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Abstract: As a universal quantum computer requires millions of error-corrected qubits, one of the
current goals is to exploit the power of noisy intermediate-scale quantum (NISQ) devices. Based
on a NISQ module–layered circuit, we propose a heuristic protocol to simulate Hermitian matrix
evolution, which is widely applied as the core for many quantum algorithms. The two embedded
methods, with their own advantages, only require shallow circuits and basic quantum gates. Capable
to being deployed in near future quantum devices, we hope it provides an experiment-friendly way,
contributing to the exploitation of power of current devices.
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1. Introduction

Building up a large-scale error-corrected quantum computer is to be one of the greatest
scientific and engineering achievements [1–4]. However, stringent requirements such as
millions of qubits with high accuracy are far to meet. Preskill coined “Noisy Intermediate-
Scale Quantum” (NISQ) to describe this era, where NISQ devices represent the current
state of the art in the fabrication of quantum devices [5]. The leading quantum computers
contain up to a few hundred physical qubits, but provide rare practical applications as error
correction is missing [6,7]. Therefore, while polishing the hardware-related techniques, one
present-day goal is to exploit the power of current machines.

Matrix evolution is computationally hard in numerical mathematics, asO(d3) operations
are required for an unstructured d× d matrix [8]. With advent of quantum algorithms, this
can be solved to some extent by instinct priority of fault-tolerant quantum computation on
matrix multiplications. For example, complexity of t-time analog Hamiltonian evolution
is O(t). Furthermore, certain digital algorithms were proposed for hermitian matrices’
evolution, which produce quantum speedups in many scenarios, such as simulation
algorithms, quantum principal component analysis, quantum matrix inversion, and their
generalizations [9–15]. However, deep quantum circuits and inaccessible oracles are required,
which hinder their applications on near term devices. Accordingly, one question need be
addressed: How to realize matrix evolution on current NISQ devices?

NISQ algorithms are a class of algorithms with no explicit requirements for error
correction, promising to be deployed on NISQ hardware [5,16]. In regard to matrix evolution,
we explore its near future application by introducing one typical NISQ module–layered
circuit. Consequently, in Section 2, a heuristic protocol is proposed to employ a layered
circuit to simulate hermitian matrix evolution, which is experimental friendly and can be
employed in near-term applications of algorithms. To generate proper layered circuits, two
methods are embedded in this protocol. The first is inspired by optimal control theory,
which finds the simulating circuit directly, but with no scalability. The second, averting
the scalability problem, generates the simulating circuit by a hybrid quantum-classical
paradigm [17]. Both simulating circuits are with basic quantum gates and a pre-set depth,
with the consumption of generating those circuits analyzed in Section 3. To support
feasibility, simulating circuits are generated and validated numerically in Section 4, where
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hermitian matrices are set as density matrix of Bell state, GHZ state, and Hamiltonian of
Crotonic acid molecular [18]. Compared with the method such as product formula and
density matrix evolution, simulating circuits by our methods are with shallower depth, and
more friendly to the experimental realizations. Furthermore, as a generalization of linear
combination unitaries and layered circuit [19–21], ancillary layered circuit is proposed in
our protocol, which not only serves as a quantum compiler here, but also an essential
subroutine for NISQ algorithms.

2. Result

For hermitian matrices evolution, Lie–Trotter products and density matrix evolution
provide solutions. We briefly review them here.

In the first case, for general Hamiltonian ρ = ∑i ρi with ρi be local interactions, e−iρt

can be simulated by the lowest order Lie–Trotter product formula [22],

(∏
i

e−iρi∆t)n → e−iρt +O(||ρ||2t2/n), (1)

with ∆t = t/n, as shown in the schematic process in Figure 1a. n = O(t2ε−1||ρ||2) denotes
the repetition times, and therefore the circuits size and depth for full e−iρt with desired
accuracy ε. Though repeated applications of simulated circuit is feasible in theory, a low-
depth quantum circuit is preferred by current NISQ devices as the limited coherence time.
Therefore, under the circumstance of a tolerant accuracy, the implementation appears
unfriendly to current or near term devices.

In the second case, ρ is not only Hermitian but also positive semi-definite and unit
trace, that is, ρ is a physical quantum state, e−iρt can be realized by multiple copies of ρ and
infinitesimal swap operations [10]. Assuming that σ is another quantum state that e−iρt act
on, the infinitesimal swap operation has such effect,

trp[e−iS∆tρ⊗ σeiS∆t] = σ− i∆t[ρ, σ] +O(∆t2), (2)

where trp is the partial trace over ρ and S is the swap operator. Shown in Figure 1b, density
matrix evolution with respect to σ can be constructed by repeated applications of (2) with
n = t/∆t copies of ρ. Therefore, if the swap S and its infinitesimal exponential operation
e−iS∆t can be implemented in a single layer circuit, both size and depth of using Equation (2)
are O(t2ε−1). For accurate simulation, this depth and size of the circuit still dissatisfy the
characteristics of current devices, and thus hinder its near term application.

(a)

σ / e−iρt ⇐ σ / ∏i e−iρi
t
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t
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t
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Figure 1. Conventional method to realize e−iρt, where ρ is a hermitian matrix. (a) is via decomposition
from Lie–Trotter products and (b) is the density matrix evolution using infinitesimal swaps e−iS∆t.
Wherein, / denotes a register of multi qubits, and |means tracing out the corresponding register.

