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Abstract: In this paper, a multi-strategy adaptive comprehensive learning particle swarm optimiza-

tion algorithm is proposed by introducing the comprehensive learning, multi-population parallel, 

and parameter adaptation. In the proposed algorithm, a multi-population parallel strategy is de-

signed to improve population diversity and accelerate convergence. The population particle ex-

change and mutation are realized to ensure information sharing among the particles. Then, the 

global optimal value is added to velocity update to design a new velocity update strategy for im-

proving the local search ability. The comprehensive learning strategy is employed to construct 

learning samples, so as to effectively promote the information exchange and avoid falling into local 

extrema. By linearly changing the learning factors, a new factor adjustment strategy is developed to 

enhance the global search ability, and a new adaptive inertia weight-adjustment strategy based on 

an S-shaped decreasing function is developed to balance the search ability. Finally, some benchmark 

functions and the parameter optimization of photovoltaics are selected. The proposed algorithm 

obtains the best performance on 6 out of 10 functions. The results show that the proposed algorithm 

has greatly improved diversity, solution accuracy, and search ability compared with some variants 

of particle swarm optimization and other algorithms. It provides a more effective parameter com-

bination for the complex engineering problem of photovoltaics, so as to improve the energy conver-

sion efficiency. 
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1. Introduction 

Many problems in reality can be transformed into optimization problems. These op-

timization problems have complex characteristics, such as multiple constraints, high di-

mensionality, nonlinearity, and uncertainty, making them difficult to solve by the tradi-

tional optimization methods [1,2]. Therefore, an efficient new method is sought to solve 

these complex problems. Swarm intelligence optimization algorithms are a new evolu-

tionary computing technology, which refers to some intelligent optimization algorithms 

with distributed intelligent behavior characteristics inspired by the swarm behavior of 

insects, herds, birds, fish, etc. [3–5]. This has become the research focus of more and more 

researchers. It has a special relationship with artificial life, and includes Harris hawk op-

timization (HHO), slime mold algorithm (SMA), artificial bee colony (ABC), firefly opti-

mization, cuckoo search, and brainstorming optimization algorithm [6–9] for engineering 

scheduling, image processing, the traveling salesman problem, cluster analysis, and lo-

gistics location. 

PSO is a swarm intelligence optimization technology developed by Kennedy and 

Eberhart [10]. The main idea is to solve the optimization problem through individual co-

operation and information sharing. The PSO takes on a simple, strong parallel structure. 
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Therefore, it has been used in multi-objective optimization, scheduling optimization, ve-

hicle routing problems, etc. Although the PSO shows good optimization performance, it 

has slow convergence in solving complex optimization problems. Thus, a variety of im-

provement strategies for PSO are presented. Nickabadi et al. [11] presented a new adap-

tive inertia weight approach. Wang et al. [12] presented a self-adaptive learning model 

based on PSO for solving application problems. Zhan et al. [13] presented an orthogonal 

learning strategy for PSO. Li and Yao [14] presented a cooperative PSO. Xu [15] presented 

an adaptive tuning for the parameters of PSO based on a velocity and inertia weight strat-

egy to avoid the velocity close to zero in the early stages. Wang et al. [16] presented a 

hybrid PSO using a diversity mechanism and neighborhood search. Chen et al. [17] pre-

sented an aging leader and challenger PSO. Qu et al. [18] presented a distance-based PSO. 

Cheng and Jin [19] presented a social learning PSO based on controlling dimension-de-

pendent parameters. Tanweer et al. [20] presented a self-regulating PSO with the best hu-

man learning. Taherkhani et al. [21] presented an adaptive PSO approach. Moradi and 

Gholampour [22] presented a hybrid PSO based on a local search strategy. Gong et al. [23] 

developed a new hybridized PSO framework with another optimization method for 

“learning”. Nouiri et al. [24] presented an effective and distributed PSO. Wang et al. [25] 

presented a hybrid PSO with adaptive learning to guarantee exploitation. Aydilek [26] 

presented a hybrid PSO with a firefly algorithm mechanism. Xue et al. [27] presented a 

self-adaptive PSO. Song et al. [28] presented a variable-size cooperative co-evolutionary 

PSO with the idea of “divide and conquer”. Song et al. [29] presented a bare-bones PSO 

with mutual information. 

Sources Results and Contribution to PSO 

Nickabadi et al. [11] Designed an adaptive inertia weight strategy for PSO 

Zhan et al. [13] Designed an orthogonal learning strategy for PSO 

Xu [15] 
Designed an adaptive tuning strategy for the parameters for 

PSO 

Wang et al. [16] Developed a hybrid PSO 

Cheng and Jin [19] Developed a social learning PSO 

Tanweer et al. [20] Developed a self-regulating PSO 

Moradi and 

Gholampour [22] 
Designed a local search strategy for PSO 

Gong et al. [23] Developed a new hybridized PSO 

Xue et al. [27] Developed a self-adaptive PSO 

Song et al. [28] Developed a variable-size cooperative co-evolutionary PSO 

Song et al. [29] Developed a bare-bones PSO 

The comprehensive learning PSO (CLPSO) algorithm is a variant of PSO, and has 

good application in multimodal problems. However, because the CLPSO algorithm uses 

the current search velocity and individual optimal value to update the search velocity, the 

search velocity value in the later iteration is very small, resulting in slow convergence and 

reducing the computational efficiency. In order to improve the CLPSO algorithm, re-

searchers have conducted some useful works. Liang et al. [30] presented a variant of PSO 

(CLPSO) using a new learning strategy. Maltra et al. [31] presented a hybrid cooperative 

CLPSO by cloning fitter particles. Mahadevan and Kannan [32] presented a learning strat-

egy for PSO to develop a CLPSO to overcome premature convergence. Ali and Khan [33] 

presented an attributed multi-objective CLPSO for solving well-known benchmark prob-

lems. Hu et al. [34] presented a CLPSO-based memetic algorithm. Zhong et al. [35] pre-

sented a discrete CLPSO with an acceptance criterion of SA. Lin and Sun [36] presented a 

multi-leader CLPSO based on adaptive mutation. Zhang et al. [37] presented a local op-

tima topology (LOT) structure with the CLPSO for solving various functions. Lin et al. 

