
Citation: Jiang, C.; Yin, K.; Xia, C.;

Huang, W. FedHGCDroid: An

Adaptive Multi-Dimensional

Federated Learning for

Privacy-Preserving Android Malware

Classification. Entropy 2022, 24, 919.

https://doi.org/10.3390/e24070919

Academic Editor: Donald J. Jacobs

Received: 21 April 2022

Accepted: 29 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

FedHGCDroid: An Adaptive Multi-Dimensional Federated
Learning for Privacy-Preserving Android
Malware Classification
Changnan Jiang 1,†, Kanglong Yin 1,†, Chunhe Xia 1,2,* and Weidong Huang 1

1 Key Laboratory of Beijing Network Technology, Beihang University, Beijing 100191, China;
jcnby@buaa.edu.cn (C.J.); yinkanglong@buaa.edu.cn (K.Y.); bigeast@buaa.edu.cn (W.H.)

2 Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University,
Guilin 541004, China

* Correspondence: xch@buaa.edu.cn
† These authors contributed equally to this work.

Abstract: With the popularity of Android and its open source, the Android platform has become an
attractive target for hackers, and the detection and classification of malware has become a research
hotspot. Existing malware classification methods rely on complex manual operation or large-volume
high-quality training data. However, malware data collected by security providers contains user
privacy information, such as user identity and behavior habit information. The increasing concern for
user privacy poses a challenge to the current malware classification scheme. Based on this problem,
we propose a new android malware classification scheme based on Federated learning, named
FedHGCDroid, which classifies malware on Android clients in a privacy-protected manner. Firstly,
we use a convolutional neural network and graph neural network to design a novel multi-dimensional
malware classification model HGCDroid, which can effectively extract malicious behavior features
to classify the malware accurately. Secondly, we introduce an FL framework to enable distributed
Android clients to collaboratively train a comprehensive Android malware classification model in a
privacy-preserving way. Finally, to adapt to the non-IID distribution of malware on Android clients,
we propose a contribution degree-based adaptive classifier training mechanism FedAdapt to improve
the adaptability of the malware classifier based on Federated learning. Comprehensive experimental
studies on the Androzoo dataset (under different non-IID data settings) show that the FedHGCDroid
achieves more adaptability and higher accuracy than the other state-of-the-art methods.

Keywords: federated learning; malware classification; call graph; adaptive

1. Introduction
1.1. Background and Motivation

Android dominated the mobile phone market in 2021 with an 84 percent market
share. Due to high usage and an open-source development ecosystem, it has become an
effective way for hackers to create malware that accesses sensitive user information, such as
geographical position and contact information. Unlike other closed-source platforms such
as IOS, hackers can examine an app’s source code and exploit vulnerabilities to develop
malware [1]. In addition, users may download unknown third-party apps on Android
devices, causing Android malware to spread more widely. Therefore, mobile anti-malware
methods are crucial to Android users.

Conventional anti-malware methods mainly use signature-based classification tech-
nology [2], which relies on analyzing attack signatures extracted by experts. However,
conventional classification methods fail to mitigate newly generated malware, such as zero-
day malware. In contrast, machine-learning-based anti-malware methods using dynamic
features and static features (such as API calls, and permissions) can effectively identify

Entropy 2022, 24, 919. https://doi.org/10.3390/e24070919 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24070919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24070919
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24070919?type=check_update&version=2

Entropy 2022, 24, 919 2 of 32

unknown malware. In recent years, security experts have introduced deep-learning-based
methods to achieve accurate malware classification. Compared with the previous static
and dynamic conventional machine learning models, deep-learning-based methods can
automatically extract critical features without expert domain knowledge [3], so they have
gradually become a hotspot for anti-malware solutions in recent years.

However, due to the ambiguity of malicious behavior and the evolution of malware
over time (such as the change of API version used), the existing classification methods of
malware still have the problem of insufficient mining of malicious behavior characteristics,
which leads to low classification performance.

Existing schemes, on the other hand, rely on a large amount of artificial signature or
the vast amount of high-quality data available. However, Android users are reluctant to
share their compromised malware data due to privacy concerns, a strict Privacy Protection
Act has been put in place, so data exist as islands. The limitation of the data sources used
for training severely reduces the performance of the malware classifier. In addition, people
tend to ignore sensitive private information in training data, leading to potential privacy
leakage [4,5].

Federated learning [6,7] is a novel approach to solving the privacy problems of exist-
ing malware classification models, which does not require access to users’ private data.
However, the differences in users’ (from the different organizations or communities) iden-
tities or preferences will lead to heterogeneity distribution (non-IID) between the local
malware type distribution. Existing FL-based schemes have poor adaptability to such
non-IID scenarios, and the classification accuracy will be greatly reduced.

In order to solve the above problems, this work proposes an adaptive multi-dimensional
FL-based malware classification framework, FedHGCDroid. Unlike the existing centralized
malware classification framework, FedHGCDroid uses the Federated learning framework
to train the malware classifier without accessing the user’s private data, which solves the
problem of user privacy disclosure in the existing scheme. At the same time, FedHGCDroid
innovatively combined the statistical features and graph features of malware and carried
out multi-attribute coding on the API to mine the malicious behaviors of malware more
effectively. It solved the problem that the existing framework was not comprehensive and
effective enough to mine the behaviors of malware, thus improving the overall classification
accuracy. Finally, FedHGCDroid uses an adaptive contribution degree-based classification
model training mechanism (FedAdapt), which innovatively improves the existing Fedavg
algorithm by introducing meta-learning and attention mechanisms. It solved the problem
of poor adaptability of the existing FL-based framework to non-IID distribution.

The rest of this article is organized as follows. Section 1 provides an overview of
malware classification and Federated learning. In Section 2, we introduce the system
model and describe corresponding limitations. In Section 3, we introduce the proposed
adaptive FL-based android malware classification method. In Section 4, we describe our
experimental setup and results. Finally, in Section 5, we present our conclusions and
future work.

1.2. Related Work

In this section, we first review the latest work in the field of machine learning (central-
ized) methods for malware classification and detection, as a reference source and inspiration
for our framework. Secondly, the latest work of malware classification schemes based on
Federated learning is reviewed, and the limitations and improvement direction of existing
Federated learning schemes under the task of malware classification are analyzed.

1.2.1. Detection and Classification Method of Android Malware Based on ML

Existing Android malware detection methods fall into two categories, either static
analysis, with no code execution, or dynamic analysis, with an app executed in real-time
and its behavior studied [8]. ML models were adopted in early work, including SVM, DNN,
Rotation Forest, LSTM, and GNN.

Entropy 2022, 24, 919 3 of 32

Dynamic features can reflect the runtime behavior of applications. Cai et al. [9]
presented a novel classification approach (DroidCat) which is based on dynamic analysis.
The authors used a set of dynamic features such as method calls, app resources, and
Inter-Component Communication. In [10], the authors proposed a dynamic analysis
framework EnDroid, which used different types of dynamic features for the identification
of malware. They employed a chi-square algorithm to select the relevant features and
applied an ensemble learning technique to differentiate between malware and benign apps.
However, these technologies require running a sandbox for behavior detection, which can
affect a host running in real-time. At the same time, dynamic analysis cannot cover all
program’s behavior.

In contrast, the method based on static features does not need to run the app for
behavior checking. Static features can be obtained simply by analyzing an Android Ap-
plication Pack (APK). Opcode [11], permission requirements, intent actions, and APIs, as
the most common low-level static features, are widely used in Android malware detec-
tion. Arp [12] proposed DREBIN, which uses Android permissions and sensitive APIs
for extensive static analysis. DREBIN is a lightweight method that detects malware on
smartphones. In [13], Android malware is classified using n-gram features of operation
sequences. However, this approach is not robust against obfuscation because the opcode
sequence can be modified easily. In [14], the authors suggested a highly efficient method to
extract API calls, permission rate, surveillance system events, and permissions as features.
They constructed a model based on ensemble Rotation Forest to identify whether an app is
malicious or benign.

However, the API is simply represented as a binary vector in which each element
indicates whether the appropriate API is invoked or not. Although API-based vector
representations can reveal some information about an application, they cannot describe the
interactions between functions, so they cannot tell the application’s behavior effectively,
and the robustness of hiding and evading operations for malware authors is poor, resulting
in poor classification results.

In contrast, high-level structural features such as behavior diagrams are considered
more robust because they are relatively expensive to modify. Behavior diagrams provide
topology information that can be used to infer the runtime behavior of an application.
In the method of behavior-graph-based malware classification, researchers mainly detect
malware through various behavior pattern diagrams corresponding to software.

Nguyen [15] extracted the control flow diagram from the binary code and obtained
the corresponding adjacency matrix, and then extracted three specified features from the
control flow diagram as RGB channel features so as to transform the control flow diagram
into RGB images, which were finally input to the convolutional neural network for malware
detection. However, the method relies on professional domain knowledge for algorithm
design, and the classification accuracy rate also fluctuates sharply with the accuracy of
feature selection and the quality of the graph matching algorithm.

With the popularity of graph representation learning [16,17], researchers have begun
to pay attention to using graph models to learn behavior graph features automatically.
Jiang [18] used the double-stacked denoising autoencoder to obtain the embedded repre-
sentation of a function call graph, spliced the feature vector of the function call, and then
input it into the deep neural network for malware classification. Pektas [19] used an API
call graph as a graphical representation of all possible execution paths that the malware
could track during its run. The API call graph is embedded into the deep neural network
and transformed into a feature set of low-dimensional numerical vectors.

The above classification method based on behavior graph relies on a single type of
feature that can only capture one aspect of the application behavior, which hackers can easily
escape. This will lead to the failure of the local model to achieve the desired classification
accuracy and further affect the convergence efficiency and classification accuracy of the
global model in federated learning.

Entropy 2022, 24, 919 4 of 32

Based on the above literature analysis, it is still difficult for existing malware classifica-
tion schemes to comprehensively and effectively mine the behavior of malware, which will
restrict the classification effect of machine learning schemes and the application efficiency in
the Federated learning framework. A summary including previous related review articles
on detecting malware is provided in Tables 1 and 2.

Table 1. Summarization of previous related review articles in detecting malware (a).

Ref Model Features Training
Method

Statistical
Feature

Graphical
Feature

Privacy
-Preserving Adaptive

[12] SVM Permissions,
Sensitive APIs Centralized

√
- - -

[13] N-gram Operation sequences Centralized
√

- - -

[9] CNN
Method calls,

App resources,
Inter-Component Communication

Centralized
√

- - -

[11] LSTM Opcode Centralized
√

- - -

[18] DNN Function call graph Centralized -
√

- -

[15] CNN Control flow diagram Centralized -
√

- -

[14] Rotation
Forest

API calls, Permission, System
events Centralized

√
- -

[19] GNN API call graph Centralized -
√

- -

[20] CNN,
AC-GAN

Image transformations, Bytes,
Call graph FL

√
-

√
-

[21] DNN Permissions,
APIs, Intents FL

√
-

√
-

[22] CNN Image transformations FL
√

-
√

-

[23] CNN Permissions, Intents,
and API calls FL

√
-

√
-

Proposed
FedHGCDroid

GNN,
CNN

Function call graph,
Permissions,
API, Intent

FL
√ √ √ √

Table 2. Summarization of previous related review articles in detecting malware (b).

