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Abstract: Fine-grained entity typing (FET) aims to identify the semantic type of an entity in a plain
text, which is a significant task for downstream natural language processing applications. However,
most existing methods neglect rich known typing information about these entities in knowledge
graphs. To address this issue, we take advantage of knowledge graphs to improve fine-grained
entity typing through the use of a copy mechanism. Specifically, we propose a novel deep neural
model called COPYFET for FET via a copy-generation mechanism. COPYFET can integrate two
operations: (i) the regular way of making type inference from the whole type set in the generation
model; (ii) the new copy mechanism which can identify the semantic type of a mention with reference
to the type-copying vocabulary from a knowledge graph in the copy model. Despite its simplicity,
this mechanism proves to be powerful since extensive experiments show that COPYFET outperforms
state-of-the-art methods in FET on two benchmark datasets (FIGER (GOLD) and BBN). For example,
COPYFET achieves the new state-of-the-art score of 76.4% and 83.6% on the accuracy metric in FIGER
(GOLD) and BBN, respectively.

Keywords: knowledge graphs; fine-grained entity typing; copy-generation networks; cross-entropy

1. Introduction

Fine-grained entity typing (FET) aims to infer the possible semantic type of an entity
mention (i.e., a sequence of token spans representing an entity) [1,2]. Different from a
traditional entity-typing task that typically classifies entities into coarse-grained types (e.g.,
person, location, organization) [3,4], FET aims to assign an entity with more specific types [5,6],
which usually follow a hierarchical structure that can provide more semantic information
about the entity [7,8], such as /person/politician, /book/author, etc. FET is a significant subtask
of named-entity recognition (NER) [9] for downstream natural language processing (NLP)
applications, such as relation extraction [10,11], question answering [12,13], knowledge
base population [14], and recommendation [15,16].

In FET, knowledge graphs (KGs) usually play an important role. For example, given
large-scale KGs, FET systems resort to distant supervision [10] to generate large training
corpora [9,17,18] (i.e., to label entity mentions in the training corpus with all types associated
with the entity in KGs). Although distant supervision can eliminate the high cost in labeling
training data with KGs, how to efficiently encode a KG’s typing knowledge into FET model
is still underexplored.

In this paper, we concentrate on how to take advantage of KGs to improve FET in the
process of type inference. In fact, the correct type information about a mention usually can
be found in large-scale knowledge graphs, such as Freebase [19], YAGO [20], DBpedia [21],
OntoNotes [22], and Few-nerd [23], which typically have already recorded a large number
of entity-typing facts with various context from corpus. Consider the following example
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from Wikipedia: “In 2006, Obama released The Audacity of Hope that expanded upon the
themes in their convention speech.” The entity mention “The Audacity of Hope” can directly
be predicted as a book by copying the type information of the known entity-typing fact
(“The Audacity of Hope”, /things/book) from KGs to the mention. For cases that require
the understanding of the entity context, using a copy mechanism is also quite beneficial.
In the previous example where “Obama” is the entity mention, copying all the types of

“Barack Obama” in KGs (i.e., /people/person, /book/author, /person/politician, etc.) as the priority
typing candidates of the mention is still informative for inferring the correct type (i.e.,
/book/author) that fits the context best, since they can substantially narrow down the optimal
list of possible type labels (referred to as the type’s copying vocabulary from here onward).
According to the statistics in Table 1, over 49% and 64% of all the manually annotated
mentions’ typing facts in FIGER (GOLD) [9] and BBN [24] (testing data) have already been
included in their existing KGs, respectively, which inspires us to improve FET by learning
rich known entity-typing information from KGs.

Table 1. The percentage of the entity mentions’ typing facts that have been included in the existing
knowledge graphs. The statistical analysis indicates they are over 49% and 64% in two benchmark
datasets FIGER (GOLD) and BBN (testing data), respectively. These observations are the key motiva-
tion that inspired us to take advantage of knowledge graphs to improve fine-grained entity typing
through the use of a copy mechanism in this paper.

Benchmark FET Datasets # Type # Testing
Mentions

# Typing Facts
Included in KG KG Coverage

Wiki/FIGER (GOLD) [9] 128 563 280 49.73%

BBN [24] 56 13,282 8505 64.03%

To this end, we incorporate a copy mechanism in fine-grained entity typing, and
propose a novel deep neural model called COPYFET for FET via a copy-generation mecha-
nism. A copy mechanism can significantly avoid unnecessary mistakes and improve the
accuracy in the type inference process. It is similar to the copy mechanism in the keyphrase
generation [25] and abstractive summarization [26,27], which allows a language generator
to copy items from the source text directly, in order to help generate reliable results that
keep salient information from the source text.