[38] presented an adaptive mechanism to adjust the comprehensive learning probability 
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of CLPSO. Wang and Liu [39] presented a novel saturated control method for a quadrotor 

to achieve three-dimensional spatial trajectory tracking with heterogeneous CLPSO. Cao 

et al. [40] presented a CLPSO with local search. Chen et al. [41] presented a grey-wolf-

enhanced CLPSO based on the elite-based dominance scheme. Wang et al. [42] presented 

a heterogeneous CLPSO with a mutation operator and dynamic multi-swarm. Zhang et 

al. [43] presented a novel CLPSO using the Bayesian iteration method. Zhou et al. [44] 

presented an adaptive hierarchical update CLPSO based on the strategies of weighted 

synthesis. Tao et al. [45] presented an enhanced CLPSO with dynamic multi-swarm. 

Sources Results and Contribution to PSO 

Maltra et al. [31] Developed a hybrid cooperative CLPSO 

Ali and Khan [33] Developed an attributed multi-objective CLPSO 

Hu et al. [34] Presented a CLPSO with local search 

Zhong et al. [35] Presented a discrete CLPSO 

Lin and Sun [36] Designed an adaptive mutation for multi-leader CLPSO 

Lin et al. [38] Designed an adaptive mechanism for CLPSO 

Cao et al. [40] Developed a CLPSO with local search 

Chen et al.[41] Developed a grey-wolf-enhanced CLPSO 

Wang et al. [42] Developed a heterogeneous CLPSO 

Zhou et al. [44] Developed an adaptive hierarchical update CLPSO 

Tao et al. [45] Developed an enhanced CLPSO with dynamic multi-swarm 

These improved CLPSO algorithms use the individual optimal information of parti-

cles to guide the whole iterative process, have better diversity and search range, and can 

solve complex multimodal problems. However, because the global optimal value does not 

participate in the particle velocity and position, the particle velocity is too small in the 

later search, and the convergence speed is slow. At the same time, due to the lack of 

measures for avoiding the local optimization, once the optimal values of most particles 

fall into the local optimization, the convergence is unable to find the global optimal value, 

and the performance is unstable. Therefore, to improve the optimization performance of 

CLPSO, a novel multi-strategy adaptive CLPSO (MSACLPSO) based on making use of 

comprehensive learning, multi-population parallel, and parameter adaptation was de-

signed for this paper. The MSACLPSO effectively promotes information exchange in dif-

ferent dimensions, ensures information sharing in the population, enhances the conver-

gence and stability, and balances the search ability compared with the other related algo-

rithms. 

The main contributions and novelties of this paper are described as follows. 

(1) A novel multi-strategy adaptive CLPSO (MSACLPSO) based on comprehensive 

learning, multi-population parallel, and parameter adaptation is presented. 

(2) A multi-population parallel strategy is designed to improve population diversity and 

accelerate convergence. 

(3) A new velocity update strategy is designed by adding the global optimal value in the 

population to the velocity update. 

(4) A new adaptive adjustment strategy of learning factors is developed by linearly 

changing the learning factors. 

(5) A parameter optimization method of photovoltaics is designed to prove the actual 

application ability. 

2. PSO 

PSO is a population-based search algorithm that simulates the social behavior of 

birds within a range. In PSO, all individuals are referred to as particles, which are flown 

through the search space to delete the success of other individuals. The position of parti-

cles changes according to the individual’s social and psychological tendencies. The change 
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of one particle is influenced by knowledge or experience. As a modeling result of the social 

behavior, the search is processed to return to previously successful areas in the search 

space. The particle’s velocity ( v ) and position ( x ) are changed by the particle best value 

(�����) and global best value (�����). The formula for updating velocity and position is 

given as follows: 

���
��� = ����

� + ���1��������
� − ���

� � + ���2��������
� − ���

� � (1)

���
��� = ���

� + ���
��� (2)

where ���
��� is the velocity of the 

thi  particle at the 
thj  iteration, ���

��� is the position of 

particle 
thi  at the 

thj  iteration, and the position of the particle is related to its velocity. 

w  is an inertia weight factor, which is used to reflect the motion habits of particles and 

represent the tendency of particles to maintain their previous speed. 1c  is a self-cogni-

tion factor, which reflects the particle’s memory of its own historical experience, and rep-

resents that the particle has a tendency to approach its best position. 2c  is a social cog-

nition factor, which reflects the population’s historical experience of collaboration and 

knowledge sharing among particles, and represents that particles tend to approach the 

best position in the population or field history. 1r  and 2r  represent random numbers in 

[0, 1], which denote the remembrance ability for the research. Generally, the value in the 

V  can be clamped to the range [− maxV , maxV ] in order to control the excessive roaming 

of particles outside the search space. The PSO is terminated until the maximal number of 

iterations is reached or the best particle position cannot be further improved. The PSO 

achieves better robustness and effectiveness in solving optimization problems. 

The basic flow of the PSO is shown in Figure 1. 