Ref Key Contributions Limitations

[12] A lightweight method that detects malware on smartphones

These schemes only mine the
characteristics of malware from a single
dimension, and it is difficult to capture

the essential behavior of malware
comprehensively and effectively. Privacy
issues during training are not considered.

[9] Presented a novel classification approach based on dynamic analysis,
which is robust to the obfuscation

[11] Propose a novel and efficient approach which uses LSTM to obtain
the feature representations of opcode sequences of malware

[19] Feature mining of function call graph is carried out
by graph embedding technique

[15]
Propose an approach that transforms the control flow diagram into

RGB images for the convolutional neural network
for malware detection

[14] Propose a highly efficient method to extract API calls, permission
rate, surveillance system events, and permissions as features

[21] Proposed a semi-supervised federated learning algorithm that works
without user supervision These schemes’ lack of

adaptability to
the problems that the non-IID

distribution of malware on
different clients

[22] Introduces a performance-aware FL framework to reduce the
communication overhead of device-level computing

[23] Proposed a robust FL-based framework, namely, Fed-IIoT, for
detecting Android malware in the Internet of Things

Entropy 2022, 24, 919 5 of 32

1.2.2. Malware Classification Method Based on Federated Learning

Existing methods that use ML/DL to classify malware rely on the vast amount of
high-quality available data from different clients to train the accurate global model. These
models are then distributed to individual clients, or these clients upload their test data to
the server for real-time behavior checking and malware classification. However, training
data contains private information about user behavior, which will seriously affect user
security and privacy once it falls into the hands of malicious elements.

To solve users’ privacy concerns in deep learning, Google [24] proposed Federated
learning, a collaborative learning approach that ensures privacy by storing it locally on the
client. In the Federated learning (FL) approach, each client executes local training using its
local ML classifier model to generate local weights. The client uploads these local weights
to the FL server. The FL server runs an average calculation on these local features and
returns a usable global model. In FL, sharing local weights rather than raw data ensures
users’ privacy.

Taheri [23] proposed a robust FL-based framework, namely, Fed-IIoT, for detecting
Android malware in the Internet of Things. Fed-IIoT forms a robust cooperative training
model by adjusting two GAN-based adversarial algorithms. Narendra [20] proposes a
lightweight model based on a convolutional neural network (CNN), which uses a call graph,
N-gram, and image transformation to extract relevant features. In addition, the author
designed an auxiliary classifier generative adversarial network (AC-GAN) to generate
invisible data for training. Shukla [22] introduces a performance-aware FL framework to
reduce the communication overhead of device-level computing. Singh [25] uses the FL
framework to train a web security model from users’ browsing data and share it with a
centralized server. Valerian [26] proposed a privacy-preserving framework for malware
detection in the Internet of Things, and their aggregation function based on mean pruning
is tested as a countermeasure against adversarial attacks.

Galvez [21] presented LiM, the federated learning algorithm that works without user
supervision, making use of safe semi-supervised learning techniques.

However, most of the studies mentioned above use FL as a base model, and they have
ignored the problem of adaptation to the non-IID distribution of malware on different
clients. Although some schemes were regularized or pruned for outliers, their classification
models did not adapt to the local specific distribution. As a result, it will lead to a long
convergence time for the FL-based malware classification model [27], and the classification
accuracy of different clients is not ideal. Considering the complexity of real situations,
FL-based malware classification schemes need to deal with various data distribution
scenarios. Therefore, it is necessary to develop an FL framework that is adaptive to the
non-IID distribution of malware on Android clients, to achieve the accurate and adaptive
classification of malware.

1.3. Contribution

The contributions of this paper are summarized below.
(1) We introduce an FL framework to develop an Android malware collaborative

classification model, which realizes proper privacy preservation of data resources according
to GDPR principles.

(2) We propose a novel multi-dimensional malware classification model, namely
HGCdroid (as a local classification model in the proposed FL framework). The model uses
the CNN network to capture the statistical features of malware and the GNN network to
capture the graphical features of malware to obtain effective behavioral features of Android
malware and then classify it accurately. HGCDroid can achieve up to 91.3% accuracy and
91.25% F1-score in malware detection tasks (on the Androzoo dataset), higher than the
baseline model. To the best of our knowledge, this is the first attempt to combine statistical
features with multi-attribute graph features for malware classification.

(3) We innovatively combine the idea of meta-learning and attentional mechanisms
and propose a contribution degree-based adaptive classifier training mechanism, namely

Entropy 2022, 24, 919 6 of 32

FedAdapt. The FedAdapt improves the adaptive performance of the proposed framework
in scenarios with non-IID distributions on different clients. To the best of our knowledge,
this is the first attempt to combine attentional mechanisms with meta-learning for adaptive
performance optimization of the FL-based malware classification framework.

(4) We analyze the scenarios of non-IID distributions in the malware classification field
and propose three dataset partitioning strategies for non-IID distributions scenarios; we also
propose a scheme to measure the degree of non-IID distributions. Finally, we conducted
extensive experiments (on the Androzoo dataset) under various non-IID distributions to
compare the adaptation performance of the proposed framework with other baselines
FL-based malware classification model. Experimental results show that FedAdapt can
maintain the highest accuracy in malware detection and classification tasks under different
degrees of non-IID settings, which is superior to the state-of-the-art models, proving its
best adaptive performance.

2. System Model and Problem Description
2.1. System Model

Existing deep learning-based solutions for malware classification rely on large-volume
high-quality training data. However, such a training process has potential data privacy
disclosure risks for Android device usersand violates existing privacy protocols [22].

To solve these privacy concerns, we introduced an FL framework and developed a
privacy-protected collaborative classification model for Android malware. An FL frame-
work allows Android clients to keep the malware dataset locally and collaboratively
learn classification models, which means that any third party cannot access the user’s raw
data [28]. The framework of Federated learning consists of a server and multiple clients [29].
The server in this work refers to the remote FL server, and the client is an Android client.

We consider an FL-based android malware classification model that includes one FL
server for parameter aggregation and update server, and m Android clients have several
training samples. The FL framework uses a given training algorithm (for example, a
CNN) to collaboratively train a malware classification model. The overall structure of the
FL-based model is shown in Figure 1.

Figure 1. FL-based Malware classification framework.

There are the following stages in the process of Federated learning: the initialization
stage, aggregation stage and update stage, which are described as follows:

In the initialization phase, the FL Server assigns a pre-trained global model wt. to each
Android client. Then, each client trains and improves the current global model wt by using
the local dataset Dk of Dk size in each iteration.

Entropy 2022, 24, 919 7 of 32

In the aggregation phase, the FL Server collects local gradients of android node
uploads. The global loss function F(w). and local loss function Fk(w). to be optimized in
FL are shown in Equations (1) and (2):

min
w∈Rd

F(w) =
nk
N

m

∑
k=1

Fk(w) (1)

Fk(w) =
1
nk

∑zi∈Dk
f (w; zi) (2)

where f (·) is the local loss function of the Android client k, k ∈ [1, N], zi = (xi, yi),
∀i ∈ [1, . . . nk] is sampled from the local dataset Dk of k clients; nk is the number of samples
of client k; N is the total number of global samples, xi ∈ X is the feature of malware, and
yi ∈ Y is the category label of malware.

wt+1 ← w t +
nk
N

m

∑
k=1
∇wt Ft

k (3)

In the update phase, the FL Server uses the Federated average algorithm (Fedavg) [22]
to obtain a new global model wt+1 for the next iteration, as shown in Equation (3).
∑m

k=1∇wt Ft
k denotes the model update aggregation, and nk

N ∑m
k=1∇wt Ft

k denotes average
aggregation.

This process is repeated for both the FL Server and Android clients until the global
model converges. By not requiring direct access to raw training data on android nodes, this
mode significantly reduces the risk of privacy disclosure.

2.2. Problem Description

However, the existing FL-based framework has the following problems in the task of
Android malware classification:

(1) The fuzziness of Android malware makes it difficult to extract effective features.
Hackers generally use the means of avoiding detection, leading to the ambiguity of the

malware features, which makes it difficult for Android clients to extract a set of effective
features x for classification (on local). It will further affect the global model’s convergence
efficiency and classification accuracy in federated learning.

(2) Non-IID distribution of malware on the Android clients leads to poorly training
the effect of the existing FL-Base classification model:

The existing FL-Base classification model only develops a common classification model
w for all clients. However, the differences in users’ (from the different organizations or
communities) identities or preferences will lead to heterogeneity distribution (non-IID)
between the local malware type distribution p(y), making the existing single common
classification model unable to adapt to the data distribution features of each user. In other
words, EDk [Fk(w)] 6= F(w), the global model is difficult to converge to the optimum, and
the classification accuracy is poor for local clients.

The above limitations reduce the classification effect of the FL-based android malware
classification model, which prompted us to develop an adaptive multi-modal FL-based
malware classification framework to achieve accurate and adaptive malware classification.

2.3. Abbreviations and Mathematical Symbols

The list of abbreviations and mathematical symbols used is given in Table 3.

Entropy 2022, 24, 919 8 of 32

Table 3. List of abbreviations and mathematical symbols used.

Abbreviation and
Symbol Explanation

non-IID Non-independent and identically distributed

FL Federated learning

API Application Programming Interface

DL Deep learning

ML Machine learning

GNN Graph neural network

SVM Support Vector Machine

CNN Convolutional neural network

Dk Local dataset

Dk Size of local dataset

w Global mel

F(w) Global loss nction

Fk(w) Local loss nction

X Feature space of Android malware

Y Category space of Android malware

x Feature of Android malware

y Category of Android malware

ŵ Initial model parameters

ŵk Gradient of initialization parameters

E Mathematical expectation

θ Coding vector of statistical features

G Coding function call graph

V The node set of function call graph

E Edge set of function call graph

hk
v The embedded representation of node v in the function call graph at the k layer.

N(s) Neighbor node sampling

τ Represent the degree of non-IID

∇L
(
wt

k
)

Derivative of the loss function of the model to the weight of the model

GDPR General Data Protection Regulation

γ The scale parameter of the data partitioning method

3. Proposed Methods

In this section, we first introduce the composition and functions of FedHGCDroid, an
adaptive multi-dimensional malware classification framework proposed by us. Then, two
key modules of FedHGCDroid are introduced in detail: (1) the Multi-dimensional Android
malware classification model HGCDroid and (2) the Adaptive model training mechanism,
namely, FedAdapt.

3.1. FedHGCdroid Framework Overview

To solve the limitations of the existing framework proposed in Section 2.2, we designed
an adaptive multi-dimensional malware classification framework, involving multiple
Android clients to train the malware classification model collaboratively.

3.1.1. Framework of Proposed FedHGCDroid

The system model under consideration is a federated learning framework as shown in
Figure 2, which mainly comprises two types of entities, a server and k. Android clients.

