a PCC of 0.5784.
Meanwhile, for the same BusFac dataset and the Poisson regression method, the AND,
OR and XOR weight generation methods had PCC values of 0.0409, 0.0618 and 0.0642,
respectively, as shown in Table 5.

Additionally, for the mixture model with three components on the HistFac dataset,
the prediction accuracy over the original weights (ORIG) had a PCC of 0.7252. Meanwhile,
the prediction accuracy was worse for each of the other generation processes with AND,
OR and XOR operators, with lower PCC values. More specifically, the AND, OR and XOR
weight generation methods had lower PCCs of 0.3486, 0.1462 and 0.1435, respectively.

It is evident that the original weight generation process makes it significantly easier
to predict weights than the logical operator weight generation processes for the methods
and set of features investigated. This might be related to a higher explanatory power of the
topological features in the original weight generation process as compared to the processes
that are solely dependent on metadata. Even so, it is worth noting that some PCC values
in the logical groups indicated a degree of correlation above 0.8. This was true of the
BookCross dataset for the AND logical operator group for the mixture model method with
two components (0.8811 for PCC, 0.2369 for RSE), for the AND logical operator group for
the mixture model with three components (0.8151 for PCC, 0.3376 for RSE), for the AND
logical operator group for the mixture model with four components (0.8047 for PCC, 0.3564
for RSE), for the AND logical operator group for the mixture model with five components
(0.8031 for PCC, 0.3596 for RSE), for the AND logical operator group for random forest
(0.8443 for PCC, 0.2875 for RSE), for the OR logical operator group for random forest (0.8442
for PCC, 0.2878 for RSE) and for the XOR logical operator group for random forest (0.8429
for PCC, 0.2899 for RSE).

7.2.3. Comparison between Weights Generated From Logical Groups

In this section, we compare the prediction accuracy forthe synthesized weights gener-
ated based on logical operators, given the same dataset and method. For the regression-based
methods and comparison methods, we performed a pairwise comparison between the logical
operators AND, OR and XOR with respect to the prediction accuracy of each method,
as presented in Tables 7 and 8, respectively. For each method X, we display its average PCC
for each pair of logical operator AND, OR and XOR weight generation processes (denoted
as AND-X, OR-X and XOR-X, respectively) side by side. For each dataset (row), the best-
performing logical operator in each pair is indicated in bold, whereas the comparisons for
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which we rejected the hypothesis that the means were equal with a statistical significance
of 5% are highlighted in gray.

As in the previous section, we leave the results regarding the RSE metric for the
Appendix A, which can be found in Tables A3 and A4. For each regression-based method
or comparison method X, these tables display the average RSE for each of the pairs of
weight generation processes, as for the PCC metric.

When comparing the performance of the AND and OR logical operators, the weight
generation process with the AND logical operator had a significantly higher accuracy (in
terms of PCC or RSE) at a significance level of 5% than the weight generation process
with the OR logical operator in 61.11% (in terms of PCC and RSE) of all 36 dataset and
method combinations, whereas the weight generation with the OR logical operator was
significantly easier to predict in 5.56% (in terms of PCC) and 8.33% (in terms of RSE) of all
36 dataset and method combinations. For example, for Poisson regression on BookCross
the weights generated using the AND logical operator had a PCC of 0.6381 and an RSE of
0.5977, whereas the weights generated using the OR logical operator had a lower PCC of
0.4476 and a higher RSE of 0.8480. For mixture models with two components on CompSciFac,
the weights generated using the AND logical operator had a PCC of 0.3175 and an RSE of
0.9033, whereas the weights generated using the OR logical operator had a lower PCC of
0.2917 and a higher RSE of 0.9181. Moreover, for mixture models with three components
on HistFac, the weights generated using the AND logical operator had a PCC of 0.3486 and
an RSE of 0.9013, and the weights generated using the OR logical operator had a lower
PCC of 0.1462 and a higher RSE of 0.9846.