 

Figure 1. The basic flow of the PSO. 
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3. CLPSO 

PSO can easily fall into local extrema, which leads to premature convergence. Thus, 

a new update strategy is presented to develop a CLPSO algorithm. In the PSO, each par-

ticle learns from its own optimal value and the global optimal value. Therefore, in the 

velocity update formula of CLPSO, the social part of the global optimal solution of particle 

learning is not used. In addition, in the velocity update formula of the traditional PSO 

algorithm, each particle learns from all dimensions of its own optimal value, but its own 

optimal value is not optimal in all dimensions. Therefore, the CLPSO algorithm intro-

duces a comprehensive learning strategy to construct learning samples using the ����� 

of all particles to promote the information exchange, improve population diversity, and 

avoid falling into local extrema. The comprehensive learning strategy is to use the indi-

vidual historical optimal solution of all particles in the population to update the particle 

position in order to effectively enhance the exploration ability of the PSO and achieve 

excellent optimization performance in solving multimodal optimization problems. The 

velocity update of particle and position is described as follows: 

⎩
⎪
⎨

⎪
⎧

���
��� = ����

� + ����
� ��������(�)

� − ���
� �     

���
��� = ��� (������, max (������

� , ���
���))

���
��� = ���

� + ���
���                                           

���
��� = ��� (������, max (������, ���

���))

 (3)

where � = 1,2,3, ⋯,P and � = 1,2,3, ⋯, D. P is the size of the population and �  is the 

search space dimension. ��
� = [���

� , ���
� , ⋯ , ���

� , ⋯ , ���
� ]  is the particle position, ��

� =

[���
� , ���

� , ⋯ , ���
� , ⋯ , ���

� ] is the velocity of particle �, [������, ������] is the search range of 

particle �, [������, ������] is the velocity range, � is the inertia weight, � is the learning 

factor, ���
�  is a randomly distributed number on (0, 1), ��(�) refers to other particles that 

particle � needs to learn in the D-dimension, and �������(�)
�  can be the optimal position 

of any particle. 

The determination method of ��(�) is described as follows: For each particle dimen-

sion, a random probability is produced. If the random probability is greater than the learn-

ing probability ���
, then this particle dimension learns from the corresponding dimension 

of its own individual optimal value. On the other hand, two particles are randomly se-

lected to learn the better optimal value. To ensure the population’s polymorphism, the 

CLPSO also sets an update interval number m; that is, when the individual optimal value 

of particle � has not been updated for � iterations, it is regenerated. 

4. MSACLPSO 

PSO has simplicity, practicality, and fixed parameters, but it has the disadvantage of 

easily falling into local optima, as well as weak local search ability. The CLPSO has slow 

velocity in the later search, low convergence speed, and unstable performance. To solve 

these problems, a multi-strategy adaptive CLPSO (MSACLPSO) algorithm is proposed by 

introducing a comprehensive learning strategy, multi-population parallel strategy, veloc-

ity update strategy, and parameter adaptive strategy. In MSACLPSO, a comprehensive 

learning strategy is introduced to construct learning samples using the pBest of all parti-

cles to promote information exchange, improve population diversity, and avoid falling 

into local extrema. To overcome the lack of local search ability in the later stage, the global 

optimal value of the population is used for the velocity update, and a new update strategy 

is proposed to enhance the local search ability. The multi-population parallel strategy is 

employed to divide the population into � subpopulations, and then iterative evolution 

is carried out appropriately to achieve particle exchange and mutation, enhance the pop-

ulation diversity, accelerate the convergence, and ensure information sharing between the 

particles. The linearly changing strategy of the learning factors is employed to realize the 

iterative evolution in different stages and the adaptive adjustment strategy of learning 
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factors, which can enhance the global search ability and improve the local search ability. 

The S -shaped decreasing function is adopted to realize the adaptive adjustment of iner-

tia weight to ensure that the population has high speed in the initial stage, reduce the 

search speed in the middle stage—so that the particles will more easily converge to the 

global optimum—and maintain a certain speed for the final convergence in the later stage. 

4.1. Multi-Population Parallel Strategy 

The idea of multi-population parallel is based on the natural phenomenon of the evo-

lution of the same species in different regions. It divides the population into multiple sub-

populations, and then each subpopulation searches for the optimal value in parallel to 

improve the search ability. The indirect exchange of the optimal value and dynamic re-

combination of the population can enhance the population diversity and accelerate the 

convergence. A multi-population parallel strategy is proposed here. The main ideas of the 

multi-population parallel strategy are described as follows: The population is divided into 

N subpopulations in the process of evolution. For each subpopulation, the particle carries 

out iterative evolution, and the particle exchange and particle mutation under appropriate 

conditions are executed according to certain rules, so as to ensure information sharing 

between the particles of the population through the exchange of particles between sub-

populations. Therefore, to enhance the local search ability of the CLSPO algorithm in the 

later stage, a new update strategy is presented after the g0 generation is completed. That 

is, the global optimal value ����� of the population is added to the velocity update, as 

shown in Equation (4): 

⎩
⎪
⎨

⎪
⎧

���
��� = ����

� + ������
� ��������(�)

� − ���
� � + ������

� ��������(�)
� − ���

� �      

���
��� = min�������, ����������

� , ���
�����                                                         

���
��� = ���

� + ���
���                                                                                                   

���
��� = min (������, max (������, ���

���))                                                         

 (4)

where �� and �� are learning factors, �������(�)
�  is the optimal value of the particle in 

each subpopulation � ������
� , ������

� , ⋯ , ������
� , ⋯ , ������

� � , �������(�)
�  is the optimal 

value of each subpopulation � ������
� , �������

� , ⋯ , ������
� , ⋯ , ������

� �, ����
�  and ����

�  are 

randomly distributed numbers on (0, 1). 