Entropy 2022, 24, 919 9 of 32

Figure 2. Framework of FedHGCDroid.

(1) FL Server: An FL server with strong computing capability and rich computing
resources. The FL Server contains two mechanisms: (a) initialize the global model and
send the optimal global initialization model parameters to all edge clients; (b) aggregate
the gradient uploaded by edge clients until the model converges.

(2) Android clients: Android clients have a few numbers of samples of various types of
malware and the samples are non-IID distributed to different clients. A local classification
model and adaptive Federated training mechanism are deployed on Android clients. These
clients typically represent small organizations or communities, etc.

The workflow of the framework includes the following four steps:
(1) The Android client uses the initial model paramete ŵ of HGCDroid and the local

dataset to train the adaptive classifier suitable for the local environment;
(2) Android clients upload the update gradient ŵk of initialization parameters to the

FL Server;
(3) The FL server calculates the update gradient of initialization parameters uploaded

by n clients and updates the optimal global initialization parameters;
(4) The FL Server sends new optimal global initial model parameters to each Android client.
The above steps are repeated until the global model reaches optimal convergence.

Decentralized clients can perform malware classification tasks using trained personalization
models that are best suited locally.

(5) The Android clients use a trained personalization classification model to classify
local malware.

In addition, the framework of FedHGCDroid also includes two modules: (1) lo-
cal Android malware classification model HGCDroid and (2) adaptive model training
mechanism FedAdapt.

(1) Malware classification mechanism HGCDroid: the multi-dimensional HGCDroid
model deployed in Android clients can effectively capture the behavior features of mal-
ware and classify it, which contains android malware classification knowledge from
global clients.

(2) FedAdapt: The FedAdapt mechanism is deployed on the Android client and
FL Server. The FedAdapt mechanism is aggregated to calculate the global initial model
parameters based on the contribution degree to obtain the optimal initialization parameters.
On the Android client-side, local adaptive training is carried out according to the initial
model parameters shown by the cloud aggregator to obtain the most suitable local malware
classification model.

Entropy 2022, 24, 919 10 of 32

3.1.2. Threat Model

In the existing malware classifier training framework, it is assumed that the server is a
semi-honest party who is honest in conducting all the given tasks but curious about the
type and number of malicious samples (infected) owned by the clients, and the code of the
app. The type and number of malicious samples (infected) owned by the client will reveal
the identity and preference information of the clients 4 [15]; the source code of the app on
the client-side will reveal the private information of the app (not open source) vendor.

Moreover, we assume that all clients are semi-honest, and strictly follow the designed
protocols of training but may be interested in other clients’ data resources. The raw data
can even be inferred from model update information.

Therefore, in this paper, we designed an FL-based malware classification framework
to avoid the privacy problems existing in the traditional framework mentioned above.

3.1.3. Privacy Analysis

In article [30], the author disassembled GDPR (General Data Protection Regulation)
and obtained seven practical privacy compliance inspection principles: (1) Lawfulness,
Fairness and Transparency; (2) Purpose of Limitation; (3) Data Minimization; (4) Accuracy;
(5) Storage Limitation; (6) Integrity and Confidentiality; (7) Accountability;

We analyze the privacy compliance of the framework proposed in this paper according
to these seven compliance checking principles.

(1) The principle of Lawfulness, Fairness and Transparency.
According to the principle of Lawfulness, the FL server, as the data controller, must

clarify its legal basis before requiring clients to attend FL training.
The legal basis of GDPR includes: Consent; Contract; Legal obligation; Material

interest; Public task; and Legitimate interests.
The FL framework is designed in a way that does not allow FL servers to directly

access raw training data to ensure privacy. The client, as a participant in the FL system,
sends the results back to the FL server only when they are confirmed. In addition, FL
systems only process data (local ML model parameters) for explicit purposes, which are
reasonably expected by the customer and are easily regulated by specific laws. For these
reasons, the laws in GDPR are suitable for implementation in this FL framework and
therefore meet the principle of Lawfulness.

As for the principle of Fairness, the training method in this paper calculates the contri-
bution of the data subject according to the data quantity and quality (accuracy) provided
by the data subject and finally carries out weighted model aggregation according to the
contribution. This initially ensures the fairness of their participation. As for the principle of
Transparency, since the server monitors the accuracy of each client’s delivery model during
each turn, it can provide the transparency of the training process appropriately. However,
in order to ensure privacy, the original data set cannot be accessed except by the client itself,
so a compromise is made between Transparency and privacy protection.

(2) The principle of Purpose Limitation
In this article, the FL server exposes the specific purpose of its model training to the

client, who decides whether or not to participate in the training. At the same time, because
the transmitted model is protected by differential privacy technology [31], the FL service
provider cannot infer information from the model beyond the training task and, therefore,
cannot use it for other purposes.

Therefore, the scheme satisfies the principle of Purpose Limitation.
(3) The principle of Data Minimization
The principles of data minimization in the GDPR require the data controller (FL server)

to collect and process personal data that is sufficient, limited, and only relevant to the stated
purpose. In this scenario, the FL server does not need to collect and process raw training
data; in contrast, the FL server only needs to collect the local ML model from the participant
to aggregate the global model required by the client while being unable to infer information

Entropy 2022, 24, 919 11 of 32

from the model beyond the training purpose. Therefore, the scheme satisfies the principle
of Data Minimization.

(4) The principle of Accuracy
The purpose of this principle is to ensure that data controllers should keep personal

data correct and not mislead any factual issues. In this article’s FL setup, the FL server
updates the model only by performing weighted aggregation calculations on the models
returned by the customer in terms of their contribution (accuracy). In this process, no
changes are made to the customer’s model parameters, and only the model calculation
results are returned. So, the scheme satisfies the principle of Accuracy.

(5) The principle of Storage Limitation
This principle states that data controllers will not hold personal data for longer if

the data is no longer needed for the claimed purpose. In the FL setup of this scheme,
the FL server only performs security aggregation calculations, does not store any local
model parameters from participants, and the aggregated model is protected by differen-
tial privacy and anonymous processing. Therefore, the scheme satisfies the principle of
Storage Limitation.

(6) The principle of Integrity and Confidentiality
In order to prevent unauthorized access, network attack, or data leakage directly from

communication between the client and FL server, SSL/TLS is adopted in the data transmis-
sion process. Therefore, the scheme meets the requirements of Integrity and Confidentiality.

(7) The principle of Accountability
Because the FL server calculates and records the accuracy of the contribution of the

model uploaded by the customer in each turn, the behavior of the model provider can
be monitored. If the client that maliciously interferes with the training process is found,
it can be traced and held accountable. Therefore, the scheme meets the requirements
of Accountability.

To sum up, the malware classifier framework proposed in this paper basically conforms
to the data protection principles of GDPR.

3.2. Multi-Dimensional Android Malware Classification Model: HGCdroid

To solve the problem that the existing framework was not comprehensive and effective
enough to mine the behaviors of Android malware, we proposed a multi-dimensional
Android malware classification model HGCDroid (as a local classification model for Fed-
HGCDroid). It combines the statistical features θ and graph features G of malware, and
carries on multi-attribute coding to the API, mining the more essential behavior character-
istics of malware, so as to improve the classification effect.

In this article, the classification tasks of HGCDroid are: (1) malware detection; (2) mal-
ware type classification; malware family classification malware detection.

3.2.1. Sample Decompiling and Feature Preprocessing

To accurately classify malware, it is necessary to extract features that can effectively
represent the behaviors of malware. The features adopted in this paper are as follows:

(1) API
API features can describe the semantic information of the app and can be used to

represent the specific operations performed by malware.
(2) Permission
Permission features can describe an application’s access to sensitive resources. The

hacker usually needs to apply for sensitive permissions to achieve malicious purposes.
(3) Intent filters
Intents can describe the content of communication between components. Intents can

launch active components and service components. Intents can also transmit broadcast
content, enabling communication between applications. Malware often uses many intents
to call other applications or define Intent filters to retrieve intents broadcast by other
applications that contain sensitive data.

Entropy 2022, 24, 919 12 of 32

(4) Hardware
Hardware features can describe the resources that the malware needs to access and

can be used to represent the purpose of the malware.
(5) Function call diagram
The function call graph describes the application’s internal execution process and

represents the application’s potential behavior. It contains a lot of semantic information
and can prevent malicious applications from using obfuscation methods to a certain extent,
so it has good robustness.

The process of sample decompiling and feature preprocessing is shown in Figure 3.

Figure 3. Process of sample decompiling and feature preprocessing.

(1) Use the ZIP tool to decompress the APK file to obtain the Manifest resource file,
signature file, and DEX file.

(2) Use the Minidom tool to parse AndroidManifest.xml to obtain permissions, Intent
filters, hardware, and other features in the configuration information.

(3) Decompile DEX file using AndroGuard tool and convert Android bytecode (class.dex)
into SMALI code. The API features used in APK and the call relationships between APIs
are obtained by parsing SMALI code, and NetworkX builds the function call diagram.

(4) Feature engineering screening is carried out for statistical features (API, permis-
sions, Intent filters, hardware). The screened features are encoded through feature en-
gineering screening according to the frequency of occurrence. The encoded statistical
feature vector is used as the input of the CNN module to mine the implicit relations in
statistical features.

(5) The function call graph (including node vector and adjacency matrix) was con-
structed as the input of the GNN module. Through the call relationship between function
nodes, the hidden behavior in malware can be mined.

3.2.2. Multi-Attribute Coding Method for APIs

The API nodes in the function call graph have many available attributes, but the
existing research only uses semantic attributes, resulting in the limitation of the information
that can be used in the subsequent GNN model. In order to enrich the information
contained in the function call graph, semantic attribute, functional attribute, permission
attribute, and frequency attribute of the API node are used to encode. Meanwhile, we
use the Word2Vec [32] method to encode semantic attributes, functional attributes, and
permission attributes, respectively, in order to reduce the computation amount. Compared
with the one-hot encoding in the existing scheme, it can:

(1) Reduce the dimension of coding vector G, and capture the functional similarity
between different versions of APIs;

(2) Enrich the malicious behavior information of function call graph;
(3) Improve the anti-time attenuation ability of the classifier;
(4) Improve the robustness of extracting features against malware confusion to a

certain extent.
The proposed multi-attribute coding method for API consists of the following four parts:
(1) Semantic attribute refers to the meaning represented by the API node itself in the

context of the application program. The application program is regarded as a document
in natural language processing. Different orders of API occurrence may indicate different
intentions and behaviors. Semantic encoding mainly uses the textual semantic information

Entropy 2022, 24, 919 13 of 32

of APIS for embedded encoding. The APIs that appear in the context at the same time have
similar or similar coding vectors.

(2) Function attribute refers to the function cluster to which the API belongs. The
package and class to which the API belongs are used to represent the function to which the
API belongs. According to the characteristics of the Android API framework, APIs belong
to specific packages and classes, and all APIs in the same package and class have similar
functions. According to these characteristics, this paper encodes the API using the names
of the packages and classes it belongs.