Specifically, COPYFET includes two submodels of inference, i.e., a copy model and
a generation model, as shown in Figure 1. COPYFET has two submodels: (i) the first one
conducts the regular way of making type inference from the whole type set, i.e., generation
model; (ii) the second one uses the new copy mechanism which can identify the semantic
type of a mention with reference to the type’s copying vocabulary from KGs, called copy
model. Both models are combined to build the final type inference model. Since it is
unknown that a certain entity mention corresponds to a certain entity in KGs, we propose
to perform entity linking as a solution to generate the type’s copying vocabulary.

Extensive experimental results on two benchmark FET datasets demonstrate that the
proposed COPYFET can effectively conduct fine-grained entity typing by incorporating a
copy model with a generation model in both training and inference. For example, COPYFET

achieves 76.4% and 83.6% absolute strict accuracy on the benchmark datasets FIGER
(GOLD) and BBN, respectively.

The contributions of this paper are threefold: (1) We propose to take advantage of
knowledge graphs to improve fine-grained entity typing through the use of a copy mech-
anism. (2) Specifically, we propose COPYFET, a simple but effective neural fine-grained
entity-typing model that incorporates a copy mechanism in FET via a copy-generation
framework. (3) We conduct empirical experiments on two benchmark datasets, which
demonstrate that incorporating a copy mechanism highlights the superiority of the pro-
posed COPYFET over previous SOTA models in a FET task.

The structure of the paper is as follows. In Section 2, we provide a brief review of
related works. In Section 3, we describe the methodology of our model. In Section 4,
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we present the cross-entropy learning method. Section 5 presents experimental results
followed by their discussion. Finally, Section 6 gives the conclusion and future directions
of this research.
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Figure 1. The overall framework of our proposed model COPYFET. In Feature Encoder (left box), it
obtains the mention representation by averaging (Equation (2)) and the context representation by Bi-LSTM
(Equation (3)). In COPYFET (right box), the green bar indicates the probability score calculated by
the copy model (Section 3.1) and the generation model (Section 3.2). The copy model is able to learn
to predict from a much more delimited candidate space, i.e., the type’s copying vocabulary, than the
whole type vocabulary, on which the generation model makes a prediction. The final type prediction
agrees with both of them (Section 3.3).

2. Related Work

To make this paper self-contained, we introduce some related topics here on fine-
grained entity typing, and copy mechanism.

2.1. Fine-Grained Entity Typing

The FET task was first introduced by [9,28]. Different from lexicon-level [29], discourse-
level [30], and corpus-level [31,32] FET, most previous works consider sentence-level entity
typing. The progress of FET has primarily focused on the following directions.

Neural Network Model. Different from early heuristic hand-crafted feature-based mod-
els [9,28,33] and embedding-based methods [1], the neural models are expected to learn
better latent representations for mention and context [8,34,35]. For instance, ref. [36] firstly
used recurrent neural networks (RNNs) to recursively obtain a vector representation of each
entity mention. Refs. [37,38] proposed to incorporate an attention mechanism with LSTM.
Ref. [39] proposed a CNN-based FET model. Refs. [40,41] proposed attentive neural models
that also encoded latent type representations besides mention and context. Refs. [8,41]
found that the pretrained language model ELMo [42] performed better than BERT [43] as
the input of a neural model. Our model builds upon these progress and takes advantage of
the state-of-the-art neural network architecture.

Incorporating Knowledge Graphs. Different from distant supervision that only takes
advantage of KGs to build training data, a few researchers focused on incorporating KGs
into FET models. Ref. [37] proposed to improve FET with knowledge attention which learns
the relational information from KGs. Ref. [34] proposed to enrich the mention features
by adding a KG-type representation obtained from KGs. However, they did not directly
utilize the entity-typing facts in KGs for improving FET.