4.2. Adaptive Learning Factor Strategy 

In PSO, the values of �� and �� are set in advance according to experiences, reduc-

ing the self-learning ability. Therefore, the linearly changing strategy of the learning fac-

tors is developed for �� and ��. In the early evolution stage, the self-cognition item is re-

duced and the social cognition item is increased to improve the global search ability. In 

the later evolution stage, the local search ability is guaranteed by encouraging particles to 

converge towards the global optimum. Therefore, the adaptive learning factor strategy is 

described as follows: 

�� = ���� + (���� − ����)(� −t)/T (5)

�� = ���� + (���� − ����)t/T (6)

where ���� and ����  are the maximum value and minimum value, respectively. 

4.3. Adaptive Inertia Weight Strategy 

In PSO, when the particles in the population tend to be the same, the last two terms 

in the particle velocity update formula—namely, the social cognition part, and the indi-

vidual’s own cognition part—will gradually tend towards 0. If the inertia weight � is less 

than 1, the particle speed will gradually decrease, or even stop moving, which result in 

premature convergence. When the optimal fitness of the population has not changed (i.e., 
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has stagnated) for a long time, the inertia weight � should be adjusted adaptively ac-

cording to the degree of premature convergence. If the same adaptive operation is 

adopted for the population, when the population has converged to the global optimum, 

the probability of destroyed excellent particles will increase with the increase in their in-

ertia weight, which will degrade the performance of the PSO algorithm. To better balance 

the search ability, an S -shaped decreasing function is adopted to ensure that the popu-

lation has high speed in the initial stage, and the search speed decreases in the middle 

stage, so that the particles can easily converge to the global optimum value and, finally, 

converge at a certain speed in the later stage. The S -shaped decreasing function for the 

inertia weight � is described as follows: 

� = (���� − ���� )/(1 + ���(2 ∗ � ∗ �/T − �)) + ���� (7)

where ���� and ����  are the maximum and minimum values, respectively— ���� =

0.9 and ���� = 0.2—and � is the control coefficient to adjust the speed change, where a 

= 13. 

4.4. Model of MSACLPSO 

The flow of MSACLPSO is shown in Figure 2. 

 

Figure 2. The flow of MSACLPSO. 

The steps of MSACLPSO are described as follows: 

Step 1: Divide the population into � subpopulations, and initialize all parameters. 

Step 2: Execute the CLPSO algorithm for each subpopulation. The objective function 

is used to find out the individual optimal value of the particle, the optimal value of the 

subpopulation, and the global optimal value of the population. To ensure the high global 

search ability in the early stage, T0 is set for the early stage, and each subpopulation up-

dates all particle states according to Equation (3). To enhance the local search ability of 
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CLSPO in the later stage, after the T0 iteration is completed, each subpopulation updates 

all particle states according to Equation (4). 

Step 3: If the optimal value of one subpopulation does not update for successive R1 

iterations, the population may fall into local optimization. To avoid falling into the local 

optimum for the subpopulation, the mutation strategy is used here. Each dimension of 

each particle in the subpopulation is mutated with the probability ��. The mutation mode 

is described as follows: 

���
� = ���

� + ����� (������ − ������)(� −t)/T (8)

where ����� is the random number on (−1, 1). 

Step 4: After T0 iterations are executed, to enhance population diversity, the particles 

are randomly exchanged between populations every interval R iteration to recombine 

subpopulations. The recombination of subpopulations is described as follows: All sub-

populations randomly select 50% of the particles, which are randomly exchanged with the 

particles of other populations. Then, according to the fitness values of all particles in all 

subpopulations, 1/N particles with the best fitness values in each subpopulation are se-

lected to construct a new population. It is worth noting that the exchanged particle can be 

any particle in any other population. 

Step 5: Determine whether the end conditions are met. If they are met, the optimal 

result is output; otherwise, return to Step 2. 

5. Experiment Simulation and Analysis 

5.1. Test Functions 

To verify the performance of MSACLPSO, 10 famous benchmark functions were se-

lected. The detailed description is shown in Table 1. 

Table 1. The detailed description. 

Function Name Function Expression S  ���� ������ 

Sphere �� = � ��

�

���

 [−100, 100]� 0 −450 

Schwefel 1.2 �� = � �� ��

�

���

�

�
�

���

 [−100, 100]� 0 −450 

High Conditioned 

Elliptic 
�� = �(10�)

���
���

�

���

��
� [−100, 100]� 0 −450 

Schwefel 1.2 with 

Noise 
�� = �� �� ��

�

���

�

�
�

���

� ∗ (1 + 0.4|�(0,1) [−100, 100]� 0 −450 

Schwefel 2.6 �� = ���{|�� + 2�� − 7|, |2�� + �� − 5|} [−100, 100]� 0 −310 

Rosenbrock �� = �(100(��
�

���

���

− ����)� + (�� − 1)�) [−100, 100]� 0 390 

Griewank �� = �
��

�

4000

���

���

− � cos �
��

√�
�

�

���

+ 1 [−100, 100]� 0 390 

Ackley 
�� = −20 exp

⎝

⎛−0.2�
1

�
� ��

�

�

���
⎠

⎞ − ��� �
1

�
� cos (2���

�

���

)�

+ 20 

[−32, 32]� 0 −140 
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Rastrigin �� = �(��
� − 10 cos(2���) + 10)

�

���

 [−5, 5]� 0 −330 

Expanded Schaffer ��� = 0.5 +
(�������� + ��� − 0.5)