(3) Permission attribute refers to the permission to apply for using the API. According
to the Android permission management mechanism, access to some APIs requires specific
permission, and permission will also restrict a group of specific sensitive operations. In
this paper, the permission belonging to API is regarded as the permission attribute of API,
and the permission code is obtained by embedding the permission with the text semantic
information of the permission.

(4) Frequency attribute represents the frequency of the API node appearing in the
current application and is the coding content related to the current application.

We define st(v), f t(v), pm(v), tm(v) to represent the encoding methods of the semantic
attribute, functional attribute, permission attribute, and frequency attribute, respectively,
and finally obtain the attribute code ϕ(v) of API node, as shown in Formula (4).

ϕ(v) = [st(v), f t(v), pm(v), tm(v)], v ∈ V (4)

3.2.3. Network Architecture of HGCDroid

The network architecture of HGCDroid includes an input layer, GNN model based
on graph neural network, CNN model based on convolutional neural network and fully
connected module, and output layer, as shown in Figure 4. The input of HGCDroid
is mainly the coding vector θ of statistical features and the coding function call graph G.
Function call graph G is a description of the internal execution process of the application and
represents the potential behavior of the application. It contains a lot of semantic information
and can prevent malware from using obfuscation methods to a certain extent, so it has
good robustness. The coding vector θ of statistical features is used as the supplement of
graphical features G, so as to capture malicious behavior features more comprehensively
and improve the accuracy of classification.

Figure 4. Multi-dimensional malware classification model HGCdroid.

The CNN module is used for processing statistical features of Android malware, min-
ing hidden relations in statistical features through convolution operation, and embedding
statistical features into low-dimensional vectors for output. The GNN module is used to
process the function call graph features, obtain the dependency between function nodes
through graph convolution operation, learn the structural features of the function call

Entropy 2022, 24, 919 14 of 32

graph, and finally generate the embedded representation of the function call graph. The
fully connected module is used for receiving the embedding vector output by the CNN
module and the GNN module, mining the combinatorial relations in embedded features
through the fully connected layer and establishing the mapping between embedded fea-
tures and output to complete the final classification. The following contents, respectively,
introduce the input features and the composition of the CNN module, GNN module, and
full connection module.

(1) CNN module
The input of the CNN module is statistical feature θ, which is composed of the

permission feature, API feature, Intent filter feature and hardware feature in the order of
semantic relationship. Meanwhile, each feature is encoded according to the frequency of
its occurrence.

CNN module mainly includes a convolution layer, normalization layer, RELU layer,
pooling layer, etc., and extracts specific patterns [33] and hidden information in statistical
feature through convolution units composed of different neural network layers, and finally
output the expanded one-dimensional vector.

In this paper, the one-dimensional convolution operation is used as the convolution
layer, and Formula (5) gives the specific calculation method. The input statistical features of
the module are encoded according to the specific order of statistical feature vectors to obtain
the one-dimensional feature vector HGCdroid. Since different features are segmented
encoded according to the character order, there are similarities between adjacent features,
so the convolution operation is used to obtain the combined relations between different
features. The speed of convolution operation can be greatly improved by using the features
of weight sharing and local perception.

yj = f (bj + ∑
i

kij ∗ xi) (5)

RELU layer can make the output of some neurons turn to zero, make the network
become more sparse, reduce the interdependence between parameters of the same layer,
and effectively alleviate the over-fitting problem in deep learning. Table 4 shows the
network structure and parameters of the CNN module.

Table 4. Neural network structure and parameters of CNN module.

Layer Input × Output Conv Kernel Size Stride

CNN-1

Conv1D 1 × 64 3 1

BatchNorm1D 64 × 64 - -

Relu 64 × 64 - -

CNN-2

MaxPool1D 64 × 64 3 3

Conv1D 64 × 128 3 1

BatchNorm1D 128 × 128 - -

Relu 128 × 128 - -

CNN-3

MaxPool1D 128 × 128 3 3

Conv1D 128 × 256 5 1

BatchNorm1D 256 × 256 - -

Relu 256 × 256 - -

CNN-4

MaxPool1D 256 × 256 3 3

Conv1D 256 × 256 5 1

BatchNorm1D 256 × 256 - -

Relu 256 × 256 - -

Pool MaxPool1D 256 × 256 3 3

Entropy 2022, 24, 919 15 of 32

(2) GNN module
The GNN model input coding module function call graph G = (V, E), V is the node-

set of the function call graph, E is the edge set of the function call graph, it contains a
convolution layer, RELU layer, the global pool layer, etc., to form the figure convolution unit,
a function call graph and embedded vector mapping relationship, mining function calls the
structure of the information hidden in this picture. Finally, the one-dimensional vector is the
output. The GNN module firstly carries out information dissemination, sampling function
nodes around, N (s) means computing all neighbor nodes, including the current node,
multiplying feature vectors of neighbor nodes by weights, and sending them to adjacent
function nodes, as shown in Equation (6). Then, information aggregation is carried out to
fuse the information of the current node with the information of the surrounding nodes,
and the vector representation of the current node is obtained through the transformation of
the nonlinear activation function, as shown in Equation (7).

N (s) = {u|(u, v) ∈ E} (6)

hk
v = σ

Wk
1 ·hk

v + ∑
u∈NL(s)

hk
u·Wk

2

 (7)

The GNN module adopts the same activation function as the CNN module, the RELU
function, which is used to introduce nonlinear changes and certain sparsity to enhance the
expression ability of the model. The Readout layer splices the embedding vector Readout
by two global pooling functions into the final graph embedding vector. Table 5 shows the
network structure and parameters of the GNN module.

Table 5. Network structure and parameters of GNN module.

Layer Input × Output

GNN-1
GraphConv 102 × 256

Relu 256 × 256

GNN-2
GraphConv 256 × 256

Relu 256 × 256

GNN-3
GraphConv 256 × 256

Relu 256 × 256

Pool Readout 1536

(3) Fully connected module
The fully connected module processes the feature vectors output by the CNN module

and GNN module and captures the combined relations between embedded features to
achieve the final classification goal. The output of a fully connected neural network is
adjusted according to different tasks. For a malicious software detection task, its output
is a 2-dimensional vector corresponding to the probability of malicious software and
benign software, respectively. For the classification task of malware types, the output
is an 8-dimensional vector, corresponding to the probability of 8 types of malware and
benign software, respectively. For the malware family classification task, the output is a
10-dimensional vector, corresponding to the probability of 10 different malware families.
Fully connected modules include Linear, LayerNorm, LeakyRelu, and Softmax layers.

The LayerNorm layer is used to normalize the features within a single sample, which
can eliminate the distribution bias of input features and retain the distribution characteris-

Entropy 2022, 24, 919 16 of 32

tics of input features. The LeakyRelu layer is used in this paper to establish a non-linear
mapping, and Formula (8) gives the calculation method.

LeakyRelu(x) =
{

x x > 0
α(ex − 1) x < 0

(8)

In this paper, the output of the CNN module and GNN module are, respectively,
processed by a three-layer fully connected unit, and the output vector of the model is
obtained by the Softmax function. Each value of the output vector represents the probability
corresponding to each category.

In this paper, the cross-entropy function is mainly used to calculate the loss between
the output vector and the label, as shown in Formula (9). Where yi represents the label of
category i, pi represents the prediction probability of category i output by the model, K rep-
resents the number of categories, and JHGCDroid represents the loss function of the model.

JHGCDroid = −
K

∑
i=1

yi log(pi) (9)

Finally, the linear layers of the two modules are added together, and the final out-
put is calculated by the Softmax function. Each value of the output vector represents
the probability of the corresponding category. Table 6 shows the network structure and
parameters of the fully connected module, and the output size is determined by different
classification targets.

Table 6. Network structure and parameters of fully connected modules.

Layer Input × Output Layer Input × Output

FC-1

Linear 2560 × 2560

FC-4

Linear 1536 × 1024

LayerNorm 2560 × 2560 LayerNorm 1024 × 1024

LeakyRelu 2560 × 2560 LeakyRelu 1024 × 1024

FC-2

Linear 2560 × 2560

FC-5

Linear 1024 × 1024

LayerNorm 2560 × 2560 LayerNorm 1024 × 1024

LeakyRelu 2560 × 2560 LeakyRelu 1024 × 1024

FC-3 Linear 2560 × Output FC-6 Linear 1024 × 1024

FC-7 Sum Output × Output

SF Softmax Output × Output

3.3. Adaptive Training Mechanism of Classification Model Based on Contribution
Degree: FedAdapt

To solve the problem of poor adaptability of the existing FL-based framework to
non-IID distribution, this paper innovatively improves the existing Fedavg algorithm
by introducing meta-learning and attention mechanisms and designs an adaptive model
training mechanism based on contribution degree, namely, FedAdapt.

As described in the problem description section in Section 2.2, existing popular FL
schemes have poorer classification accuracy in higher degree non-IID scenarios. Because in
a higher degree of non-IID scenario, local model parameters of different clients will deviate
more seriously, resulting in a decline in the aggregation effect of global model parameters
and a sharp decline in the final classification accuracy.

Therefore, in this paper, we define the adaptability of the FL framework as its ability
to maintain classification accuracy in different degrees of non-IID scenarios.

The improvements of FedAdapt include two aspects: (1) in the training process of
the local model, we introduce a first-order learning method (reptile [34]), which is used to
extract more generalized general features between different clients (different distributions)

Entropy 2022, 24, 919 17 of 32

to reduce the overfitting of the local distribution; (2) in the process of aggregation of model
parameters, we introduce an attention-based mechanism to calculate the contribution of
different local models to the global model (based on classification accuracy) and improve
the aggregation effect of local models with different qualities in non-IID scenarios.

3.3.1. Meta-Learning-Based Local Model Training Method

The meta-learning method can learn multiple internal representations of different
tasks and has the advantage of strong generalization ability for new tasks. Therefore,
we consider the meta-learning method to improve the existing Federated learning model
training method and improve the generalization of shared model parameters, so as to
solve the problem of adaptability of the existing framework to the non-IID distribution of
malware on clients.

Inspired by the meta-learning algorithm, we introduced the initial model parameters
calculation method in the meta-learning algorithm into the existing FL framework for
improvement, and the android malware dataset on the client is regarded as multiple
different training tasks. This model training method aims to train initial model parameters
with strong generalization capability for all clients, which can be a slight adjustment by
malware data of clients to train an adaptive classification model adapted to the distribution
of malware on clients.

It should be emphasized that the generalization ability of initial model parameters has
been proved in the article [34]. It is pointed out that the initialization parameters, which
are found in the meta-learning approach, are close to all of the optimal solution manifolds
of the training tasks, as shown in Equation (10).

min
ŵ

DEuclidean(ŵ , w̃∗k) (10)

where ŵ is the initial model parameters, and w̃∗k denotes the set of optimal parameters for
task k. The goal is finding ŵ such that the Euclidean distance DEuclidean

(
ŵ , w̃∗k

)
is small

for all clients (tasks).
The initial model parameters ŵ training method is divided into inner and outer

gradient descent. First, inner gradient descent is performed at an inner learning rate α
using the malware dataset on the client. Then, the outer gradient descent is carried out
using the model weight variation value after training in the local malware dataset using
the outer learning rate β, as shown in Figure 5.