As for the comparison between the AND and XOR operators, the weight generation
process with the AND logical operator had a significantly higher accuracy (in terms of
PCC or RSE) at a significance level of 5% than the weight generation process with the XOR
logical operator in 47.22% (in terms of PCC) and in 52.78% (in terms of RSE) of combinations
between all 36 datasets and methods, whereas the XOR had higher prediction accuracy in
in 8.33% (in terms of PCC) and 5.56% (in terms of RSE) of cases. For example, for Poisson
regression on BookCross, the weight generation method with the AND logical operator had
significantly higher prediction accuracy with a PCC of 0.6381 and an RSE of 0.5977 than
the weight generation with the XOR logical operators with a lower PCC of 0.3108 and a
higher RSE of 1.3553. Furthermore, for mixture models with two components on HistFac
the weights generated using the AND logical operator had a PCC of 0.3091 and an RSE of
0.9154, whereas the weights generated using the XOR logical operator had a lower PCC of
0.1427 and a higher RSE of 0.9853. For mixture models with four components on BookCross
the weights generated using the AND logical operator had a PCC of 0.8047 and an RSE
of 0.3564 and the weights generated using the XOR logical operator had a lower PCC of
0.5592 and a higher RSE of 0.6903. For mixture models with five components on CompSciFac
the weights generated using the AND logical operator had a PCC of 0.3371 and an RSE
of 0.8911, and the weights generated using the XOR logical operator had a lower PCC of
0.2819 and a higher RSE of 0.9248.
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Table 7. PCC pairwise comparison between weights generated by logical operators using
regression-based methods. The regression-based method had higher and significant prediction
accuracy with the weight generation process using the AND logical operator than the OR and XOR
weight generation processes. The weight generation process using the AND logical operator was
significantly easier to predict than the weight generation process using the OR logical operator in
61.11%, and than the weight generation process using the XOR logical operator in 47.22%, of the 28
dataset and method combinations. Notation: AND-Poi denotes the method Poi with weights generated
using the AND logical operator, OR-Poi denotes the method Poi with weights generated using the
OR logical operator and XOR-Poi denotes the method Poi with weights generated using the XOR
logical operator.

AND-Poi OR-Poi AND-Poi XOR-Poi OR-Poi XOR-Poi
BusFac 0.0409 0.0618 0.0409 0.0642 0.0618 0.0642

CompSciFac 0.3138 0.2756 0.3138 0.2983 0.2756 0.2983
HistFac 0.1548 0.1370 0.1548 0.1514 0.1370 0.1514

BookCross 0.6381 0.4476 0.6381 0.3108 0.4476 0.3108
AND-Mix2 OR-Mix2 AND-Mix2 XOR-Mix2 OR-Mix2 XOR-Mix2

BusFac 0.0527 0.0781 0.0527 0.0546 0.0780 0.0546
CompSciFac 0.3175 0.2917 0.3175 0.2756 0.2917 0.2756

HistFac 0.3091 0.1445 0.3091 0.1427 0.1444 0.1427
BookCross 0.8811 0.5379 0.8811 0.5389 0.5379 0.5389

AND-Mix3 OR-Mix3 AND-Mix3 XOR-Mix3 OR-Mix3 XOR-Mix3
BusFac 0.0798 0.0470 0.0797 0.0623 0.0470 0.0623

CompSciFac 0.3300 0.3090 0.3300 0.2617 0.3090 0.2996
HistFac 0.3486 0.1462 0.3486 0.1435 0.1462 0.1435

BookCross 0.8151 0.5682 0.8151 0.5464 0.5681 0.5464
AND-Mix4 OR-Mix4 AND-Mix4 XOR-Mix4 OR-Mix4 XOR-Mix4

BusFac 0.0647 0.0601 0.0647 0.0534 0.0601 0.0534
CompSciFac 0.3278 0.2960 0.3278 0.2963 0.2960 0.2963

HistFac 0.2572 0.1613 0.2572 0.1276 0.1613 0.1276
BookCross 0.8047 0.5711 0.8047 0.5592 0.5711 0.5592

AND-Mix5 OR-Mix5 AND-Mix5 XOR-Mix5 OR-Mix5 XOR-Mix5

BusFac 0.0655 0.0755 0.0655 0.0561 0.0755 0.0561
CompSciFac 0.3371 0.2819 0.3371 0.2819 0.2819 0.2819

HistFac 0.2333 0.1115 0.2333 0.1546 0.1115 0.1546
BookCross 0.8031 0.5760 0.8031 0.5781 0.5760 0.5781