(1 + 0.001(�� + ��))�
 [−100, 100]� 0 −300 

5.2. Experimental Environment and Parameter Setting 

The experimental environment mainly included Core I5-4200H, Win10, RAM-16GB, 

and MATLAB R2018b. The optimization performance of MSACLPSO was compared with 

other state-of-the-art algorithms, including the basic version of PSO (PSO) [46], self-or-

ganizing hierarchical PSO (HPSO) [47], fully-informed PSO (FIPS) [48], unified PSO 

(UPSO) [49], CLPSO [30], and static heterogeneous particle swarm optimization (sHPSO) 

[50]. In MSACLPSO, the population is divided into two subpopulations, and four main 

parameters are adjusted to balance exploration and exploitation. These parameters in-

clude population size, acceleration coefficients, iteration number, and dimensions. In our 

experiment, a large number of alternative values were tested, and some classical values 

were selected from other literature, and then these parameter values were experimentally 

modified until the most reasonable parameter values were selected. These selected pa-

rameter values attained the optimal solution, so that they could accurately and efficiently 

verify the effectiveness of MSACLPSO in solving optimization problems. Some parame-

ters that were tuned included the population size NP = 40, the number of subpopulations 

N = 2, �_��� = 0.5 and �_��� = 2.5, the dimension D = 30, run times T = 30, the maximum 

number of iterations G = 200, and function evaluations FEs = 300,000. The specific settings 

are shown in Table 2. 

Table 2. The parameter settings. 

Algorithms � �  �� �� ���
 �� FES 

PSO 0.9~0.4 — 2.0 2.0 — 60 300,000 

HPSO — — 2.5~0.5 0.5~2.5 — 40 300,000 

FIPS — 2 — — — 40 300,000 

UPSO — 1.49445 — — — 40 300,000 

OLPSO 0.9~0.4 2 — — — 40 300,000 

CLPSO 0.9~0.4 1.49445 — — 0.5 40 300,000 

sHPSO 0.72 — 2.5~0.5 0.5~2.5 — 40 300,000 

MSACLPSO 0.95~0.3 3.0~1.5 2.5~0.5 0.5~2.5 0.5 40 300,000 

5.3. Experimental Results and Analysis 

The population was divided into two subpopulations, and different numbers of 

individuals were set. The error mean (mean) value and standard deviation (Std) value 

were applied to evaluate the optimization performance of MSACLPSO. The obtained ex-

perimental results with the different numbers of individuals for 30-dimensional problems 

are shown in Table 3. The best results are the bold. 

Table 3. The different numbers of individuals (�� and ��) in two subpopulations for MSACLPSO. 

Functions Indices 10 + 30 15 + 25 20 + 20 25 + 15 30 + 10 40 + 0 

�� 
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

�� 
Mean 1.9862 × 10−8 1.6547 × 10−6 2.2056 × 10−4 1.6547 × 10−2 3.3274 × 10−1 3.7543 × 10−1 

Std 3.5974 × 10−8 1.7430 × 10−6 3.3469 × 10−4 1.3275 × 10−2 4.5401 × 10−1 4.7341 × 10−1 

�� 
Mean 5.5673 × 10−5 6.1432 × 105 8.4102 × 105 1.3610 × 106 2.1977 × 106 2.3560 × 106 

Std 1.7703 × 10−5 2.4205 × 105 3.2359 × 105 6.6034 × 105 9.2605 × 105 6.6496 × 105 
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�� 
Mean 4.2485 × 102 5.0328 × 102 6.0462 × 102 8.1743 × 102 1.4058 × 103 1.4135 × 103 

Std 2.4452 × 102 2.8874 × 102 4.4718 × 102 4.0569 × 102 7.1673 × 102 6.4532 × 102 

�� 
Mean 2.7830 × 103 2.5065 × 103 2.8913 × 103 3.1673 × 103 3.2137 × 1033 3.5478 × 103 

Std 5.5702 × 102 4.1407 × 102 4.0531 × 102 5.9613 × 102 4.2715 × 102 5.5379 × 102 

�� 
Mean 3.1637 2.2637 2.1975 7.1762 × 10−1 2.9757 × 10−1 3.3405 × 10−1 

Std 3.3643 4.0623 3.4537 9.2546 × 10−1 5.2504 × 10−1 6.6492 × 10−1 

�� 
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

�� 
Mean 1.9745 × 101 1.9805 × 101 1.9832 × 101 1.9867 × 101 1.9835 × 101 2.0645 × 101 

Std 8.3746 × 10−2 7.1485 × 10−2 5.8043 × 10−2 5.7903 × 10−2 8.8562 × 10−2 7.8530 × 10−2 

�� 
Mean 1.0673 1.0245 × 10−1 0.0000 0.0000 0.0000 1.2473 

Std 1.0305 3.8672 × 10−1 0.0000 0.0000 0.0000 1.2865 

��� 
Mean 1.0782 × 101 1.0954 × 101 1.1065 × 101 1.1438 × 101 1.1714 × 101 1.1904 × 101 

Std 4.0645 × 10−1 5.4680 × 10−1 4.3591 × 10−1 5.4613 × 10−1 4.1527 × 10−1 4.3681 × 10−1 

As can be seen from Table 3, the subpopulation size �� = 10 and �� = 30 obtained 

the best optimization performance for the 10 test benchmark functions compared with 

other subpopulation sizes. However, for the functions ��, ��, and ��, MSACLPSO did 

not obtain satisfactory optimization performance. Therefore, the subpopulation size �� = 

10 and �� = 30 was selected for performance evaluation of MSACLPSO. 

MSACLPSO was compared with some variants of PSO algorithms. The optimization 

performance was obtained according to the mean and Std of the 20 obtained results. The 

obtained experimental results using different algorithms for test functions with 30 dimen-

sions are shown in Table 4. The obtained best results are highlighted in bold. 