Figure 5. Schematic diagram of model training method based on meta-learning.

Equations (11)–(13) give the calculation methods of inner and outer gradient descent,
respectively. Where wt

k is the weight of the model after the t rounds of the inner gradient
descent on client k, and ∇F

(
wt

k
)

is the derivative of the loss function of the model to the
weight of the model. The model weight wt+1

k of the next round of inner gradient descent
is obtained by iterative Formula (12). w̃k is the result of local multi-round inner gradient
descent, and ŵ is obtained by the global training of the first round. Outer gradient descent
is the final result of local model training ŵ k based on model initialization parameters.

w0
k = ŵ (11)

wt+1
k ← wt

k − α∇wF
(
wt

k
)

(12)

Entropy 2022, 24, 919 18 of 32

ŵ k ← w0
k + β

(
w̃k − w0

k

)
(13)

Then, global average aggregation is carried out to update the initial model parameters
ŵ , as shown in Equation (14).

ŵ =
nk
N

m

∑
k=1

ŵ k (14)

After several rounds of global training, the optimal shared initial model parameters are
obtained. Each user can obtain the optimal local model w̃∗k by gradient descent according
to Equation (3) based on the initial model parameters ŵ.

3.3.2. Contribution Degree-Based Model Aggregation Method

In the FL framework, the dataset’s quality varies from client to client, and the hacker
may even put false data. Therefore, the dataset on the client has different effects on the
accuracy of the global model. However, the existing framework simply adopts the quan-
titative ratio as the weighted basis for aggregation, which makes it difficult to effectively
utilize the information of each client, thus resulting in a poor global model effect. There-
fore, the gradient contribution of each client needs to be quantified further to improve the
effectiveness of the aggregation of the model.

From the perspective of model aggregation and inspired by the attention mechanism,
this paper proposes a method to measure the contribution degree of the client, judging the
merits and demerits of the local model provided by the client according to the situation of
each aggregation. First, the accuracy change value ∆acc of the model is defined to represent
the model improvement in this update. The projection ρt

k of client model update vector on
the aggregated model update direction is regarded as the contribution of client k to model
update in round t.

If the accuracy is improved and the update direction of client k is consistent with
that of the server, it indicates that the model provided by the current client has a high
contribution, which improves the model accuracy, the contribution degree of this round
is positive. Suppose the accuracy rate decreases and the update method of client k. is
consistent with the update direction of the server; in that case, it means that the model
provided by the current client leads to a decrease in the accuracy rate of the model, and its
contribution of this round is negative. Calculation method of ρt

k, as shown in Equation (15).

ρt
k = ∆acct

(
wt

k − wt−1)·(wt − wt−1)
|wt − wt−1|

(15)

According to the total number of clients’ contributions to each round of training, ρ̃t
k of

the current client’s historical contribution is estimated, which objectively describes the data
quality of the client and the total influence of the update effect of the client model on the
whole model. Calculation method of ρ̃t

k, as shown in Equation (16).

ρ̃t
k =

t

∑
i=1

ρi
k (16)

Finally, with the process of model training, the weight of each client model aggregation
is automatically adjusted according to the historical contribution of the client, and the local
model aggregation is adaptive. Equation (17) gives the calculation method of model weight.
Firstly, the sigmod formula is used to compress the historical contribution degree, and
the value of the historical contribution degree is converted to between 0 and 1. Then, the
weight of the current client model update ηt

k is calculated, which calculates the weight of
all models in this update round based on their historical contribution.

ηt
k =

sigmod
(
ρ̃t

k
)

∑N
k=1 sigmod

(
ρ̃t

k
) (17)

Entropy 2022, 24, 919 19 of 32

It automatically adjusts the weight of each client during model aggregation based on
the client contribution. The ability to take full advantage of clients with lots of high-quality
data enables clients that provide high-quality data training for local models to have greater
model aggregation weights. In addition, malicious clients will be excluded to a certain
extent. For example, a client that provides fake data will obtain a smaller model update
weight and have a smaller impact on the global model due to a smaller contribution from
the calculation. In essence, it is a process of feedback adjustment. Each iteration will adjust
the process of the next round of aggregation according to the test accuracy ∆acc and model
updating weight feedback from the client. At the same time, this mechanism does not
bias the model to a particular client’s data distribution, because ∆acc ensures a higher
contribution to the local model with good results on all test datasets.

When aggregating on the FL Server side, consider the cumulative contribution of the
client. The aggregation of weights is realized by taking the cumulative contribution degree
as one of the indicators of aggregation. Finally, the contribution-based model updating
algorithm is shown in Equation (18):

ŵ = ηt
k

m

∑
k=1

ŵk (18)

3.3.3. The Training Process of FedAdapt

The adaptive model training mechanism based on contribution is shown in Figure 6.
The specific process is as follows:

Figure 6. Process of adaptive classification model based on contribution degree.

(1) Global initialization: first, initiate the request of Federated learning on the server,
and establish a communication link between the server and the client. The client downloads
feature extraction tools and configuration parameters from the server, preprocesses data,
divides the dataset into training sets and test sets, and extracts the features of malware.
The server and client complete global initialization.

(2) Model download: the server sends model parameters to all clients. The client loads
the global model.

Entropy 2022, 24, 919 20 of 32

(3) Model training: the client regards local model training as an independent task in
meta-learning. According to the inner learning rate α, the inner gradient descent is applied
to the training set to obtain the model weight w̃k. The outer layer learning rate β is used for
outer gradient descent and learning is performed on the initial model parameters ŵ. The
locally updated weight of the ŵk can be obtained.

(5) Model aggregation: the server calculates the weight of each client according to the
change of model accuracy and the client-server according to the historical contribution of
the client, and aggregates the client model to obtain a new global model.

(6) Model test: the server sends the new global model to each client. The client tests the
training dataset to obtain the accuracy of the global model, which is used to measure the
local performance of the global model. According to the change value of model accuracy
and weight of local model update, the server calculates the contribution of all clients in this
round and adds it to the historical contribution.

(7) Repeat the training process of Steps 2–6 until the model converges, as shown in
Algorithm 1. Training mechanism of adaptive model based on contribution degree. In the
actual training process, model testing can be combined with model training and the model
aggregation process without increasing the number of communication rounds.

Algorithm 1: Training mechanism of adaptive classification model based on
contribution degree.

Input Number of iterations T, number of clients N, number of iterations of client dataset E,
batch of client data B, weight of client k in round t is wt

k, client learning rate α,
Output Vector representation of a node zv, ∀v ∈ V
1: function ServerAggregate :
2: for t = 0, 1, . . . , T do
3: Send global model wt to each client
4: for k = 0, 1, . . . , N do
5: wt+1

k ← ClientUpdate
(
k, wt)

6: acct+1
k ← ClientTest

(
k, wt)

7: end for
8: ∆acct+1 ← 1

N ∑N
k=1 acct+1

k − acct

9: ρt+1
k = ∆acct+1 (wt

k−wt−1)·(wt−wt−1)
|wt−wt−1|

10: ηt+1
k =

sigmod(ρ̃t
k)

∑N
k=1 sigmod(ρ̃t

k)
11: wt+1 ← ∑N

k=1 ηt+1
k wt+1

k
12: end for
13: end function
14: function ClientUpdate

(
k, wt):

15: Initialize local model weights wt
k ← wt

16: for e = 1, 2, . . . , E do
17: for b = 1, 2, . . . , B do
18: wt

k ← wt
k − α∇wF

(
wt

k
)

19: end for
20: w̃k ← wt + β

(
w̃k − wt)

21: end for
22: return ŵk
23: end function

4. Results

In this section, Section 4.1 introduces the experimental data set, experimental environ-
ment, indicators, and simulation scenarios (partition method) for the non-IID distribution
of the malware on the clients.

Then, the proposed scheme is compared and verified in Section 4.2, which includes
the following parts:

Entropy 2022, 24, 919 21 of 32

(1) Compare and analyze the performance of the proposed client local classification
model HGCDroid and the existing schemes in malware detection and classification tasks.
Classification performance indicators include accuracy, precision, recall, and F1-score.

(2) The performance of FedHGCDroid was compared and analyzed with the existing
FL-Base scheme in the task of malware detection and classification. The performance
comparison includes two aspects: classification performance and adaptive performance.
The classification performance index includes accuracy, which is compared in the IID
scenarios (the degree of non-IID is close to 0); Adaptive performance is measured by the
ability to maintain classification accuracy under different non-IID scenarios.

4.1. Simulation Setup
4.1.1. Dataset

To verify the validity of the model and algorithm, we build the dataset from the
open-source project of the AndroZoo [35], about 70,000 applications for malware detection
and classification tasks.

In order to continue to study the types and families of malware and provide a more
detailed description of malware, we used the VirusTotal [36] aggregation engine test
platform to generate a simple report of malware, and based on the research results of
Euphony [37], add tags for consistent high confidence malware type categories and family
categories. The following Table 7 describes the malware dataset.

Table 7. Description of experimental dataset.

Task Type Category Quantity Description

Malware
detection

Benign 29,977 Normal application.

Malicious 28,855 An application that performs malicious operations that cause losses to the user.

Malware
type

classification

Adware 5000 Flood a user’s device with unwanted ads, enticing them to click incorrectly.

Trojan 3338 Masquerading software, damaging user devices, collecting sensitive data, deleting
important files, and monitoring user activity.

Riskware 5000 Collect users’ bank account information and payment records.

Ransom 4322 Software that prevents the user from behaving normally and requires the user to pay a
ransom to release control.

Exploit 1225 Exploit system vulnerabilities to gain permissions by breaking the application sandbox.

Spyware 2476 Transfer of personal information and data to places other than the Android device
without the user’s consent.

Downloader 4023 Remote download malicious code, frequently download and install operations.

Fraudware 3776 To charge users in a deliberately deceptive manner.

Malware
family

classification

Adwo 1000 Display intrusive ads and gain privacy from the device.

Airpush 1000 Trojan, take the initiative to push advertising to equipment notification bar.

Dowgin 1000 Advertising module, collect device location, network, telephone sensitive information.

Droidkunfu 1000 Trojans, which exploit vulnerabilities to send confidential information to remote servers.

Jiagu 1000 Risk software, malicious packaging program.

Kuguo 1000 Advertising module, steal sensitive information.

Leadbolt 1000 Changes browser Settings to display ads in the notification bar.

Revmob 1000 Get geolocation, download hidden executables.

Wapsx 1000 Delivers AD content and displays unwanted ads in the notification bar.

Youmi 1000 Steals user privacy, including location, phone, phone id, etc.

In the literature [38], the authors point out that spatial bias will be caused by distribu-
tions of training and testing data that are not representative of a real-world deployment,
and the rate of malware in Android in the real environment is roughly 1/10.

Entropy 2022, 24, 919 22 of 32

Therefore, in order to eliminate the space bias, we set the malware-to-goodware ratio
in both training and testing of each task to be 10:1. We set the ratio of training-to-testing to
be 8:2.