Denoise. Most typical FET datasets, such as FIGER (GOLD) [9], BBN [24], and
OntoNotes [18,28], are labeled with KGs by distant supervision [10], which inevitably
bring noise to training data. Several studies aimed to address these problems by heteroge-
neous partial label embedding [17,44,45], hierarchy-aware loss normalization [38], language
model enhancement [46], filtering function [47], compact latent space clustering [48], vir-
tual adversarial learning [49], attentive graph convolution network [50], and automatic
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relabeling [51]. There would be a concern about the noise issue for our model; however, it
is not the main focus of this paper. We believe that our model could be further boosted by
adding a denoising module, which we reserve for future.

Others. There are some other points concerned in FET. Recently, some researchers have
focused on FET in KGs, also known as knowledge graph entity typing (KGET), which is a
subtask of knowledge graph completion [52], by using external data outside KGs [53,54],
or only with structural relational information in KGs [52,55]. Some have concentrated on
encoding the hierarchical characteristics of fine-grained type in their models [7,44] and on
zero-shot entity typing [56,57].

2.2. Copy Mechanism

The copy mechanism is widely used in various natural language generation tasks,
such as sequence-to-sequence learning [58,59], keyphrase generation [25], abstractive sum-
marization [27], and entity prediction [60]. Ref. [58] proposed the pointer networks, which
used attention as a pointer that could select a member of an output sequence directly from
the input, which could be seen as a copy model with an attention mechanism. However,
it could not make prediction using external lexemes besides the input sequence. Ref. [59]
proposed COPYNET to solve this issue in a hybrid end-to-end way, which incorporated
the copy mechanism with a generation model which yielded external lexemes that did
not appear in the input sequence. Based on [25,59] proposed to incorporate a copy mecha-
nism with a recurrent neural network (RNN)-based generation model for deep keyphrase
generation. To enhance the copy mechanism, ref. [61] proposed SeqCopyNet, which not
only could copy single words but also copy subsequences from the input text. Ref. [27]
proposed a transformer model with copy mechanism for abstractive summarization. In-
spired by previous works, we utilize the copy mechanism with the typing characteristics of
knowledge graphs. To the best of our knowledge, we are the first to attempt to incorporate
the copy mechanism in neural fine-grained entity typing.

3. Methodology

In this section, we introduce the details of the proposed model COPYFET. We first give
the notations and then introduce the feature encoder and the model architecture, which
includes a copy model and a generation model.

Notations. Given an entity mention m and its context c in a sentence s, and a set
of type tags T , our model aims to predict the probability of each type t ∈ T for this
mention. We denote w1, w2, · · · , [m1, m2, · · · , mn], · · · , wL as the words in the sentence,
where m1, m2, · · · , mn denotes the words in entity mention. L and n denote the number
of words in the sentence s and mention m. Boldfaced m and c represent the embedding
vector of mention m and context c, respectively. Besides containing lots of entity facts, a
knowledge graph G also provides a large amount of existing entity-typing instances, i.e.,
G = {(e, t)|e ∈ E , t ∈ T̂ }. E and T̂ represent the set of entities and types, respectively.
For each entity mention m and its corresponding entity e, we build a bounded subset of
T which is specific to m (namely a type’s copying vocabulary for m) as Tm. It consists of all
the types that have been labeled as the types in known entity-typing facts with entity e in
the KG.

Since the labels in type tag set T and KG type set T̂ may not be exactly the same, it
needs type-mapping processing. The copying vocabulary Tm is an N-dimensional few-hot
indicative vector. N stands for the size of T . The value of types in the copying vocabulary
are marked 1 while others are set to 0. The fine-grained entity typing task is to infer the
type probability distribution in type tags space T given the mention m and context c, i.e.,
p(t|m, c)=? .
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Feature Encoder. We concatenated the entity mention representation m and its context
representation c in the sentence as the feature vector x, as follows:

x =

[
m
c

]
(1)

Entity Mention Representation. The entity mention representation m was simply cal-
culated by averaging the embeddings of all words in entity mention [m1, m2, · · · , mn] [37],
as follows:

m =
1
n

n

∑
i=1

mi , (2)

where n represents the length of the entity mention.
Context Representation. We used a bidirectional LSTM (BiLSTM) to encode context

representation. We first utilized a special token to denote the mention, as the token “[M]” in
Figure 1. Then, the word embeddings of the modified context words {w1, w2, · · · , [M], · · · , wL}
were fed into two layers of BiLSTM (bidirectional long short-term memory), and the context
representation c was the sum of the BiLSTM layers’ outputs:

c = h1
m + h2

m , (3)

where h1
m and h2

m are the output of the first and the second layer of BiLSTM for [M], respectively.