Table 4. The obtained experimental results using different algorithms. 

Functions Indices PSO HPSO FIPS OLPSO UPSO sHPSO CLPSO HCLPSO MSACLPSO 

�� 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

�� 
Mean 3.70 × 10−1 3.79 × 10−6 7.79 × 101 1.38 × 101 2.65E-07 1.44 × 10−2 1.14 × 103 1.70 × 10−6 1.99 × 10−8 

Std 3.20 × 10−1 2.82 × 10−6 2.71 × 101 8.33 2.42E-07 7.10 × 10−2 2.53 × 102 1.71 × 10−6 3.60 × 10−8 

�� 
Mean 6.53 × 106 7.72 × 105 2.45 × 107 1.60 × 107 1.54 × 106 8.75 × 105 1.22 × 107 6.42 × 105 5.57 × 105 

Std 4.17 × 106 2.96 × 105 6.29 × 106 7.04 × 106 4.75 × 105 5.34 × 105 3.34 × 106 2.61 × 105 1.77 × 105 

�� 
Mean 3.81 × 102 2.48 × 104 1.15 × 103 2.18 × 103 7.28 × 103 2.02 × 104 8.77 × 103 5.22 × 102 4.25 × 102 

Std 3.31 × 102 5.71 × 103 3.73 × 102 1.09 × 103 2.79 × 103 9.94 × 103 1.85 × 103 3.09 × 102 2.45 × 102 

�� 
Mean 3.85 × 103 9.20 × 103 2.22 × 103 3.30 × 103 6.32 × 103 6.94 × 103 4.47 × 103 2.97 × 103 2.78 × 103 

Std 8.00 × 102 1.81 × 103 5.14 × 102 3.75 × 102 1.63 × 103 1.43 × 103 4.26 × 102 4.55 × 102 5.57 × 102 

�� 
Mean 7.02 × 101 5.04 × 101 3.77 × 101 2.07 × 101 6.82 × 101 1.15 × 102 2.39 2.39 3.16 

Std 9.51 × 101 5.05 × 101 3.50 × 101 2.50 × 101 9.64 × 101 2.29 × 102 3.84 4.27 3.36 

�� 
Mean 7.60 × 10−1 1.00 × 10−2 3.00 × 10−2 1.00 × 10−2 2.00 × 10−2 4.00 × 102 7.00 × 10−1 2.00 × 10−2 0.00 

Std 1.41 1.00 × 10−2 2.00 × 10−2 1.00 × 10−2 1.00 × 10−2 4.00 × 102 1.50 × 10−1 2.00 × 10−2 0.00 

�� 
Mean 2.09 × 101 2.07 × 101 2.09 × 101 2.10 × 101 2.10 × 101 2.02 × 101 2.10 × 101 2.09 × 101 1.97 × 101 

Std 7.00 × 10−2 1.50 × 10−1 6.00 × 10−2 8.00 × 10−2 5.00 × 10−2 1.90 × 10−1 6.00 × 10−2 9.00 × 10−2 8.37 × 10−2 

�� 
Mean 1.90 × 101 1.07 × 101 5.71 × 101 0.00 8.52 × 101 8.25 × 101 1.00 × 102 0.00 1.07 

Std 5.37 4.96 1.46 × 101 0.00 1.69 × 101 2.44 × 101 1.25 × 101 0.00 1.03 

��� 
Mean 1.27 × 101 1.23 × 101 1.31 × 101 1.31 × 101 1.28 × 101 1.31 × 101 1.26 × 101 1.19 × 101 1.09 × 101 

Std 4.30 × 10−1 3.70 × 10−1 2.10 × 10−1 2.00 × 10−1 3.30 × 10−1 3.90 × 10−1 2.20 × 10−1 5.80 × 10−1 4.06 × 10−1 

As shown in Table 4, all algorithms performed equally on test function ��, and PSO 

obtained the best solution on test function ��. FIPS obtained the best solution on test func-

tion ��. MSACLPSO performed well on test functions ��~��. For multimodal functions, 

MSACLPSO performed well on all functions, and obtained the best performance on test 

functions ��, ��, and ���, and the second-best performance on test functions �� and ��. 

On the other hand, CLPSO and HCLPSO obtained the best solution on test function ��, 
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and OLPSO and HCLPSO obtained the best solution on test function ��. Overall, MSAC-

LPSO obtained the best performance on 6 out of 10 test functions. Therefore, MSACLPSO 

performs well, and obtains the best optimization performance for multimodal problems. 

In our experiment, MSACLPSO used several strategies of comprehensive learning, multi-

population parallel, and parameter adaptation. Although the strategies of comprehensive 

learning and parameter adaptation need more running time, the multi-population parallel 

strategy can reduce the running time. Therefore, the time complexity of MSACLPSO is 

similar to that of the other compared algorithms. 

To test the statistical difference between MSACLPSO and the other variants of PSO 

algorithms, the non-parametric Wilcoxon signed-rank test was used to compare the re-

sults of MSACLPSO and the results of the other variants of PSO. The obtained results of 

MSACLPSO against other algorithms are shown in Table 5. 

Table 5. The test results under α = 0.05. 

Functions PSO HPSO FIPS OLPSO UPSO sHPSO CLPSO HCLPSO 

�� = = = = = = = = 

�� + + + + + + + + 

�� + + + + + + + + 

�� − + + + + + + + 

�� + + − + + + + + 

�� + + + + + + − − 

�� + + + + + + + + 

�� + + + + + + + + 

�� + + + − + + + − 

��� + + + + + + + + 

+/=/− 8/1/1 9/1/0 8/1/1 8/1/1 9/1/0 9/1/0 8/1/1 7/1/2 

As shown in Table 5, MSACLPSO performs better than the other variants of PSO 

algorithms through the number of (+/=/−) in the last row of the Wilcoxon signed-rank test 

results under α = 0.05. 