At the same time, in order to eliminate the time bias, we split the training set and data
set by time. According to the method of reducing time bias mentioned in the literature [39],
a small portion (2%) of representative (over different periods of time) Android malware
has been selected for training, respectively, in the client samples using active learning.

The partition result of the training set and testing set for centralized training is shown
in Figure 7.

Figure 7. Partition result of training set and test set for centralized training.

In the federal training task, the training and test sets separated by time are further
divided into each client, and each client uses its own training set and test set, respectively,
for task testing. The partition result of the training set and test set for FL training is shown
in Figure 8.

Figure 8. Partition result of training set and test set for FL training.

4.1.2. Experimental Environment

The software and hardware environment of experiments are shown in Table 8.

Table 8. Description of experimental environment.

Component Parameter

Hardware
CPU/GPU Intel Golden 6240/NVIDIA A100 GPU

Memory/Hard disk 64G/2T

Software

OS CentOS 7.6, Cuda10.1

Programming language Python3.8

Software tools Vscode, Slrum

Machine learning library Pytorch1.8.1, Sklearn1.0.2, PyG2.0.1

Other libraries Androguard3.3.5, Numpy1.20.3,
Matplotlib3.4.2, Gensim4.1.2, Conda4.8.2, Networkx2.6.3,

Entropy 2022, 24, 919 23 of 32

4.1.3. Performance Metrics

To compare the effectiveness of the deployed models, we rely on standard machine
learning performance metrics such as accuracy, precision, recall, and F1-score, as shown
in Table 9.

Table 9. Performance Metrics.

Performance Metrics Calculation Formula

Accuracy ACC = TP+TN
TP+TN+FP+FN

Precision PRE = TP
TP+FP

Recall REC = TP
TP+FN

F1 score F1 = 2∗PRE∗REC
PRE+REC

Malware detection is a binary classification task, and we define the malicious sample
as positive and the benign sample as negative. For multi-classification evaluation indicators,
we define each category is regarded as a positive sample and the other categories as a
negative sample. Then, the average value of evaluation indicators of all categories is taken
as the final evaluation indicator.

4.1.4. Non-IID Data Partitioning and Non-IID Degree Measurement Methods

In order to verify the adaptive performance of the proposed FedHGCDroid in non-IID
scenarios, we designed a variety of non-IID malware data partitioning and measurement
methods and verify their validity.

• Setting method of malware’s distribution on the client;

In order to verify the adaptive performance of the FL-based malware detection method
under the non-IID situation, the centralized dataset is divided into several non-IID data
subsets. We have implemented a variety of different data partitioning methods, and
different data partitioning results represent different data distribution types, which will
have different influences on the FL algorithm.

In this paper, the most common label distribution skew is tested. According to different
data partitioning methods Pγ

m, as shown in Equation, the dataset D is divided into a set of
data subset D, which follows different data distribution D. Where m is the name of the
data partitioning method, γ is the scale parameter of the data partitioning method, and n is
the number of clients, that is, the number of data subsets.

P γ
m : D → {D1, D2, . . . , Dn} (19)

We have implemented a variety of data partition methods with different distributions,
including independent identically distributed(IID) data partition Piid, Pγ

num based on quan-
tity, Pγ

dir based on Dirichlet distribution, Pγ
exp based on exponential distribution. Dataset D

can be divided into different data subsets {D1, D2, . . . Dn}.
(1) Independent and identically distributed data partitioning method Piid:
The original data samples were randomly shuffled, and the data set was randomly

divided according to the number of data subsets. The method can generate independent
and identically distributed data subsets, and the number of samples of each label in each
data subset is similar. The data partitioning results of the malware family classification
task are shown in the figure. (It should be emphasized that the data set on each client
will be further divided into the training set and test set according to the time-split method
described above). The data partition result on the clients as shown in Figure 9.

Entropy 2022, 24, 919 24 of 32

Figure 9. Data division result by method based on independent and identically distributed data
partitioning Piid.

(2) Data division method based on the number of labels Pγ
num:

Each data subset firstly selects a fixed number of labels, and then randomly selects
samples under its labels. The method can make different subsets of data have different
samples of labels, where γ represents the number of labels in a single data subset. Taking γ
value = 4 and 6, the data partition result on the clients is shown in Figures 10 and 11.

Figure 10. Data division result by method based on the number of labels Pγ
num (γ = 4).

Figure 11. Data division result by method based on the number of labels Pγ
num (γ = 6).

(3) Data partitioning method based on Dirichlet distribution Pγ
dir:

Dirichlet distribution represents the distribution of distribution and can adjust param-
eters to obtain data subsets of different distributions. The method can produce subsets
of data that follow the Dirichlet distribution, where γ represents the parameters of the
Dirichlet distribution. If γ is set to a smaller value, then the partition is more unbalanced.
Take γ value = 0.4, the data partition result on the clients as shown in Figure 12.

Figure 12. Data division result by method based on exponential distribution Pγ
exp (γ = 0.4).

Entropy 2022, 24, 919 25 of 32

(4) Data division method based on exponential distribution Pγ
exp: In order to increase

the distribution difference between data subsets, the samples of each label are divided
according to random values generated based on exponential distribution. This method
can obtain a subset of data based on exponential distribution, where γ represents the scale
of exponential distribution change. If γ is set to a smaller value, then the partition is less
unbalanced. Take γ value = 10, the data partition result on the clients as shown in Figure 13.

Figure 13. Data division result by method based on exponential distribution Pγ
exp (γ = 10).

• The method of quantifying the degree of non-IID in the distribution of malware
on clients;

We propose a method for quantifying the degree of non-IID in different data partition-
ing methods, as shown in Equation

d(D1, D2) =
1
2

N

∑
i=0
|P(yi|D1)− P(yi|D2)| (20)

where N represents the number of labels and P(yi|D1) said in a data subset D1 label yi
in probability.

For a subset of data {D1, D2, . . . Dn}, the distance of distribution between any two
data subsets represents the degree of non-IID, as calculated in Equation.

τ({D1, D2, . . . Dn}) =
2

N(N − 1)

i<N,j<N

∑
i<j

d(D1, D2) (21)

It is a symmetrical distribution difference calculation method that does not cause too
much oscillation due to the occurrence of zero value.

• Client’s malware distribution setting and effect verification of distribution difference
quantification method

To verify the validity of the method for the data partitioning and the method for
quantifying the degree of non-IID in the distribution of malware on clients, we carried out
experiments on the dataset of malware family classification. The data were divided into ten
subsets by different partitioning methods, and non-IID’s degrees of them were calculated.

The experimental results are shown in the client malware distribution setting and
effect verification of distribution difference quantification method. The abscissa represents
the parameter controlling the distribution difference, and the ordinate represents the
calculated value of the label distribution difference. With the value of γ increasing, the
non-IID’s degree of Pdir and Pnum are decreasing gradually, and the non-IID’s degree of
Pexp is increasing, as shown in Figure 14.

Experimental verification shows that different data partitioning methods can generate
multiple types of non-IID data and simulate different scenarios of non-IID distribution of
malware data. The method of quantifying the degree of non-IID can clearly describe the
degree of distribution difference of data partitioning methods and provide an intuitive
quantitative description.

Entropy 2022, 24, 919 26 of 32

Figure 14. Client’s malware distribution setting and effect verification of distribution difference
quantification method.

4.2. Comparison and Analysis of the Results of Experimental Tasks
4.2.1. Test Classification Performance of HGCDroid and Other Malware Classification
Model

To verify the effectiveness of the HGCDroid (local model of FedDroid) model in this
paper, extensive comparative experiments were conducted, including two experimental
tasks: malware detection and malware type classification (Train in a centralized method).

We compare the effectiveness of our approach with four state-of-the-art works, includ-
ing SVM (Arp et al. 2014) [12], DNN (Jiang et al. 2018) [18], CNN (Taheri et al. 2021) [23],
GNN (Pektas et al. 2020) [19] with an identical simulation configuration.

SVM (Arp et al. 2014) [12] and CNN (Taheri et al. 2021) [23] applied the statistical-
based features, and DNN (Jiang et al. 2018) [18] and GNN (Pektas et al. 2020) [19] applied
the Graphical-based features. The experimental results are shown in Table 10.

Table 10. Validation of HGCDroid model.

Experiment Task Model Accuracy Precision Recall F1-Score

Malware detection

SVM (Arp et al. 2014) [12] 89.2 89.27 89.04 89.16

DNN (Jiang et al. 2018) [18] 90.67 91.3 90.99 91.14

CNN (Taheri et al. 2021) [23] 88.16 87.95 88.28 87.99

GNN (Pektas et al. 2020) [19] 90.55 90.21 91.06 90.63

HGCDroid 91.3 90.8 92.79 91.29

Malware type
classification

SVM (Arp et al. 2014) [12] 72.08 72.68 73.62 73.14

DNN (Jiang et al. 2018) [18] 78.14 76.72 77.69 77.38

CNN (Taheri et al. 2021) [23] 79.13 79.71 78.61 79.07

GNN (Pektas et al. 2020) [19] 80.5 82.66 81.59 82.12

HGCDroid 83.29 83.45 83.85 83.67

As can be seen from the results given in Table 5, in the classification task of malware
type, the proposed classifier HGCDroid has a great advantage in Accuracy, with an increase
of about 3%. This is because the API multi-attribute coding method and multidimensional
model structure (CNN and GNN) in HGCDroid can mine the behavior characteristics of
malware more effectively, which makes a more accurate distinction between different types
of behavior. Meanwhile, Precision, Recall and F1-score all reached the highest.

In the detection task of malware, the proposed classifier HGCDroid achieves the
highest Accuracy, Recall and F1-score, while its precision is slightly lower than DNN

Entropy 2022, 24, 919 27 of 32

(Jiang et al. 2018) [18] (DNN is used to mine the graph features). It shows that the
multi-dimensional mining of malicious behavior has no obvious advantage in the binary
classification task. However, in multi-type classification, multi-dimensional mining of
malicious behavior has greater advantages.

4.2.2. Test the Performance of the FedHGCDroid and Other FL-Based Malware
Classification Schemes under Different non-IID Data Settings

In this section, we compare the performance of our proposed FedHGCDroid scheme
with some state-of-the-art studies on FL-based malware classification schemes including Fed-
IIoT (Taheri et al. 2021) [23], RAPID (Shukla et al. 2021) [22], LiM (Galvez et al. 2021) [21]
with an identical simulation configuration. We fully reproduce these malware classifi-
cation schemes in our work and compare the performance (classification performance
and adaptive performance) with the proposed FedHGCDroid. For a more comprehensive
comparison of the proposed schemes, we also combine the existing advanced FL algorithm
(such as Fedavg, Fedper [40], Fedamp [41]) with the proposed HGCDroid model as a
comparative experiment.

To compare the performance of different algorithms, this paper carries out experi-
ments on the three tasks of malware detection, type classification, and family classification,
respectively. In order to compare the performance of algorithms under different data distri-
bution scenarios, this paper selects five types of data distribution settings for comparative
experiments to verify the performance.