3.1. Copy Model

The copy model was designed to identify types from its corresponding copying vocabu-
lary that stemmed from the known entity-typing instances in existing KGs.

We first dealt with the training dataset to build the type’s copying vocabulary for each
mention, i.e., Tm, which contained three steps: (1) Given a mention m, we utilized a simple
entity-linking (EL) algorithm (similar to [34]) to retrieve its corresponding entity in the
KG. Specifically, we directly linked the mention to the entity with the largest commonness
score [62], which indicated the probability of an entity given the entity mention. The
commonness score was calculated based on the anchor links in Wikipedia. (2) If the EL
algorithm returned an entity, we obtained the types of this entity from the KG. (3) Since
the types in the KG may be different from the target type set T , following the rules used
in [56], we mapped them to the type tags in T . Tm was an N-dimensional multi-hot vector
and the value of types in the type’s copying vocabulary was 1, while others were 0. Note that
if the result of EL is NULL, we simply set Tm as a zero vector.

If the mention m has the type’s copying vocabulary Tm, COPYFET increases the proba-
bility value calculated for the candidate types that are chosen from the copying vocabulary.
Specifically, the copy model first builds an indicator vector vT with a multilayer percep-
tron (MLP):

vT = fc(x) , (4)

where fc is a three-layer MLP with Relu activation, and the vector vT is an N-dimensional
indicator vector. N is the size of the type’s tag vocabulary T .

To decrease the probability value of some types that do not belong to the type’s
copying vocabulary (i.e., uninterested types for the copy model), COPYFET implements
an element-wise multiplication between the index vector vT and the indicator vector Tm.
Formally, the type prediction distribution of the copy model is defined as follows:

pc(t|m, c) = vT � Tm , (5)

where pc(t|m, c) stands for the prediction probabilities on the type’s copying vocabulary.
The maximum item of pc(t|m, c) indicates the type will be copied from the type’s copying
vocabulary. The basic idea behind the copy model is that it is more beneficial to learn
to predict from a small candidate set than the whole type vocabulary. However, entity-
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typing facts may be out-of-KG. Thus, it needs an additional generation model to infer such
typing facts.

3.2. Generation Model

With the same mention m and context c, the generation model concentrates on type
inference by selecting the type from the whole type set T . The inference made by the
generation model treats the typing fact as a new one without any mentions to the knowl-
edge graph. Similar to the copy method, the generation model also builds a whole type
vocabulary query vector pg as follows:

pg(t|m, c) = fg(x) , (6)

where fg is a three-layer MLP with Relu activation. Similar to pc(t|m, c) in the copy model,

pg(t|m, c) stands for the predicted probability distribution among the whole type set. The

largest score in pg(t|m, c) denotes the corresponding type we inferred in the whole type set
from the generation model.

3.3. Incorporating Copy Model with Generation Model for FET

To make type distribution prediction regarding a query p(t|m, c) =?, both copy model
and generation model predict a type among their candidate type sets. As shown in Figure 1,
COPYFET incorporates the predicted results from both models as follows:

p(t|m, c) = λ ∗ pc(t|m, c) + (1− λ) ∗ pg(t|m, c) , (7)

where pc(t|·) stands for the copy model, and pg(t|·) stands for the generation model. λ is a
hyperparameter for the trade-off between copy model and generation model.

To cope with the overly specific issue that usually biases the model towards popular
subtypes instead of generic ones, i.e., preferring politician over person, we designed a recur-
sive selecting method. For each stage, we chose the type that had the maximum combined
probability in that depth and then we went deeper. We implemented it recursively until
the maximum probability was smaller than a threshold. For the sake of simplicity, let us
suppose the maximum depth of the type hierarchy is 2 without loss of generality. Formally,
we denote T 1 as the type set of first level, and T 2

ti
stands for the children type set (second

level) of a specific type t1
i ∈ T 1. The final output fine-grained entity type prediction t̂

changes with a threshold β as follows:

t1
i = arg max

t∈T 1
p(t|m, c) ,

t2
j = arg max

t∈T 2
ti

p(t|m, c) ,

t̂ = p(t = t2
j |m, c) > β ? t2

j : t1
i ,

(8)

where t1
i indicates the output type with the highest probability in the first level, and t2

j

indicates its subtype with the highest probability in T 2
ti

. Here, β ∈ (0, 1) is a hyperparameter
acting as a threshold that controls the specific degree of the hierarchical type. The higher β
is, the more coarse-grained the final output type should be.