To sum up, it can be seen that the optimized values of parameters for MSACLPSO 

are � = 0.43, � = 2.1, �� = 1.8, �� = 2.1, and ���
 = 0.5 for solving these complex optimi-

zation problems. 

6. Case Analysis 

Renewable energy has always been the focus of dealing with the key issues of tradi-

tional energy consumption, which uses nonrenewable energy. Solar energy is an up-and-

coming resource, in which PV plays a vital role. However, the PV device is usually placed 

in an exposed environment, which leads to its degradation. This seriously affects the effi-

ciency of PV. Therefore, MSACLPSO was employed to effectively and accurately optimize 

the PV parameters to establish an optimized PV model. The values of parameters for 

MSACLPSO were the same as given in Section 5.3. 

6.1. Modeling for PV 

A lot of PV models have been designed, and were applied to illustrate the I–V char-

acteristics. The SDM and DDM are the most widely used [51]. The PV model is described 

in Table 6. 
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Table 6. The modelling for PV. 

PV LI  

SDM 
( )
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L ph sd
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q V I R V I R
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nkT R

    
    

  

 

DDM 
1 2

( ) ( )
1 1L L s L L s L L s

L ph sd1 sd2
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q V I R q V I R V I R
I I I exp - I exp -

n kT n kT R

        
         

      

 

It is crucial to search for the optimal parameter values in order to minimize the error 

of the PV models. The error functions are described as follows: For the SDM, 
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L
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For the DDM, 
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To evaluate the PV model, the RMSE is described as follows: 

21
RMSE( ) ( )

N

L L
k 1

x f V ,I ,x
N 

   (11)

6.2. Modeling for PV 

To validate the performance of MSACLPSO, the PSO, BLPSO, CLPSO, CPMPSO, 

IJAYA, GOTLBO, SATLBO, DE/BBO, DBBO, STLBO, WOA, CWOA, LWOA, GWO, 

EGWO, WDO, DE, JADE, and MPPCEDE [52–64] algorithms were used for comparison. 

The parameter values of MSACLPSO were the same as given in Section 5.2. The parameter 

values of the other compared algorithms were the same as in the literature. The maximum 

number of iterations was G = 200, and these algorithms were executed for 20 runs. There-

fore, the statistical results of the SRE, LRE, MRE, and Std were obtained. The value of 

RMSE was employed to quantify the solution accuracy, while the Std of the RMSE de-

scribed the reliability. The statistical results of the experiment with the SDM and DDM 

are shown in Tables 7 and 8, respectively. The obtained best results are highlighted in 

bold. 

Table 7. The obtained results of RMSE for the SDM. 

Algorithms SRE LRE MRE Std Symbol 

PSO 2.44805 × 10−3 9.86022 × 10−4 1.31844 × 10−3 5.24500 × 10−4 + 

BLPSO 1.74592 × 10−3 1.03122 × 10−3 1.31377 × 10−3 1.90400 × 10−4 + 

CLPSO 1.25274 × 10−3 9.92075 × 10−4 1.06081 × 10−3 7.04200 × 10−5 + 

CPMPSO  9.86022 × 10−4 9.86022 × 10−4 9.86022 × 10−4 2.17556 × 10−17 + 

IJAYA 9.86841 × 10−4 9.86022 × 10−4 9.86051 × 10−4 1.49300 × 10−7 + 

GOTLBO 1.39559 × 10−3 9.86608 × 10−4 1.08300 × 10−3 9.70900 × 10−5 + 

SATLBO 1.00674 × 10−3 9.86025 × 10−4 9.88799 × 10−4 4.81300 × 10−6 + 

DE/BBO 1.84123 × 10−3 9.86022 × 10−4 1.25173 × 10−3 2.08225 × 10−4 + 
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DBBO 2.36083 × 10−3 9.86820 × 10−4 1.38755 × 10−3 2.70008 × 10−4 + 

STLBO 1.02033 × 10−3 9.86022 × 10−4 9.87207 × 10−4 6.25700E-06 + 

WOA 1.00397 × 10−2 1.10759 × 10−3 3.25587 × 10−3 2.16463 × 10−3 + 

CWOA 3.28588 × 10−2 9.98677 × 10−4 5.44921 × 10−3 6.33831 × 10−3 + 

LWOA 1.92042 × 10−2 9.99621 × 10−4 3.44545 × 10−3 3.33774 × 10−3 + 

GWO 4.43070 × 10−2 1.28030 × 10−3 1.13440 × 10−2 1.48470 × 10−2 + 

EGWO 5.24900 × 10−3 2.11210 × 10−3 3.50150 × 10−3 1.59880 × 10−3 + 

WDO 4.42600 × 10−3 1.22101 × 10−3 2.18020 × 10−3 7.63880 × 10−4 + 

DE 1.81059 × 10−3 9.86022 × 10−4 1.02116 × 10−3 1.44688 × 10−4 + 

JADE 1.41030 × 10−3 9.86060 × 10−4 1.08330 × 10−3 1.09000 × 10−4 + 

MPPCEDE 9.86022 × 10−4 9.86022 × 10−4 9.86022 × 10−4 0.00000 + 

MSACLPSO 9.86022 × 10−4 9.864574 × 10−4 9.83758 × 10−4 7.52967 × 10−18  

Table 8. The obtained results of the RMSE for the DDM. 