Finally, when comparing the OR and XOR logical operators, none of the two weight
generation process presented higher prediction accuracy for most cases. The OR logical
operator had a significantly higher accuracy (in terms of PCC or RSE) at a significance level
of 5% than the weight generation process with the XOR logical operator in 11.11% (in terms
of PCC) and 5.56% (in terms of RSE) of all three dataset and method combinations, whereas
the XOR had significantly higher prediction accuracy in in 11.11% (in terms of PCC) and
22.22% (in terms of RSE) of cases. For example, the weight generation method with the OR
logical operator had significantly higher prediction accuracy than the weight generation
with the XOR logical operators for mixture model with two components on BusFac, where
the prediction of weights generated using the OR logical operator had a PCC of 0.0780 and
an RSE of 0.9979 and of the weights generated using the XOR logical operator had a lower
PCC of 0.0546 and a higher RSE of 1.0029. On the other hand, for mixture models with
five components on HistFac, the weights generated using the XOR logical operator had a
PCC of 0.1546 and an RSE of 0.9837, whereas the weights generated using the OR logical
operator had a lower PCC of 0.1115 and a higher RSE of 0.9980.
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Table 8. PCC pairwise comparison between weights generated by logical operators using com-
parison methods RF, SVM, NN1 and NN2. Notation: AND-RF denotes the method RF with weights
generated using the AND logical operator, OR-RF denotes the method RF with weights generated
using the OR logical operator and XOR-RF denotes the method RF with weights generated using the
XOR logical operator.

AND-RF OR-RF AND-RF XOR-RF OR-RF XOR-RF

BusFac 0.3338 0.3254 0.3338 0.3303 0.3254 0.3303
CompSciFac 0.4922 0.5120 0.4922 0.4957 0.5120 0.4957

HistFac 0.3599 0.3513 0.3599 0.3503 0.3513 0.3503
BookCross 0.8443 0.8441 0.8443 0.8429 0.8441 0.8429

AND-SVM OR-SVM AND-SVM XOR-SVM OR-SVM XOR-SVM
BusFac 0.0332 0.0310 0.0332 0.0331 0.0310 0.0331

CompSciFac 0.3742 0.3734 0.3742 0.3615 0.3734 0.3615
HistFac 0.1589 0.1493 0.1589 0.1514 0.1493 0.1514

BookCross 0.7270 0.7253 0.7270 0.7253 0.7253 0.7253
AND-NN1 OR-NN1 AND-NN1 XOR-NN1 OR-NN1 XOR-NN1

BusFac 0.0431 −0.0032 0.0431 0.0208 −0.0032 0.0208
CompSciFac 0.3562 0.2960 0.3562 0.3165 0.2960 0.3165

HistFac 0.1751 0.1233 0.1751 0.1306 0.1233 0.1306
BookCross 0.4268 0.3329 0.4268 0.4948 0.3329 0.4948

AND-NN2 OR-NN2 AND-NN2 XOR-NN2 OR-NN2 XOR-NN2
BusFac 0.0499 0.0109 0.0499 0.0243 0.0109 0.0243

CompSciFac 0.3506 0.3051 0.3506 0.3251 0.3051 0.3251
HistFac 0.1772 0.0950 0.1772 0.1331 0.0950 0.1331

BookCross 0.4270 0.3378 0.4270 0.4850 0.3378 0.4850

Overall, we noted that the regression-based methods had higher and significant
prediction accuracy over the synthesized weights based on the AND logical operator
when compared pairwise to the OR and XOR operators, as can be observed from the first
two columns in Table 7. Notably, for all datasets, the neural networks with one and two
hidden layers also had significantly higher prediction accuracy for the weights generated
by the AND operator in comparison to the OR one, as shown in Table 8. The same pattern
was repeated for the comparison methods random Forest and SVM but the differences in
prediction accuracy were not significant. Given that some of the features used for prediction
were based on the metadata similarity of end nodes, the fact that the weights generated
by the AND operator were directly related to another measure of similarity between the
metadata of the end nodes may have contributed to the better performance of the methods
in these cases.

8. Discussion

Metadata are still not as widely available as the information about the node and edge
structures of networks. However, as this information becomes increasingly available in real-
world datasets, it is important to understand whether metadata have a role in improving
the prediction of network properties, such as link weights. As a preliminary step, we
performed experiments on four empirical weighted networks to address the question of
whether there are accuracy gains with the addition of features based on node metadata
when using common supervised machine learning methods.