One typical NISQ module is the layered circuit, which concretely implement near
term applications [23,24]. Specifically, a m layered circuit U(θ) = ∏m

i=1 Ui(θi) is presented
in Figure 2a, which is parameterized by θ. As NISQ devices are with characteristics such as,
limited size, short coherence time, and basic quantum operations, a shallow layered circuit
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seems perfect to undertake a NISQ applications. Remarkably, although shallow circuits and
basic operations are utilized, the expressivity of layered circuits can be nontrivial and has
been investigated in some recent papers [25,26]. Therefore, in our work, a layered circuit is
employed to approach the simulation of matrix evolution, mathematically,

Um(θm)...Ui(θ1)→ e−itρ, (3)

where ρ is target hermitian matrix.
A layered circuit can be fully determined by its structure and parameters. For most

applications, structure is configured previously, which depends on the tasks at hand.
The widely used structures include quantum alternating operator ansatz, variational
Hamiltonian ansatz and unitary coupled clustered ansatz [27–30]. In this study, according
to hardware efficiency, we employed an m = O(n) layered circuit for following n-qubit
tasks. All two body interactions are involved and gates in one layer are commuted with
each others, which aims at employing the two-body interactions of the devices with a
limited depth circuit. This circuit is problem-agnostic, which is given in Appendix B For
specific problem faced, the circuit should be re-designed, which exploits both expressibility
and trainability.

Furthermore, before stepping into parameter determination, ancillary layered circuit is
introduced as preliminary. It is schematically presented in Figure 2b. Besides the principal
system which is denoted as p, the ancillary register a is added with the same size as Chio-
Jamiolkowski isomorphism is employed. The entire circuit includes three parts: encoding
circuit (Ue, colored blue), layered circuit part (Ul ⊗ I, colored pink), and decoding circuit
(Ud, colored green). The details of dynamics in Figure 2b are shown as follows.

For initialization, two registers are jointly prepared on Ω0 = |ψ0〉 〈ψ0|, where

|ψ0〉 = |0〉p |0〉a . (4)

Encoding circuit Ue is supposed to evolve the system into Ω1 = |ψ1〉 〈ψ1|, where
|ψ1〉 = ∑i |i〉p ⊗ |i〉a are pairs of Bell states. This step can be realized by a bunch of control-z
gates, Cz and Hadamard gates, Ha,

Ω1 = UeΩ0U†
e ,

Ue = Ip ⊗ Ha · Cz · Hp ⊗ Ha. (5)

Then, Ul is applied on p, driving the system into Ω2, i.e., the Choi matrix of Ul ,

Ω2 = |ψ2〉 〈ψ2| = ∑
i,j

Ul(|i〉 〈j|)pU†
l ⊗ |i〉 〈j|a . (6)

Noted that, arbitrary state ρ with the application of Ul has a state-channel duality,

Ul(ρ) = tra[Ω2 · I ⊗ ρ∗]. (7)

Thus, knowing Ω2 is sufficient to completely determine Ul , i.e., converting quantum
channel characterization to state characterization. Choi-Jamiolkowski isomorphism is
exactly the correspondences in Equations (6) and (7).

Finally, Ω3 is the result generated by steering Ω2 through the decoding circuit Ud = U†
e ,

which disentangles the system and is essential in our methods.
For parameter determination, it can be solved by two optimization methods, which

minimize the distance,

‖Um(θm)...Ui(θ1)− e−itρ‖, (8)
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where ρ is the target hermitian matrix. Specifically, we substitute Ui(θi) with e−itθiρi , where
ρi are tensor products of Pauli operators. In this configuration, the problem states as
approaching e−itρ by

e−itθmρm · · · e−itθ1ρ1 . (9)

The formalism of ρi determines the structure of layered circuit. It is an empirical task
and is set in advance, which we have depicted before.

(a)

U1(θ1) U2(θ2) Um(θm)

Ue Ul ⊗ I Ud

(b)

S /

A

Ω0

/ H

H

H

Ω1

Ul(θ)

Ω2

H

H

H

Ω3

Figure 2. Layered circuit and ancillary layered circuit. (a) gives an example of an m layered circuit,
which is employed in (b) as Ul(θ). Ui(θi) are parametrized by tuneable θi. (b) is ancillary layered
circuit, which has three parts: encoding circuit (blue) Ue, layered circuit (pink) Ul ⊗ I and decoding
circuit (green) Ud. Ω0, Ω1, Ω2, and Ω3 represent temporary states.

From the point of view of state, for a specified time t, ρ drives an ideal arbitrary system,
which is labelled as σ, to

σ0(t) = e−itρσeitρ. (10)

Simultaneously, with the application of Equation (9), the real system is steered to σ(t),
where

σ(t) =
m

∏
i=1

e−itθiρi σ
m

∏
i=1

eitθiρi . (11)

The objective function f is thus defined as the overlap which is measured by the
standard inner product

f (θ) = tr(σ0(t)σ(t)) = tr(µk · νk), (12)

where

µk =
m

∏
i=k+1

eitθiρi e−itρσeitρ
k+1

∏
i=m

e−itθiρi ,

νk =
1

∏
i=k

e−itθiρi σ
k

∏
i=1

eitθiρi . (13)

Obviously, f (θ) ≤ 1, the maximum situation is satisfied when the outputs of ∏m
i=1 e−itθiρi

and e−itρ are the same. This is a state to state situation. To approach the dynamics, Choi
matrix is employed, which can be produced by ancillary layered circuit. In this situation,
the notations are redefined,