All algorithms take the same federated learning settings. A total of five clients were
set, with iterations of 500, a client epoch of 5, a batch size of 128, a learning rate of 0.01, an
optimizer of SGD and a learning rate of 0.01.

The experimental results are shown in Tables 11–13, with each column representing
different data partitioning methods and each row representing different FL-based malware
classification schemes. Fed-IIoT [23], RAPID [22], LiM [21] and [Fedavg + HGCdroid] are
four kinds of classification schemes based on global model training methods. After training,
a globally unique model is generated and sent to different clients for testing.

Table 11. Compare the results of malware detection tasks.

Algorithm Piid Pγ
dir γ=0.2 Pγ

dir γ=0.6 Pγ
exp γ=0.2 Pγ

dir γ=15

Fedavg + HGCdroid 91.37 90.12 89.77 90.06 91.91

LiM 88.58 81.02 85.11 86.71 78.57

RAPID 89.8 88.05 87.16 88.71 88.25

Fed-IIoT 90.51 87.47 88.62 88.96 80.54

Fedamp + HGCdroid 91.80 92.46 93.28 90.57 93.43

Fedper + HGCdroid 90.82 91.78 93.26 90.53 93.53

FedHGCdroid 91.82 92.79 93.95 91.18 93.19

Table 12. Comparison of malware type classification results.

Algorithm Piid Pγ
num γ=4 Pγ

num γ=6 Pγ
dir γ=0.4 Pγ

exp γ=10

Fedavg + HGCdroid 82.16 76.13 77.03 80.65 82.60

LiM 79.82 72.58 73.46 76.67 77.63

RAPID 80.04 77.33 76.94 78.5 77.48

Fed-IIoT 80.92 76.79 76.27 78.73 78.44

Fedamp + HGCdroid 81.47 83.87 85.41 83.75 83.19

Fedper + HGCdroid 78.25 82.86 83.79 81.99 83.11

FEDHGCdroid 81.79 84.77 85.98 84.09 84.83

Entropy 2022, 24, 919 28 of 32

Table 13. Comparison of malware family classification results.

Algorithm Piid Pγ
num γ=4 Pγ

num γ=6 Pγ
dir γ=0.4 Pγ

exp γ=10

Fedavg + HGCdroid 81.01 76.77 78.63 76.98 74.67

LiM 76.63 73.15 72.34 75.82 72.96

RAPID 79.65 74.95 75.95 75.29 75.11

Fed-IIoT 79.93 74.63 77.67 78.42 74.86

Fedamp + HGCdroid 80.55 83.21 84.92 86.48 85.02

Fedper + HGCdroid 76.65 82.45 83.75 83.82 84.02

FedHGCdroid 82.25 85.74 86.36 86.27 87.95

[Fedamp + HGCdroid], [Fedper + HGCdroid] and our proposed FedHGCdroid are
three personalized federated learning and training methods. After accepting the global
model, their local models adjust appropriately according to the distribution of local data.
The results of the experiment are shown and analyzed below:

• Comparison of classification performance between FedHGCDroid and other state-of-
the-art studies on FL-based malware classification schemes

In order to compare the classification performance of respective FL-based malware
classification schemes, we compared the classification effect under the condition of IID. It
should be pointed out that in the IID case (ideal case), the degree of non-IID is close to zero
and the distribution of clients is almost the same, not affected by degradation after model
aggregation, which can fairly compare the classification performance of different schemes.

As shown in Tables 11–13 (“IID” in the first column), FedHGCDroid achieves the
highest classification accuracy in malware detection and malware family classification;
however, in the task of malware classification, the classification accuracy is slightly lower
than [Fedavg + HGCdroid].

This illustrates two conclusions: under ideal conditions (IID), FedAdapt, the adaptive
mechanism in FedHGCDroid, is not significantly different from Fedavg, the existing FL
aggregation algorithm (because they both use the same HGCdroid as the local classifier).

At the same time, compared with the existing FL-based malware classification model,
our classification performance is the highest in all three malware tasks. This is because
we adopt the multi-dimensional malware classification model HGCDroid as the local
classification model, and their schemes only use relatively simple statistical features, which
cannot effectively mine malicious behaviors of malware.

• Comparison of adaptive performance between FedHGCDroid and other state-of-the-
art studies on FL-based malware classification schemes

As shown in the tables and Figure 15, FedHGCDroid achieves the highest classification
accuracy in malware detection and classification tasks at different non-IID levels. At the
same time, the FedHGCDroid’s convergence is the fastest. It shows that FedAdapt, the
adaptive mechanism in FedHGCDroid, achieves the best adaptive performance in different
non-IID scenarios. This is because the three existing FL-based malware classification models
all adopt a single common model, or only carry out regularization constraints, and do not
adapt to the distribution of malware on different clients. As a result, their adaptability to
different non-IID scenarios is poor, and their accuracy is significantly decreased (about 6%
on average).

In the comparison experiment of supplementary personalization algorithm,
[Fedamp + HGCdroid] (aggregations of similar data groups) and [Fedper + HGCdroid]
(Fine-tune the top of the model) also adopt local model adjustment, so they can still main-
tain high accuracy in more non-IID scenarios, and even have some improvement compared
with IID scenarios. It should be pointed out that this improvement in accuracy is due to
the fact that the local personalization model is more suitable for the local data distribution

Entropy 2022, 24, 919 29 of 32

characteristics (in non-IID scenarios, the local distribution may have fewer categories than
the global distribution), thus slightly improving the overall accuracy. Compared with
FedAmp and Fedper (state-of-the-art studies on personalized FL algorithms), proposed
FedAdapt achieved approximately 2% higher average accuracy across different tasks and
non-IID distributions. This is because the proposed FedAdapt adapts the characteristics of
local distribution and global distribution more comprehensively in the local training stage
(using meta-learning), global aggregation stage (using attention mechanism) and local
fine-tuning stage (using meta-learning), respectively. Therefore, the proposed FedAdapt
achieves higher adaptability than FedAmp and Fedper.

Figure 15. Performance of the FedHGCDroid and their FL-based malware classification schemes
under different non-IID data settings.

It should be pointed out that the proposed FedAdapt is improved based on Fedavg
(FL aggregation algorithm). Moreover, in three state-of-the-art studies of FL-based malware
classification frameworks (Fed-IIoT [23], RAPID [22], LiM [21]), Fedavg is also used as the
basic model aggregation function.

Therefore, we further compare the proposed FedAdapt mechanism with Fedavg to
verify the adaptive performance. Therefore, we further designed a comparison experiment
between FedHGCDroid and [Fedavg+HGCdroid]. Furthermore, we test the influence of
the same distribution type on the malware classification task at different γ levels (which
will lead to different degrees of non-IID). The Pγ

dir partition method was used to conduct
the experiment, the data was scattered among five clients, and FedHGCDroid was used
to conduct the experiment with the malware family classification as the target. By setting
different parameter values, the data partitioning results of the same distribution type in
different degrees of non-IID can be obtained.

As shown in Figure 16, the abscissa represents the γ parameter. The ordinate represents
the degree of non-IID of the current scene and the accuracy of the classification of the model
(the task of malware family classification). Different parameters are set to obtain different
degrees of non-IID partition results, and the classification accuracy of the model is obtained
through experiments. The experimental results show that the classification accuracy of
[Fedavg + HGCdroid] decreases with the increase in non-IID degree. However, the accuracy
of the FedHGCDroid model is basically stable and improved to a certain extent, which
further indicates the superiority of FedHGCDroid (FedAdapt) in adaptive performance, so
that it can better handle the scenarios with non-IID distribution on the client.

Entropy 2022, 24, 919 30 of 32

Figure 16. The influence of distributed difference value on Federated learning algorithm.

5. Conclusions

In this article, we proposed an adaptive multi-Dimensional FL-based malware clas-
sification framework named FedHGCDroid for detecting and classifying malware in a
privacy-preserving, highly accurate and adaptive manner.

Firstly, we introduced an FL framework that enables distributed Android clients
to collaboratively train a comprehensive Android malware classification model without
transferring the user’s private data. The validity of the proposed framework is proved by
compliance analysis in the data protection principles of GDPR. The analysis shows that
the proposed framework basically solves the problem that users’ privacy is violated in the
existing malware classification framework.

Secondly, we use a CNN and GNN to design a novel multi-dimensional malware
classification model HGCDroid (as a local classification model in the proposed FL frame-
work FedHGCDroid). The model encodes the API with multiple attributes and then uses
the CNN network to capture the statistical features of malware and the GNN network to
capture the graphical features of malware to obtain effective behavioral features of Android
malware and then classify it accurately. Experimental results on the Androzoo dataset
show that HGCDroid can achieve up to 91.3% accuracy and 91.25% F1-score in malware
detection tasks, higher than the baseline model. It solved the problem that the existing
framework was not comprehensive and effective enough to mine the behaviors of malware,
thus improving the overall classification accuracy. To the best of our knowledge, this
is the first attempt to combine statistical features with multi-attribute graph features for
malware classification.

Finally, we innovatively combine the idea of meta-learning and attentional mecha-
nisms and propose a contribution degree-based adaptive classifier training mechanism,
namely FedAdapt. It adapts the characteristics of local distribution and global distribution
more comprehensively in the local training stage (using meta-learning), global aggregation
stage (using attention mechanism) and local fine-tuning stage (using meta-learning), respec-
tively, to improve the adaptive performance of the proposed framework in scenarios with
non-IID distributions on different clients. Experimental results show that FedAdapt can
maintain the highest accuracy in malware detection and classification tasks under different
degrees of non-IID settings, which is superior to the state-of-the-art models, proving its best
adaptive performance. To the best of our knowledge, this is the first attempt to combine
attentional mechanisms with meta-learning for adaptive performance optimization of the
FL-based malware classification framework.

The research in this paper is helpful to motivate users or organizations to share mal-
ware data because it alleviates users’ concerns about their privacy. In this way, a wider
range of malware data and computing resources from different organizations or users
can be obtained to train a more efficient malware classification model. In addition, this
paper enriches the research on the classification performance and adaptive performance
of FL-based malware classification framework, which promotes the transformation pro-

Entropy 2022, 24, 919 31 of 32

cess from the traditional centralized ML framework to the FL framework in the field of
malware classification.

There are still some limitations to our proposed scheme that need to be worked out.
In future work, under the proposed framework, we will study the detection methods of
unknown malware families and the efficient online update mechanism on the client-side. In
addition, this work also plans to further study a lightweight differential privacy approach
for malware classifier training.

Author Contributions: Conceptualization, C.J. and K.Y.; methodology, C.J. and K.Y.; software, K.Y.;
validation, C.J., K.Y. and W.H.; formal analysis, C.J.; investigation, C.J. and K.Y.; resources, C.X.; data
curation, W.H.; writing—original draft preparation, C.J.; writing—review and editing, C.J. and K.Y.;
visualization, K.Y.; supervision, C.X. and W.H.; project administration, C.X.; funding acquisition, C.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No.61902013, No. U1636208, No.61862008) and the Beihang Youth Top Talent Support Program
(Grant No.YWF-20-BJ-J-1038, No.YWF-21-BJ-J-1039).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qiu, J.; Zhang, J.; Luo, W.; Pan, L.; Nepal, S. A Survey of Android Malware Detection with Deep Neural Models. ACM Comput.