Based on the set of experiments performed, we concluded that there exists a set of
supervised methods and real-world networks for which the inclusion of metadata similarity
does not improve prediction performance. Though many networks nowadays are far
larger than the ones analyzed, the networks studied can provide insights about important
properties of larger networks, such as representing community structures present in those
networks. As more public datasets of weighted networks with node metadata become
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available, we highly encourage further investigations with a larger range of methods
and datasets.

To further explore the role of node metadata in weight prediction, we analyzed the
extreme case in which the weights depended solely on the metadata of the end nodes.
Different relationships between synthesized weights and metadata were encoded using
different logical operators for the weight generation process. We observed that, for all
datasets and methods studied, the prediction accuracy over the original weights was
significantly higher than for any of the synthesized weights. This might be related to a
higher explanatory power of the topological features over the original weight generation
process as compared to the processes that were solely dependent on metadata. Thus,
in real-world networks similar to the ones studied, if the weights are solely dependent
on the metadata of end nodes, the prediction accuracy using topological and metadata
similarity features is likely to have a degraded performance.

In future work, it would be interesting to expand this analysis to real-world networks
with different properties and characteristics (such as average weight, assortativity coef-
ficient, etc.). Furthermore, it would be worthwhile to make comparisons with different
supervised methods, such as the negative binomial regression (as discussed in Section 4)
and end-to-end learning methods, instead of manually choosing and computing the in-
put features.

Author Contributions: Conceptualization, M.V., L.M. and T.A.P.; methodology, M.V., L.M. and
T.A.P.; software, L.M., K.O., T.A.P.; formal analysis, M.V., L.M., K.O.; investigation, L.M. and K.O.;
data curation, L.M. and T.A.P.; writing—original draft preparation, L.M. and K.O.; writing—review
and editing, L.M., K.O., M.V. and T.A.P.; visualization, L.M. and K.O.; supervision, M.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://tuvalu.santafe.edu/aaronc/facultyhiring/ (accessed on 8 May 2012). (for
BusFac, CompSciFac and HistFac datasets); and http://www2.informatik.uni-freiburg.de/cziegler/
BX/ (accessed on 8 May 2012). (for BookCross dataset), both accessed on 17 February 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RMSE Root Mean Squared Error
RSE Relative Squared Error
PCC Pearson correlation coefficient
Poi Poisson regression
Mix# Poisson mixture models
RF Random forest
SVM Support vector machines
NN# Artificial neural networks
CS Cosine similarity
|V| number of nodes in the network
|E| number of links in the network
〈k〉 average degree

http://tuvalu.santafe.edu/aaronc/facultyhiring/
http://www2.informatik.uni-freiburg.de/cziegler/BX/
http://www2.informatik.uni-freiburg.de/cziegler/BX/


Entropy 2022, 24, 842 22 of 25

〈S〉 average link weight
r assortativity
mX method X with metadata and topological features, where X is Poi, Mix#, RF or SVM
tX method X with topological features, where X is Poi, Mix#, RF or SVM
ORIG-X weights predicted using the original method, where X is Poi, Mix#, RF or SVM
AND-X weights predicted using the AND logical operator method, where X is Poi, Mix#, RF or SVM
OR-X weights predicted using the OR logical operator method, where X is Poi, Mix#, RF or SVM
XOR-X weights predicted using the XOR logical operator method, where X is Poi, Mix#, RF or SVM

Appendix A. Tables with Results Obtained Using the RSE Metric

Consistent with the PCC values, regarding the RSE values for both the regression-
based methods (Table A1) and the comparison methods (Table A2), we concluded that,
for each dataset, method and metric, the prediction accuracy over original weights was
higher than for each of the logical operator groups (for both PCC and RSE metrics). In all
cases, we rejected the null hypothesis at a significance level of 5%.

Table A1. RSE comparison of original and generated weights using regression-based methods.
Notation: ORIG-Poi denotes the method Poi with the original weights, AND-Poi denotes the method
Poi with weights generated using the AND logical operator, OR-Poi denotes the method Poi with
weights generated using the OR logical operator and XOR-Poi denotes the method Poi with weights
generated using the XOR logical operator. The null hypothesis was that the means were equal
between the original weight generation process and each of the logical operator weight generation
methods with a statistical significance of 5% in each comparison.