σ = UeΩ0U†
e ,

µk =
m

∏
i=k+1

(eitθiρi · e−itρ)⊗ I · σ ·
k+1

∏
i=m

(eitρ · e−itθiρi )⊗ I,

νk =
1

∏
i=k

e−itθiρi ⊗ I · σ ·
k

∏
i=1

eitθiρi ⊗ I. (14)
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Method 1 is a traditional method of gradient, where the partial derivative with respect
to the parameter θk are

∂ f
∂θk

= −it〈µk|[ρk, νk]〉. (15)

〈·〉means trace here. Therefore, by updating θk by θ′k with a learning rate η,

θ′k = θk + η
∂ f
∂θk

, (16)

the objective function would increase along the direction of gradient until converging into
the local maximum. If f ≈ 1 is iteratively achieved, this layered circuit is said to approach
the application of e−itρ.

However, one vital problem is at calculating the gradient. As obtaining νk and µk is in
general inefficient for tremendous time-consuming. Therefore, Method 2 is reported.

Method 2 is outlined as follows, (i) implementing eiρ∆t with a layered circuit, where ∆t
is a sufficiently short period of time; (ii) implementing eiρt with (i) as the starting point step
by step, where ancillary layered circuit is used as a compiler and O(log(t/∆t)) steps are
required. This idea is extended from trotter decomposition, which induces a trotter error
with εt ∼ O(t∆t). We illustrate the details as follows.

The first step is to realize an approximation,

∏
i

e−i∆tθiρi → e−i∆tρ, (17)

which requires us realizing following equation if only lowest order is considered,

∑ θiρi = ρ. (18)

This is coincident with Lie–Trotter decomposition, where sufficiently small ∆t is
adopted. Related details for derivation can be found in Appendix A. Accordingly, assuming
that ∆t is small enough, eiρ∆t can be simulated efficiently by a layered circuit, where
structure and parameters are given by Equation (18).

The second step is to simulate eiρt. On basis of (i), this can be achieved by repeatedly
applying ancillary layered circuit as compiler for O(log(t/∆t)) times. We depict the i-th
iteration in Figure 3, where Ul consists of Ui+1(θ) and U−1

i followed by nc times. The
ancillary layered circuit serves as a compiler, learning repeated Ui by Ui+1(θ). nc represents
the compression efficiency, Ui is known, and the structure of Ui+1 is set previously.
Specifically, the task for i-th iteration is to generate Ui+1(θ) with an explicitly prior known
Ui, where Ui+1 ← Unc

i and θ are the parameters to be optimized.
The objective function is defined as,

f = tr(Ω1Ω2) = tr(Ω0Ω3), (19)

which reaches the maximum at Ui+1(θ) = Unc
i . As Ω1 are pairs of Bell states, this objective

function cannot be measured with the local bases directly and efficiently. We investigate
the second term in Equation (19): A decoding circuit Ud disentangles the target component
into Ω3. In this situation, only with the local measurement on Ω0, the objective function can
be estimated and optimized as conventional hybrid quantum algorithms [31]. Iteratively,
parameters in Ui+1, which are obtained in the i-th iteration, could be applied in the (i+ 1)-th
step, where Ui+2 = Unc

i+1 is realized.
Accordingly, by log(t/δ) steps, eitρ can be implemented based on ei∆tρ. Compared to

repeatedly applications of Ui which will cause the circuit depth affordable, this strategy
trades the circuit depth with repeated applications of ancillary layered circuit(shown in
Figure 3), which increases the training time while compresses the repeated circuit depth.
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Ue Ul ⊗ I Ud

p /

a

Ω0

/ H

H

H

Ω1

Ui+1(θ) U−1
i U−1

i

Ω2

H

H

H

Ω3

Figure 3. Ancillary layered circuit to implement method 2. Ui+1(θ) is the circuit to be optimized with
known Ui. Notations are the same as Figure 2a. Ω0, Ω1, Ω2, and Ω3 are temporary states.

3. Analysis

To simulate hermitian matrix evolution with layered circuit, time complexity is
bounded by the depth of used circuit, which is easily analyzed if circuits are determined.
For errors introduced by simulation, it is the distance between target evolution and
layered circuit, which is also generated by two embedded methods. Therefore, analysis for
embedded methods are important: Learning complexities and learning errors are analyzed
in this section.

We list procedures of two methods in the Method 1 and Method 2 and analyze the
learning complexity first.

Method 1 relies on a classical optimization to generate parameter configurations.
Therefore, complexities for time and memory is based on classical resources, such as
classical logic gates and registers. During the procedure, approximating the gradient by
Equation (15) costs the most. For each iteration, calculating µk and νk lies at the heart, which
requires the implementation of matrix multiplications on a classical computer. Though
e−itρi can be efficiently simulated individually for locality of ρi, simulating e−itρ is in general
hard for most cases and there is no even universal efficient algorithms. To simulate an
n-qubit problem, 2n × 2n matrix should be generated and stored, with O(4n) operations
for evaluating the objective function and obtaining the gradient. Thus, the time complexity
is O(4n)× r for a total r iterations while memory complexity is O(4n). As Choi states are
employed, our expedition will be enlarged, qubits are doubled.

Accordingly, this method is in general inefficient. However, it would be applicable
to specific circumstances where νk and µk can be efficiently simulated. In fact, some
investigations have employed tensor network to work out certain structure simulation
problem and shed the light on the middle-scale quantum systems [32].