Surv. 2021, 53, 126. [CrossRef]
2. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-an, W.; Ye, H. Significant permission identification for machine-learning-based Android

malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]
3. Zhao, Y.; Xu, C.; Bo, B.; Feng, Y. MalDeep: A deep learning classification framework against malware variants based on texture

visualization. Secur. Commun. Netw. 2019, 2019, 4895984. [CrossRef]
4. Tu, Z.; Li, R.; Li, Y.; Wang, G.; Wu, D.; Hui, P.; Su, L.; Jin, D. Your Apps Give You Away: Distinguishing Mobile Users by Their

App Usage Fingerprints. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 138. [CrossRef]
5. Tu, Z.; Cao, H.; Lagerspetz, E. Demographics of mobile app usage: Long-term analysis of mobile app usage. CCF Trans. Pervasive

Comput. Interact. 2021, 3, 235–252. [CrossRef]
6. Lin, F.; Zhou, Y.; An, X.; You, I.; Choo, K.-K.R. Fair resource allocation in an intrusion detection system for edge computing:

Ensuring the security of internet of Tings devices. IEEE Consum. Electron. Mag. 2018, 7, 45–50. [CrossRef]
7. Wang, C.; Wang, D.; Xu, G.; He, D. Efficient privacy preserving user authentication scheme with forward secrecy for industry 4.0.

Sci. China Inf. Sci. 2022, 65, 112301. [CrossRef]
8. Yang, M.; Wang, S.; Ling, Z.; Liu, Y.; Ni, Z. Detection of malicious behavior in android apps through API calls and permission

uses analysis. Concurr. Comput. Pract. Exp. 2017, 29, e4172. [CrossRef]
9. Cai, H.; Meng, N.; Ryder, B.; Yao, D. Droidcat: Effective android malware detection and categorization via app-level profiling.

IEEE Trans. Inf. Forensics Secur. 2018, 14, 1455–1470. [CrossRef]
10. Feng, P.; Ma, J.; Sun, C.; Xu, X.; Ma, Y. A Novel Dynamic Android Malware Detection System with Ensemble Learning. IEEE

Access. 2018, 6, 30996–31011. [CrossRef]
11. Lu, R. Malware detection with LSTM using opcode language. arXiv 2019, arXiv:1906.04593.
12. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K. DREBIN: Effective and Explainable Detection of Android Malware

in Your Pocket. In Proceedings of the NDSS, San Diego, CA, USA, 23–26 February 2014; pp. 1–16.
13. Jerome, Q.; Allix, K.; State, R.; Engel, T. Using opcode-sequences to detect malicious android applications. In Proceedings of the

2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 914–919.
14. Zhu, H.J.; You, Z.H.; Zhu, Z.X.; Shi, W.L.; Chen, X.; Cheng, L. DroidDet: Effective and robust detection of android malware using

static analysis along with rotation forest model. Neurocomputing 2018, 272, 638–646. [CrossRef]
15. Nguyen, M.H.; Nguyen, D.L.; Nguyen, X.M.; Quan, T.T. Auto-detection of sophisticated malware using lazy-binding control flow

graph and deep learning. Comput. Secur. 2018, 76, 128–155. [CrossRef]
16. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. arXiv 2021, arXiv:1812.08434. [CrossRef]
17. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.

http://doi.org/10.1145/3417978
http://doi.org/10.1109/TII.2017.2789219
http://doi.org/10.1155/2019/4895984
http://doi.org/10.1145/3264948
http://doi.org/10.1007/s42486-020-00041-3
http://doi.org/10.1109/MCE.2018.2851723
http://doi.org/10.1007/s11432-020-2975-6
http://doi.org/10.1002/cpe.4172
http://doi.org/10.1109/TIFS.2018.2879302
http://doi.org/10.1109/ACCESS.2018.2844349
http://doi.org/10.1016/j.neucom.2017.07.030
http://doi.org/10.1016/j.cose.2018.02.006
http://doi.org/10.1016/j.aiopen.2021.01.001

Entropy 2022, 24, 919 32 of 32

18. Jiang, H.; Turki, T.; Wang, J.T.L. DLGraph: Malware detection using deep learning and graph embedding. In Proceedings of the
2018 17th IEEE international conference on machine learning and applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1029–1033.

19. Pektas, A.; Acarman, T. Deep learning for effective android malware detection using api call graph embeddings. Soft Comput.
2020, 24, 1027–1043. [CrossRef]

20. Singh, N.; Kasyap, H.; Tripathy, S. Collaborative Learning Based Effective Malware Detection System. In PKDD/ECML Workshops;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 205–219.

21. Galvez, R.; Moonsamy, V.; Díaz, C. Less is More: A privacy-respecting Android malware classifier using federated learning. Proc.
Priv. Enhancing Technol. 2021, 2021, 96–116. [CrossRef]

22. Shukla, S.; Manoj, P.D.S.; Kolhe, G.; Rafatirad, S. On-device Malware Detection using Performance-Aware and Robust Collabora-
tive Learning. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9
December 2021; pp. 967–972.

23. Taheri, R.; Shojafar, M.; Alazab, M.; Tafazolli, R. Fed-IIoT: A Robust Federated Malware Detection Architecture in Industrial IoT.
IEEE Trans. Ind. Inform. 2021, 17, 8442–8452. [CrossRef]

24. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019,
10, 1–19. [CrossRef]

25. Singh, A.K.; Goyal, N. Android Web Security Solution using Cross-device Federated Learning. In Proceedings of the 2022
14th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 4–8 January 2022;
pp. 473–481.

26. Valerian Rey, Pedro Miguel Sánchez Sánchez, Alberto Huertas Celdrán, Gérôme Bovet: Federated learning for malware detection
in IoT devices. Comput. Netw. 2022, 204, 108693. [CrossRef]

27. Lim, W.Y.B.; Luong, C.; Hoang, T.; Jiao, Y.; Liang, C. Federated learning in mobile edge networks: A comprehensive survey. IEEE
Commun. Surv. Tutor. 2020, 22, 2031–2063. [CrossRef]

28. Makkar, A.; Ghosh, U.; Rawat, D.B.; Abawajy, J.H. FedLearnSP: Preserving Privacy and Security Using Federated Learning and
Edge Computing. IEEE Consum. Electron. Mag. 2022, 11, 21–27. [CrossRef]

29. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated Learning for Internet of Things: A
Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [CrossRef]

30. Pereira, F.; Crocker, P.; Leithardt, V.R.Q. PADRES: Tool for Privacy, Data Regulation and Security. SoftwareX 2022, 17, 100895.
[CrossRef]

31. Han, R.; Li, D.; Ouyang, J.; Liu, C.H.; Wang, G.; Wu, D.; Chen, L.Y. Accurate Differentially Private Deep Learning on the Edge.
IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2231–2247. [CrossRef]

32. Mikolov, L.T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 5–8 December 2013; pp. 3111–3119.

33. Vieira, J.C.; Sartori, A.; Stefenon, S.F.; Perez, F.L.; de Jesus, G.S.; Leithardt, V.R.Q. Low-Cost CNN for Automatic Violence
Recognition on Embedded System. IEEE Access 2022, 10, 25190–25202. [CrossRef]

34. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
35. Allix, K.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. AndroZoo: Collecting millions of Android apps for the research community. In

Proceedings of the 13th International Conference on Mining Software Repositories, Austin, TX, USA, 14–15 May 2016; pp. 468–471.
36. VirusTotal: Free Online Virus, Malware and URL Scanner [EB/OL]. 2021. Available online: https://www.virustotal.com (accessed

on 14 March 2019).
37. Hurier, M.; Suarez-Tangil, G.; Dash, S.K.; Bissyandé, T.F.; Traon, Y.L.; Klein, J.; Cavallaro, L. Euphony: Harmonious unification of

cacophonous anti-virus vendor labels for Android malware. In Proceedings of the 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), Buenos Aires, Argentina, 20–21 May 2017; pp. 425–435.

38. Arp, D.; Quiring, E.; Pendlebury, F.; Warnecke, A.; Pierazzi, F.; Wressnegger, C.; Cavallaro, L.; Rieck, K. Dos and Don’ts of
Machine Learning in Computer Security. arXiv 2020, arXiv:2010.09470v2.

39. Pendlebury, F.; Pierazzi, F.; Jordaney, R.; Kinder, J.; Cavallaro, L. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In Proceedings of the USENIX Security Symposium 2019, Santa Clara, CA, USA, 14–16
August 2019; pp. 729–746.

40. Arivazhagan, M.G.; Aggarwal, V.; Singh, A.K.; Choudhary, S. Federated Learning with Personalization Layers. arXiv 2019,
arXiv:1912.00818.

41. Huang, Y.; Chu, L.; Zhou, Z.; Wang, L.; Liu, J.; Pei, J.; Zhang, Y. Personalized cross-silo federated learning on non-iid data. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2 June 2021; pp. 7865–7873.

http://doi.org/10.1007/s00500-019-03940-5
http://doi.org/10.2478/popets-2021-0062
http://doi.org/10.1109/TII.2020.3043458
http://doi.org/10.1145/3298981
http://doi.org/10.1016/j.comnet.2021.108693
http://doi.org/10.1109/COMST.2020.2986024
http://doi.org/10.1109/MCE.2020.3048926
http://doi.org/10.1109/COMST.2021.3075439
http://doi.org/10.1016/j.softx.2021.100895
http://doi.org/10.1109/TPDS.2021.3064345
http://doi.org/10.1109/ACCESS.2022.3155123
https://www.virustotal.com

	Introduction
	Background and Motivation
	Related Work
	Detection and Classification Method of Android Malware Based on ML
	Malware Classification Method Based on Federated Learning

	Contribution

	System Model and Problem Description
	System Model
	Problem Description
	Abbreviations and Mathematical Symbols

	Proposed Methods
	FedHGCdroid Framework Overview
	Framework of Proposed FedHGCDroid
	Threat Model
	Privacy Analysis

	Multi-Dimensional Android Malware Classification Model: HGCdroid
	Sample Decompiling and Feature Preprocessing
	Multi-Attribute Coding Method for APIs
	Network Architecture of HGCDroid

	Adaptive Training Mechanism of Classification Model Based on Contribution Degree: FedAdapt
	Meta-Learning-Based Local Model Training Method
	Contribution Degree-Based Model Aggregation Method
	The Training Process of FedAdapt

	Results
	Simulation Setup
	Dataset
	Experimental Environment
	Performance Metrics
	Non-IID Data Partitioning and Non-IID Degree Measurement Methods

	Comparison and Analysis of the Results of Experimental Tasks
	Test Classification Performance of HGCDroid and Other Malware Classification Model
	Test the Performance of the FedHGCDroid and Other FL-Based Malware Classification Schemes under Different non-IID Data Settings

	Conclusions
	References