ORIG-Poi AND-Poi OR-Poi XOR-Poi ORIG-Mix2 AND-Mix2 OR-Mix2 XOR-Mix2
BusFac 0.6756 1.0098 1.0024 1.0031 0.4124 1.0041 0.9979 1.0029

CompSciFac 0.7432 0.9054 0.9312 0.9163 0.4615 0.9033 0.9181 0.9306
HistFac 0.5971 0.9806 0.9872 0.9814 0.5359 0.9154 0.9872 0.9853

BookCross 0.1673 0.5977 0.8480 1.3553 0.1653 0.2369 0.7463 0.7195
ORIG-Mix3 AND-Mix3 OR-Mix3 XOR-Mix3 ORIG-Mix4 AND-Mix4 OR-Mix4 XOR-Mix4

BusFac 0.3750 0.9990 1.0064 1.0024 0.3827 1.0016 1.0019 1.0047
CompSciFac 0.4547 0.8959 0.9092 0.9156 0.3608 0.8982 0.9158 0.9192

HistFac 0.4823 0.9013 0.9846 0.9867 0.4352 0.9427 0.9789 0.9896
BookCross 0.1622 0.3376 0.7262 0.7082 0.1593 0.3564 0.6895 0.6903

ORIG-Mix5 AND-Mix5 OR-Mix5 XOR-Mix5
BusFac 0.3641 1.0007 0.9999 1.0036

CompSciFac 0.3656 0.8911 0.9241 0.9248
HistFac 0.4254 0.9527 0.9980 0.9837

BookCross 0.1640 0.3596 0.7126 0.6670

The results for the regression-based methods and comparison methods are displayed
in Tables A3 and A4, respectively. We display the average RSE for each method and each
pair of logical operator weight generation processes side by side. As for the PCC table,
the best-performing results for each pair is indicated in bold, and in gray we indicate the
pairs for which we rejected the null hypothesis that the means were equal between the two
weight generation processes with a statistical significance of 5%.

We refer the reader to the main text for the conclusions regarding the comparison
between the original weights and the synthesized weights, as well as the pairwise compari-
son between synthesized weights, as those are consistent with the results obtained with the
PCC metric.
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Table A2. RSE comparison of original and generated weights using comparison methods RF, SVM,
NN1 and NN2. Notation: ORIG-NN1 denotes the method NN1 with original weights, AND-NN1
denotes the method NN1 with weights generated using the AND logical operator, OR-NN1 denotes
the method NN1 with weights generated using the OR logical operator and XOR-NN1 denotes the
method NN1 with weights generated using the XOR logical operator. The null hypothesis was that
the means were equal between the original weight generation process and each of the logical operator
weight generation methods with a statistical significance of 5% in each comparison.

ORIG-RF AND-RF OR-RF XOR-RF ORIG-SVM AND-SVM OR-SVM XOR-SVM
BusFac 0.5986 0.8927 0.9020 0.9010 0.6441 1.2274 1.2303 1.2218

CompSciFac 0.6196 0.7633 0.7412 1.0005 0.7479 1.0005 0.9995 1.0128
HistFac 0.6171 0.8790 0.8878 0.8899 0.6083 1.2110 1.2084 1.2061

BookCross 0.1669 0.2875 0.2878 0.2899 0.1559 0.5550 0.5563 0.5560
ORIG-NN1 AND-NN1 OR-NN1 XOR-NN1 ORIG-NN2 AND-NN2 OR-NN2 XOR-NN2

BusFac 0.6050 1.0159 1.2355 1.0730 0.5823 1.0090 1.1301 1.1045
CompSciFac 0.7235 0.8928 1.0302 0.9575 0.7434 0.8938 1.0544 0.9488

HistFac 0.6218 0.9912 1.2028 1.0733 0.6437 0.9924 1.2373 1.0753
BookCross 0.1659 0.8215 0.8978 0.7626 0.1615 0.8207 0.8927 0.7732

Table A3. RSE pairwise comparison between weights generated by logical operators using
regression-based methods. Notation: AND-Poi denotes the method Poi with weights generated
using the AND logical operator, OR-Poi denotes the method Poi with weights generated using the
OR logical operator and XOR-Poi denotes the method Poi with weights generated using the XOR
logical operator.