Method 2 is a hybrid quantum classical paradigm, where ancillary layered circuits
are executed on quantum computers, parameters are updated on classical computers. For
tasks on quantum computers, ancillary layered circuit brings a 2n-qubit consumption on
quantum register, where n is the size of simulation quantum system. Time complexity
to execute ancillary layered circuit is additional O(n) Hadamard and control-z gates,
with a depth of O(m) layered circuit consisting of at most O(m × n) basic quantum
gates. Luckily, our measurement is on Ω0, which is local measurement. Therefore, for
single iteration, updating all parameters requires O(m× n) times repeatedly applying and
measure ancillary layered circuit. For r repetitions, O(m× n)× r is required. If e−itρ is to
be realized by e−i∆tρ, an additional multiplied factor log (t/∆t) should be added. For tasks
on classical computers, a storage of O(m× n) parameters and their numerical gradient is
required. Time complexity depends only on operations of fundamental arithmetic, which
is within the reach of current machines.

Accordingly, time complexity of Method 2 is O(m × n × r × log (t/∆t)). As in our
configuration, m = O(n), which leads our method acceptable with respect to efficiency.
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Method 1
Input: layered circuit ∏i=1 e−itθiρi . θ is to be optimized, εo is an optimized threshold,

and δ1 is the tolerance for improving.
Output: θ, parameter configuration, which is optimized to approach e−itρ via

∏i=1 e−itθiρi .

1: Evaluate the objective function Equation (12) with existed θ, denoted as f . If f ≤ 1− εo,
go to 2, otherwise, the algorithm terminates and θ return.

2: for k = 1, ..., m do
3: Based on Equation (14), νk and µk are calculated.
4: Evaluate ∂ f /∂θk by Equation (15).
5: end for
6: Update m-element θ according to Equation (16)
7: Evaluate the objective function with the new θ
8: if f ≥ 1− εo then
9: the algorithm terminates and θ return;

10: else if ∆ f ≤ δ1 then
11: θ are re-initialized and go to 1.
12: else
13: go to 2.
14: end if
15:
16:
17:
18:

Method 2
Input: layered circuit ∏i=1 e−iθiρi with known U1. θ is to be optimized, εo is the

optimized threshold, δ2 is the tolerance for improving, and nc is the compressing factor.
Output: θ, parameter configuration, which is optimized to approach e−itρ via

∏i=1 e−itθiρi

1: for i = 1, ..., log(t/∆t) do
2: if i = 1 then
3: U1 and its inversion are generated by the input.
4: else
5: Ui are generated as the output of the last iteration.
6: end if
7: Evaluate the objective function in Equation (19) with existed θ and nc, which is

denoted as f . If f ≤ 1− εo, go to 8, otherwise, θ for Ui+1 return and go to 1.
8: θ for Ui+1 are optimized as variant quantum algorithms, θ are updated and f is

evaluated.
9: if f ≥ 1− εo then

10: θ return and go to 1;
11: else if ∆ f ≤ δ2 then
12: θ are re-initialized and go to 7.
13: else
14: go to 8.
15: end if
16: end for

To analyze errors of layered circuit by both methods, first, we define some notations:
εo is the optimized threshold which is supposed to terminate the training process; εt is the
deviations coming from lie-product decomposition.

If Method 1 is completed, the optimized threshold is targeted. The obtained layered
circuit has an accuracy of 1− εo as training process permits the error no more than εo. For
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Method 2, the error accumulates according to a chain rule when implementing Ui+1 by Ui.
It ends up with an error of O(ns

cεo), where the higher order terms are ignored and s is
steps, which is in total of O(log(t/∆t)) to realizing e−iρt from e−iρ∆t. Thus, the discrepancy
is O((t/∆t)εo). Additionally, an error coming from Equation (1) is also considered as εt,
which is of O(t∆t). Accordingly, the total error for Method 2 is O((t2/εt)εo) +O(εt).

In the end of this section, we analyze the expressive power for typical layered circuit,
which is given by our appendix method. In fact, it is problem-dependent and can be
replaced with smarter ansatz with tasks at hand.

Expressibility is proposed recently as a distance, which measures the output states
distribution of layered circuits and the Haar [26]. To explicitly present this value, Kullback-
Leibler (KL) divergence(or relative entropy) is employed to estimate this distance, which
is denoted as Expr. A highly expressible circuit would produce a small Kullback-Leibler
value. In this part, besides numerically calculating Expr of circuit given in Appendix C,
three other types of parametrized circuits are also studied as comparisons, which are
also specified in Appendix C. Three compared circuits are repeated with up to 5 times to
calculate Expr, while our typical circuit stays unchanged. Figure 4 shows the results of
Expressibility values (or KL divergences), where circle, diamond and square represents
three comparison circuits and cyan cross labels the circuit given by us. The layered circuit
in this work has a similar performance as multi-applications of circuit 2 and 3 in Figure A1.
Remarkably, in general, repeating a circuit layer would increase the expressive power.
However, as no entanglement gate exists in circuit 1 in Figure A1, this argument does not
hold for that circuit. More information on expressibility and its simulation can be found in
Appendix C or related work [26].

1 2 3 4 5
Layers

10-3

10-2

10-1

Ex
pr

circuit 1
circuit 2
circuit 3
in our strategy

Figure 4. Expressibility values computed for circuits specified in Appendix C and circuit used in our
protocol. Circuit 1 (red circles), 2 (green diamonds) and 3 (blue squares) are repeatedly applied with
up to 5, while the circuit employed in our strategy (cyan cross) keeps unchanged.