Algorithms SRE LRE MRE Std Symbol 

PSO 4.34952 × 10−2 9.82485 × 10−4 4.37645 × 10−3 1.01270 × 10−2 + 

BLPSO 1.93654 × 10−3 1.08218 × 10−3 1.53462 × 10−3 2.45890 × 10−4 + 

CLPSO 1.38835 × 10−3 9.94316 × 10−4 1.13959 × 10−3 9.39950 × 10−5 + 

CPMPSO 9.86022 × 10−4 9.82485 × 10−4 9.83137 × 10−4 1.33980E-06 + 

IJAYA 9.99410 × 10−4 9.82494 × 10−4 9.86860 × 10−4 3.22120E-06 + 

GOTLBO 1.53359 × 10−3 9.85097 × 10−4 1.16335 × 10−3 1.51770 × 10−4 + 

SATLBO 1.23062 × 10−3 9.82824 × 10−4 1.00544 × 10−3 5.02710 × 10−5 + 

DE/BBO 1.63508 × 10−3 9.87990 × 10−4 1.19281 × 10−3 2.03849 × 10−4 + 

DBBO 9.84995 × 10−4 2.29052 × 10−3 1.22395 × 10−3 3.08780 × 10−4 + 

STLBO 1.52433 × 10−3 9.82561 × 10−4 1.03435 × 10−3 1.41980 × 10−4 + 

WOA 1.15633 × 10−3 1.16011 × 10−2 3.42961 × 10−3 2.23226 × 10−3 + 

CWOA 8.86567 × 10−3 1.13004 × 10−3 3.50587 × 10−3 2.15341 × 10−3 + 

LWOA 1.04935 × 10−3 1.11900 × 10−2 3.12337 × 10−3 1.81559 × 10−3 + 

GWO 4.07970 × 10−2 1.02742 × 10−3 9.90850 × 10−4 1.29040 × 10−2 + 

EGWO 5.00690 × 10−3 1.80620 × 10−3 3.06700 × 10−3 1.70500 × 10−3 + 

WDO 4.93450 × 10−3 1.68120 × 10−3 3.29180 × 10−3 8.41370 × 10−4 + 

DE 2.00941 × 10−3 9.82936 × 10−4 1.06862 × 10−3 2.23325 × 10−4 + 

JADE 2.23830 × 10−3 9.83510 × 10−4 1.46570 × 10−3 3.81000 × 10−4 + 

MPPCEDE 9.82908 × 10−4 9.82485 × 10−4 9.82504 × 10−4 8.02951 × 10−8 + 

MSACLPSO 9.82743 × 10−4 9.82368 × 10−4 9.81463 × 10−4 9.68924 × 10−9  

As can be seen from Table 7, CPMPSO, MPPCEDE, and MSACLPSO obtained the 

SRE, LRE, and MRE values. For the Std of RMSE, MSACLPSO performed well. Therefore, 

the optimization performance of MSACLPSO was better than that of the compared algo-

rithms for SDM. As can be seen from Table 8, MSACLPSO obtained the best results for 

the SRE, LRE, MRE, and Std of RMSE. For the Std of RMSE, MSACLPSO obtained the best 

Std. Therefore, MSACLPSO is the best algorithm for DDM. 

To sum up, it can be seen that the performance of MSACLPSO was demonstrated by 

optimizing the PV model parameters All of the compared results containing the optimized 

parameters, along with the SRE, LRE, MRE, and Std values, show that MSACLPSO can 

obtain the optimal parameters. This provides a more effective parameter combination for 

the complex engineering problems of photovoltaics, so as to improve the energy conver-

sion efficiency. 

7. Conclusions 

In this paper, a multi-strategy adaptive CLPSO with comprehensive learning, multi-

population parallel, and parameter adaptation is proposed. A multi-population parallel 

strategy was designed to improve population diversity and accelerate convergence. Then, 

a new velocity update strategy was designed for the velocity update, and a new adaptive 
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adjustment strategy of learning factors was developed. Additionally, a parameter optimi-

zation method for photovoltaics was designed to prove the actual application ability. Ten 

benchmark functions were used to prove the effectiveness of MSACLPSO in comparison 

with different variants of PSO. On 6 out of 10 functions, MSACLPSO obtained the best 

performance. MSACLPSO performed well and obtained the best optimization perfor-

mance for multimodal problems. In addition, the actual SDM and DDM were selected for 

parameter optimization. The experimental results show that the actual application ability 

of the MSACLPSO was confirmed in comparison with the other algorithms. MSACLPSO 

is an alternative optimization technique for solving complex problems and actual engi-

neering problems. 

However, MSACLPSO is still insufficient in solving large-scale parameter optimiza-

tion problems, such as time complexity and easy stagnation, among others. In the future, 

these applications should be considered [65–72]. The algorithm should be deeply studied, 

and the parameter adaptability of MSACLPSO in different stages and scales should also 

be further explored in future works. 
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Nomenclature 

PSO Particle swarm optimization 

HPSO Hierarchical PSO 

FIPS Fully-informed PSO 

UPSO Unified PSO 

sHPSO Static heterogeneous PSO 

CLPSO Comprehensive learning PSO 

MSACLPSO Multi-strategy adaptive CLPSO 

ABC Artificial bee colony 

SMA Slime mold algorithm 

HHO Harris hawk optimization 

w  Inertia weight factor 

1c  Self-cognition factor 

2c  Social cognition factor 

maxV  Max velocity 

RMSE Root-mean-square error 

SRE Smallest RMSE 

LRE Largest RMSE 

MRE Mean RMSE 

Std Standard deviation 

PV Photovoltaics 

SDM Single-diode model 

DDM Double-diode model 

I–V Current–voltage 
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P–V Power–voltage 

1r , 2r  Random numbers 

���
��� Velocity 

P Size of population 
� Search space dimension 
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