AND-Poi OR-Poi AND-Poi XOR-Poi OR-Poi XOR-Poi
BusFac 1.0098 1.0024 1.0098 1.0031 1.0024 1.0031

CompSciFac 0.9054 0.9312 0.9054 0.9163 0.9312 0.9163
HistFac 0.9806 0.9872 0.9806 0.9814 0.9872 0.9814

BookCross 0.5977 0.8480 0.5977 1.3553 0.8480 1.3553
AND-Mix2 OR-Mix2 AND-Mix2 XOR-Mix2 OR-Mix2 XOR-Mix2

BusFac 1.0041 0.9979 1.0041 1.0029 0.9979 1.0029
CompSciFac 0.9033 0.9181 0.9033 0.9306 0.9181 0.9306

HistFac 0.9154 0.9872 0.9154 0.9853 0.9872 0.9853
BookCross 0.2369 0.7463 0.2369 0.7195 0.7463 0.7195

AND-Mix3 OR-Mix3 AND-Mix3 XOR-Mix3 OR-Mix3 XOR-Mix3
BusFac 0.9990 1.0064 0.9990 1.0024 1.0064 1.0024

CompSciFac 0.8959 0.9092 0.8959 0.9156 0.9091 0.9156
HistFac 0.9013 0.9846 0.9013 0.9867 0.9846 0.9867

BookCross 0.3376 0.7262 0.3376 0.7082 0.7261 0.7082
AND-Mix4 OR-Mix4 AND-Mix4 XOR-Mix4 OR-Mix4 XOR-Mix4

BusFac 1.0016 1.0019 1.0016 1.0047 1.0019 1.0047
CompSciFac 0.8982 0.9157 0.8982 0.9192 0.9157 0.9192

HistFac 0.9427 0.9789 0.9427 0.9897 0.9789 0.9897
BookCross 0.3564 0.6895 0.3564 0.6903 0.6895 0.6903

AND-Mix5 OR-Mix5 AND-Mix5 XOR-Mix5 OR-Mix5 XOR-Mix5
BusFac 1.0007 0.9999 1.0007 1.0036 1.0036 1.0036

CompSciFac 0.8911 0.9241 0.8911 0.9248 0.9241 0.9248
HistFac 0.9527 0.9980 0.9527 0.9837 0.9980 0.9837

BookCross 0.3596 0.7126 0.3596 0.6670 0.7126 0.6670
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Table A4. RSE pairwise comparison between weights generated by logical operators using com-
parison methods RF, SVM, NN1 and NN2. Notation: AND-RF denotes the method RF with weights
generated using the AND logical operator, OR-RF denotes the method RF with weights generated
using the OR logical operator and XOR-RF denotes the method RF with weights generated using the
XOR logical operator.

AND-RF OR-RF AND-RF XOR-RF OR-RF XOR-RF

BusFac 0.8927 0.9020 0.8927 0.9010 0.9020 0.9010
CompSciFac 0.7633 0.7412 0.7633 0.7582 0.7412 0.7582

HistFac 0.8790 0.8878 0.8790 0.8899 0.8878 0.8899
BookCross 0.2875 0.2878 0.2875 0.2898 0.2878 0.2898

AND-SVM OR-SVM AND-SVM XOR-SVM OR-SVM XOR-SVM
BusFac 1.2274 1.2303 1.2274 1.2218 1.2303 1.2218

CompSciFac 1.0005 0.9995 1.0005 1.0128 0.9995 1.0128
HistFac 1.2110 1.2084 1.2110 1.2061 1.2084 1.2061

BookCross 0.5550 0.5563 0.5550 0.5559 0.5563 0.5559
AND-NN1 OR-NN1 AND-NN1 XOR-NN1 OR-NN1 XOR-NN1

BusFac 1.0159 1.2355 1.0159 1.0730 1.2355 1.0730
CompSciFac 0.8928 1.0302 0.8928 0.9575 1.0302 0.9575

HistFac 0.9912 1.2028 0.9912 1.0733 1.2028 1.0733
BookCross 0.8215 0.8978 0.8215 0.7626 0.8978 0.7626

AND-NN2 OR-NN2 AND-NN2 XOR-NN2 OR-NN2 XOR-NN2
BusFac 1.0090 1.1301 1.0090 1.1045 1.1301 1.1045

CompSciFac 0.8938 1.0544 0.8938 0.9488 1.0544 0.9488
HistFac 0.9924 1.2373 0.9924 1.0753 1.2373 1.0753

BookCross 0.8207 0.8927 0.8207 0.7732 0.8927 0.7732
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