4. Numerical Experiments

In this section, numerical experiments are investigated, including applications on
Hamiltonian simulation and density matrix evolution. In our protocol, ρ is taken as (a) Bell
state; (b) GHZ state and (c) Hamiltonian of a liquid NMR sample, Crotonic acid, which is
specified in the Appendix E.

To generate the simulating layered circuit, two learning methods are employed, with

f (θ) = tr(ρtΩ3) (20)

being the objective function. θ = α, β are for Method 1 and Method 2. The target state can be
expressed as,

ρt = Ud · e−iρt ⊗ Ia ·Ue(Ω0) (Method 1),

ρt = Ω0 (Method 2).
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And additionally, Ω3 = Ud ·U ⊗ Ia ·Ue(Ω0), where

U = U1(α) = ∏m
i=1 e−itαiρi (Method 1),

U = U2(β) = U−nc
i Ui+1(β) (Method 2).

This is specified in Appendix D.
To find optimal parameter configuration, gradient-based method is employed. To

begin with, random numbers by a single uniformly distribution are generated and assigned
as the value of initial parameters. During the training process, the approximation of the
partial derivatives can be estimated by following symmetric difference quotient

∂j f =
f (θ+ ∆θj)− f (θ− ∆θj)

2∆θj
, (21)

which can be realized by repeatedly running the training circuit with a small perturbation
on the θ, where ∆θj is naively chosen as 0.01 in our simulation. Therefore, the optimal
configuration of the parameters can be obtained by repeating

θ = θ+ η∇ f (θ), (22)

where ∇ f (x) = (∂1 f , ∂2 f , ...) and the learning rate, η, is fixed at 0.02. For simulating
Method 1 and Method 2, the maximum numbers for repeating Equation (22), i.e., iterations
are set as 300 and 350, respectively.

In this prototypical simulation, the program is conducted with assumptions that all
one or two quantum gates are accurate. Three circuits with the depths of 3, 4 and 5 are
employed for the simulation the evolution. The numbers of parameters to be optimized are
thus 12, 24 and 40, which converge to O(m× n), where m is the depth and n is the size of
circuit. As the comparison, if ε is tolerant error, O(3/ε), O(4/ε) and O(5/ε) depth circuits
are required for simulation by lie-product decomposition. For density matrix evolution,
O(1/ε) copies of density matrix are required as with O(1/ε)-depth circuit.

For data collection, strategies are different for Method 1 and Method 2. For Method 1,
once the optimization completed, parameters is supposed to be optimal for simulating
a t-time interval evolution. Otherwise, we need to re-run the simulation and repeat
Equation (22) until the objective function satisfying the optimized threshold. For Method 2,
optimizing ancillary layered circuit is not once for all. After the i-th repetition of training
ancillary layered circuit with Equation (22) for 350 iterations, only U−nc

i Ui+1(β) is learned.
Therefore, O(log(t/∆t)) repetitions are required. In our simulation, ∆t/t = 1/210, i.e.,
10 steps are required and the base number, 2, determines the compression efficiency of
the circuit.

Figure 5 shows the results of our simulation, which provide supports on our protocol
by converging to the target matrix evolutions. (a) (b) and (c) simulate the evolutions of
Bell state, GHZ state and Hamiltonian of Crotonic acid, where the evolution timescales are
set as 0.05, 0.1 and 0.2, respectively. Fidelities are shown by vertical axis and calculated by
tracing the inner product of two operators. The results show that, with the accurate local
quantum gate assumption, the simulating circuit gets more and more like the evolution of
certain matrix evolution as with the number of iterations.
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Figure 5. Results of Method 1 and Method 2 for simulating the evolutions by ρ for a period of t = 0.05,
0.1 and 0.2. The fidelities (vertical axis) vary with the iterations(horizon axis). ρ is chosen as (a) bell
state; (b) GHZ state and (c) Hamiltonian of a molecular Crotonic acid system.

5. Limitation

In the end, defects in our protocol should be listed. First, only Hermitian operations can
be dealt with. Evolution of an open quantum system is not considered in this article. With
formalism for the description of open quantum systems, this target is potentially solved in
future work [33]. Second, similar to the widely-used parameterized circuits architecture
such as QAOA and VQE, expressive ability of ansatz in our methods determinate the
upper-bound of accuracy [25,28]. Therefore, a proper ansatz will have a good performance.
If the termination threshold cannot be reached, an alternative ansatz or iterative training
algorithms should be resorted to. Third, optimization should be clarified, which is also
the most important one. Many optimization problems are in fact NP-hard problems.
The methods embedded are essentially optimization-based, and cannot get over them,
too. Taking an example of gradient-based methods, they cannot avoid the local optimum
problems, especially when the feasible region is complicated. Therefore, the proposed
methods would fail in finding a global optimum with a bad initial guess, just as the classical
cases. Although numerical results are good without considering the initialization, we have
to admit a good initial guess is crucial to decrease the possibility of failure, especially for
dealing with a larger problem. Investigations on the optimization method itself should
attract more attention, which benefits not only the exploitation of near-future quantum
devices but also for most modern technologies [34,35].

6. Conclusions

NISQ era has come in and would last for decades. Thus, finding a near-future
algorithm which exploits the power of NISQ devices becomes more and more important.
Simulating matrix evolution, which is an essential module for many quantum algorithms,
such as density matrix evolution for quantum principal component analysis, and static or
dynamic simulation for quantum systems. The existed implementation still relies on a deep
quantum circuit, which is intractable with current NISQ devices.

In this paper, a heuristic layered circuit protocol is proposed for simulating e−iρt

with Hermitian ρ. To construct these circuits, two methods are given. Method 1 is with
the classical optimal control theory and Method 2 is with the hybrid quantum-classical
paradigm. For Method 1, learning a layered circuit requires O(4n × r) operations, where
n is the size of quantum circuit and r is the number of total iterations. As computational
resource may be put into its limits, we provide Method 2, which is hybridized with a
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quantum agent. As a comparison, time complexity is O(m× n× r× log (t/∆t)), with 2n
being the size of circuit and m being circuit depth. From the point of view of error, although
Method 1 is in general inefficient, the error can be bounded to O(εo). Method 2 introduces a
larger one,O((t2/εt)εo) +O(εt). Only when εo is sufficiently small, Method 2 can approach
an accuracy as Trotter method. Accordingly, circuits by both methods would be shallow,
which is easily deployed on current devices.

Simulating matrix evolution is important for many quantum information tasks. Our
protocol, which realizes hermitian matrix evolutions, is supposed to contribute to the
field of NISQ algorithm. For layered circuit in our both methods, only basic quantum
gates are required, which means at most 2-qubit interactions are needed. With respect to
experimental technology, it is already mature for most physical platforms, such as optical
lattice, spin-based, and superconducting qubit [7,36,37]. In despite of some limitations,
the protocol is with an affordable computational consumption, which paves a way for
possibly applications on NISQ devices. In addition, ancillary layered circuit, which serves
as a compiler in this article, is promising to be an important subroutine in near future and
provides a new way to exploit the power of NISQ devices.
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Appendix A. Derivations on e−i∆tρ in Method 2

First, if one wants to simulate e−i∆tρ with ∏i e−i∆tβiρi , the idea of optimizations can
always be resorted to. An objective function can thus be defined as,

f (β) = tr(e−i∆tρσei∆tρ ∏
i

e−i∆tβiρi σ ∏
i

ei∆tβiρi ), (A1)

where σ is an arbitrary initial density matrix, and operators in 〈·〉 satisfy the permutation
equality. We expand matrix exponentiation in Equation (A1) with Taylor series on ∆t,

e−i∆tρ =
∞

∑
k=0

(−i∆tρ)k/k!,

N

∏
i=1

e−i∆tβiρi =
N

∏
i=1

∞

∑
k=0

(−i∆tβiρi)
k/k!. (A2)

With substitutions such as, H → −i∆tρ and Mi → −i∆tβiρi, ingredients in Equation (A1)
can be rewritten as,
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ei∆tρ ×
1

∏
i=N

e−i∆tβiρi

=
(
(−H)0

0! + (−H)2

1! + (−H)3

3! + · · ·
)
×
(

M0
N

0! +
M1

N
1! +

M2
N

2! + · · ·
)

...
(

M0
1

0! +
M1

1
1! +

M2
1

2! + · · ·
)

=
∞

∑
k=0

∑
ji ,jρ≥0,

∑i ji+jρ=k

(−H)jρ

jρ!

1

∏
i=N

Mji
i

ji!
,

N

∏
i=1

ei∆tβiρi × e−i∆tρ

=
(
(−M1)

0

0! + (−M1)
1

1! + (−M1)
2

2! + · · ·
)
· · ·
(
(−MN)0

0! + (−MN)1

1! + (−MN)2

2! + · · ·
)
×
(

H0

0! + H2

1! + H3

3! + · · ·
)

=
∞

∑
k=0

∑
ji ,jρ≥0,

∑i ji+jρ=k

N

∏
i=1

(−Mi)
ji

ji!
H jρ

jρ!
.

Under the circumstances that no approximation is adopted, the objective function is

f = 〈ψ|
∞

∑
k=0

∑
ji ,jρ≥0,

∑i ji+jρ=k

N

∏
i=1

(−Mi)
ji

ji!
H jρ

jρ!
|ψ〉〈ψ|

∞

∑
k=0

∑
ji ,jρ≥0,

∑i ji+jρ=k

(−H)jρ

jρ!

1

∏
i=N

Mji
i

ji!
|ψ〉, (A3)

where σ = |ψ〉 〈ψ| and 〈·〉 represents the expectation on |ψ〉. Obviously, it is a taylor-like
polynomial with respect to ∆t. As ∆t can be a sufficiently small quantity when we simulate
e−itρ, only lowest order terms on ∆t are considered. For the objective function f , all terms
which is linear with or higher than O(∆t2) are ignored. Therefore, f can be simplified as,

(1+ <
H2

2!
> − < H ∑

i
Mi > + < ∑

i

M2
i

2!
> + < ∑

i>j
Mi Mj >)2 − (< H > − < ∑ Mi >)2, (A4)

where ∑ Mi = H is the requirement for eliminating above lowest order error, which is also
independent of |ψ〉. In the original representation, βi satisfy following correspondence

∑ βiρi = ρ. (A5)

which is also the correspondence by Lie–Trotter products. Therefore, a parameterized
quantum circuit for e−i∆tρ can be obtained by Equation (A5), where ρi is comparably
easy-access to realize and benchmark in near-future quantum devices.

Appendix B. Method to Generate an N-Layer Circuit

In this section, a method to generate an N-layer circuit structure with all two-body
interactions is introduced, where N is the size of the system. P2(i, j) are assumed as the
products of Pauli matrices, where P2(i, j) = σk ⊗ σl are on both i-th and j-th qubits and
i, j = 1, ..., N and k, l = x, y, z. All of them can be presented in an N × N triangle parameter
matrix P,
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P =



1 P2(1, 2) P2(1, 3) P2(1, 4) P2(1, 5) , · · · , P2(1, N)
2 P2(2, 3) P2(2, 4) P2(2, 5) , · · · , P2(2, N)

3 P2(3, 4) P2(3, 5) , · · · , P2(3, N)
4 P2(4, 5) , · · · , P2(3, N)

, · · · ,
P2(N − 1, N)

N


, (A6)

where Pii = i, Pij = P2(i, j) for i < j and Pij = 0 for i > j. Thus, the non-zeros elements
in P can be divided into N group with the following Method A1, where N is supposed to
be odd.

Method A1 Algorithm on grouping the Pauli words

Input: Parameter matrix P, N null sets, and a N × N label matrix L, where Lmn = 1 for
arbitrary m, n.
Output: N sets of Pauli words:S1,S2, ...,SN
for i = 1, ...N do

for j = i, ..., N do
if i = j ∩ Lij = 1 then

Pij ∈ Si, Lij = 0.
else

for m = 1, ..., N do
if Lmi = 1∩ Lmj = 1 then

Pij ∈ Sm, Lmi = 0 ,Lmj = 0
end if

end for
end if

end for
end for

With the complexity ofO(N3) operations, Those Pauli words are divided into N group,
where the Pauli words in each group commute with each other. Via matrix exponentiation
formation multiplied by tunable parameters, they can be arranged into a parameterized
circuit, with a depth of N, being linear with the size of the system. If different type Pauli
combinations are considered,O(N) is the depth. Therefore, this algorithm provided a depth
of O(N) parameterized circuit with all two-body interactions considered. Remarkably,
this is one type of problem-agnostic circuit, which exploit the power of current quantum
devices with two-body interactions available. For different problems, problem-inspired
circuit can be designed, employing information about the problem, which bring better
expressibility and trainability. Surely, we will study the expressibility of our proposed
circuit in next section.

Appendix C. Expressibility of the Layered Circuit

A layered circuit with excellent expression is more likely to represent a target state.
To measure the expressive power of a circuit, expressibility is defined in recent work as a
distance of two state distributions, characterized with || · ||, the Hilbert-Schmidt norm [26].

A = ||
∫

Haar
(|ψ〉 〈ψ|)⊗tdψ−

∫
θ
(|ψθ〉 〈ψθ|)⊗tdψθ||, (A7)

where |ψ〉θ are outputs of a layered circuit with randomized configuration θ and |ψ〉
are from a distribution according to the Haar measure. It is a generalization from the
investigation of pseudo-random circuit. Thus, a highly expressible circuit would produce a
small A, with A = 0 corresponding to being maximally expressive, i.e., generating a state
distribution to the Haar measure.
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In order to explicitly estimate the expressibility with a discrete simulated result, the
Kullback-Leibler (KL) divergence, i.e., relative entropy is employed, which measures the
difference between one probability distribution and a reference probability distribution. It
is denoted as Expr,

Expr = DKL(Pl( f |θ, θ′)|PHaar( f )), (A8)

where Pl( f |θ, θ′) is the probability distribution of f =| 〈ψθ|ψθ′〉|2, outputs of a layered
circuit with random θ and θ′. For the reference probability distribution, i.e., to Haar
measure, PHaar( f ) = (N − 1)(1− f )N−2 is analytical, with N being size of dimension.
Expr scores the similarity to the distribution of Haar as a layered circuit with a lower value
of KL divergence is a more expressible circuit.
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Figure A1. A set of circuit templates considered in the study, each labeled with a circuit ID. The
dashed box indicates a single circuit layer, denoted by L in the text, that can be repeated.

Accordingly, numerical experiments to compute and compare the expressibility in the
strategy with three other typical layered circuits are studied, which are shown in Figure A1.
They are all 4 qubit circuit. As with the original work, to construct a distribution of Pl
with histogram, a bin size is set as 75, and 5000 f are measured. For each type of layered
circuits except for the one in our strategy, the instances where the number of layers are
investigated with up to 5. Compared with 10,000 times repeatedly running the circuits and
state tomography, f can be measured directly with the setup proposed in Figure A2 for
5000 time and without tomography. Only 1-qubit is added as the ancillary system A, at the
end of circuit, the system is evolved as

ρ = |0〉 〈0| ⊗ |ψθ〉 〈ψθ|+ |1〉 〈0| ⊗ |ψθ′〉 〈ψθ|+ |0〉 〈1| ⊗ |ψθ〉 〈ψθ′ |+ |1〉 〈1| ⊗ |ψθ′〉 〈ψθ′ | . (A9)

a

p /

H

Uθ Uθ′ ·U†
θ

ρ

σx/σy

Figure A2. Circuit for measurement of the expressivity of the layered circuit. It costs one extra qubit
as ancillary. θ and θ′ are two random parameter configurations for layered circuits Uθ and Uθ′ , H is a
one-qubit Hadamard gate.

Via the measurements on ancillary system, f can be obtained with the real and
imaginary part of 〈〈ψθ|ψθ′〉〉, which are extracted as

Re = tr(σx ⊗ I · ρ) = 1
2
(〈ψθ|ψθ′〉+ 〈ψθ′ |ψθ〉)

Im = tr(σy ⊗ I · ρ) = −i
2
(〈ψθ|ψθ′〉 − 〈ψθ′ |ψθ〉). (A10)

Results are shown in the Figure 4 in main text. For three types of layered circuits which
are denoted in circle, diamond and square, the instances are considered where the circuit,
which is as a unit layer, are repeated with up to 5. For the circuit proposed by Method A1,
the repetition is always 1.
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In general, repeating a circuit layer in Figure A1 would increase the expressibility.
As there is no entanglement gate in circuit 1, this argument does not hold. For circuit 2
and 3, even if a single layer for circuit 3 have pretty good expression, this argument
holds. From the result, there are convergences for the metric of expressibility. For the
argument whether more numbers of layers can help the expression, at least, we can not
obtain more information from this metric. Additionally, the layered circuit generated in our
strategy, which is labeled as cyan cross, keeps a same structure. It has a similar performance
with respect to the repeated circuits 2 and 3. As a small value of expressibility imply an
excellent expression, the generated circuits in the strategy performs no worse than other
typical circuit.

Appendix D. Objective Functions

In this section, the explicit expression of the objective functions is derived, as well as
the step-by-step illustrations of the circuit to implement the Numerical simulation. The
objective function can be concluded as

f (θ) = tr(ρtΩ3), (A11)

where θ = α, β are for Method 1 and Method 2, respectively. As for intermediate states and
quantum operations of the circuit shown in original manuscript, they are depicted as,

Ω0 = |ψ0〉 〈ψ0| , |ψ0〉 = |0〉p |0〉a ,

Ω1 = |ψ1〉 〈ψ1| , |ψ1〉 = Ue |ψ0〉 ,

Ω2 = |ψ2〉 〈ψ2| , |ψ2〉 = Ul ⊗ Ia |ψ1〉 ,

Ω3 = |ψ3〉 〈ψ3| , |ψ3〉 = Ud |ψ2〉 . (A12)

where Ue = Ip ⊗ Ha · Cz · Hp ⊗ Ha, Ud = Hp ⊗ Ha · Cz · Ip ⊗ Ha. In addition, |ψ1〉 =

∑d
i=1 |i〉p⊗ |i〉a is the bell state pairs, where the idea of Choi matrix for assisting tomography

is employed.
With respect to the Ul in Method 1, it aims at finding optimal parameters α = (α1, α2, ...)

to generate a layered circuit. While, for the i-th repetition of Method 2, it aims at finding
appropriate parameters β = (β1, β2, ...), generating a layered circuit which realizes repeatedly
applied Ui. Thus, the different Ul are to be optimized

U1(α) = ∏m
i=1 e−itαiρi (Method 1),

U2(β) = U−2
i Ui+1(β) (Method 2).

As for target states, they are also different. Method 1 realizes an evolution by a target
Hermitian matrix on system p while Method 2 realizes Ip. Therefore, the density matrix ρt
for both strategies are

ρt = Ud · e−iρt ⊗ Ia ·Ue(Ω0) (Method 1),

ρt = Ω0 (Method 2),

where ρ can be density matrix or Hamiltonian, for simulating hermitian matrix exponentiation.

Appendix E. Matrices for Numerical Simulation

In this section, the detailed information for ρ in numerical simulation are given. Three
cases are studied. Two of them are density matrices and one is a Hamiltonian from previous
experiments. The specified form are as follows.
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a. Bell State

|ψ〉 = 1√
2
(|00〉+ |11〉), ρ =

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

. (A13)

b. GHZ State

|ψ〉 = 1√
2
(|000〉+ |111〉), ρ =

1
2



1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1


. (A14)

c. Hamiltonian of Crotonic Acid
The Hamiltonian simulated in our numerical experiments is from 13C-labeled Crotonic

acid dissolved in d6-acetone, which is usually employed as a four-qubit quantum system
for NMR-based quantum information processing [18].

The structure of this molecule is shown in Figure A3 , where C1 to C4 are four carbon
atoms, M is one of three hydrogen atoms in a methyl group, H1 and H2 are two hydrogen
atoms . When it is used as a four qubit quantum system, the hydrogen atoms are decoupled
from the carbon atoms with a shaped radio frequency pulse. Under the circumstance of
weak coupling, the internal Hamiltonian of this molecule can be expressed as,

Hint =
4

∑
j=1

1
2

νjσ
j
z +

4

∑
j<k

π

2
Jjkσ

j
zσk

z . (A15)

νj and Jjk are inside Hamiltonian parameters whose values are listed in the table besides
the molecule. νj, the chemical shift, are the diagonal elements and Jjk, the J-coupling, are
the off-diagonal elements. As for T2, the transverse relaxation time, is not involved in our
simulation as the unitary process is assumed. All parameters can be found in related paper
which is under a magnetic field of 9.4 T at room temperature (296.5 K).

C1 C2 C3 C4

C1 1705.5

Crotonic Acid

C2 41.64 14558.0

C3 1.46 69.72 12330.5

C4 7.04 1.18 72.36 16764.0

T2 0.84 0.92 0.66 0.79

C2

C1
C3

C4

M

H1

H2

Figure A3. Molecular structure of 13C-labeled Crotonic acid. νj and Jjk are the chemical shifts and
J-couplings,respectively, which are listed by the diagonal and off-diagonal elements. T2 (in Seconds)
are the relaxation time which are shown at bottom.
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