4. Cross-Entropy Loss Function for Optimization

Since in the training set, there were multiple ground truths for one mention, the
objective function was defined as the element-wise cross-entropy over all entity mentions:

L = −∑
i

t∗i log p(t) + (1− t∗i ) log(1− p(t)) , (9)
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where t∗ indicates the ground truth types of the mention. Since the training data were
automatically generated by linking the mention to all labels in the KG, which was the
same as the copy vocabulary, it may cause the model to overfit the weakly labeled training
data. This is fine for most types of entities such as /locations and /organizations since they
usually have the same type in different context; however, this is problematic for other
context-dependent entities, such as /person entity mentions. To alleviate overfitting issue,
we added a random fine-grained type label that did not belong to this entity when building
the type copying vocabulary. During training, we employed dropout in two LSTM layers
and MLP layers.

5. Experiments

In this section, we evaluate the effectiveness of the proposed COPYFET with two
public datasets.

5.1. Datasets

We used two publicly available benchmark datasets for FET experiments, including
Wiki/FIGER (GOLD) [9] and BBN [24]. The statistics of the percentage of the entity
mentions’ typing facts of the two benchmark datasets (i.e., testing data) that have been
already covered by existing KGs are shown in Table 1, and other statistics are included in
Table 2.

Table 2. The statistics of the two benchmark datasets.

Dataset # Train # Dev # Test # Label Depth

FIGER [9] 4,932,761 2000 563 128 2
BBN [24] 4,695,789 2000 13,282 56 2

Wiki/FIGER (GOLD). Ref. [9] extracted a dataset from Wikipdia articles and news
reports to form the training, validation set, and testing data, and annotated entity mentions
using 113 types with a two-level hierarchy.

BBN [24] is based on a portion of the one million word Penn Treebank corpus from
Wall Street Journal articles and is completely manually annotated using 56 types with a
two-level hierarchy. Ref. [44] regenerated the training corpus via distant supervision.

5.2. Baselines

To demonstrate the effectiveness of our proposed model COPYFET, we compared
results with several state-of-the-art FET models:

• AFET [44]: one of the most widely used FET model. AFET models the samples with
only one label and samples with multiple labels separately with a partial label loss to
handle noisy labels.

• Attentive [63]: a popular attention-based neural network model which uses attention
mechanism to focus on relevant information.

• AAA [45]: an extension of AFET which jointly encodes entity mentions and their
context representation.

• NFETC [38]: a very popular model which formulates FET as a single-label classification
problem with hierarchy-aware loss.

• NFETC-CLSC [48]: an influential extension of NFETC which utilizes imperfect an-
notation as model regularization via compact latent space clustering to address the
confirmation bias problem.

• IFETET [34]: a FET model which utilizes entity type information from a KB obtained
through entity linking to form the final feature vector of a mention.

• NDP [7]: a random-walk-based model which weighs out noise with a loss function.
• HFET [41]: a popular ELMo-based pretrained language model which adopts a hybrid

type classifier.
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• HET [8]: a recent model that takes the hierarchical ontology into account with a
multilevel learning-to-rank loss and gains great performance improvement.

• FGET-RR [50]: a recent model that refines the noisy mention representations by
attending to corpus-level contextual clues prior to the end classification.

• Box [64]: a recent box-based model for fine-grained entity typing.

5.3. Experimental Settings

In COPYFET, we evaluated the performance by the strict accuracy (Strict Acc), loose
macro F-score (Macro-F1), and loose micro F-score (Micro-F1), which are the most widely
used evaluation settings for FET systems [9]. We used pretrained word embeddings
from [65]. The settings are shown in Table 3. For training our model, we selected the
parameters λ and β ∈ {0.1, 0.2, 0.5, 0.7} based on the validation set. Finally, the λ was set to
0.5 and 0.7 on Wiki/FIGER (GOLD) and BBN, respectively. The β was set to 0.5 on both
Wiki/FIGER (GOLD) and BBN.

Table 3. Hyperparameter settings for training on two datasets.

Parameter Wiki/FIGER (GOLD) BBN

Learning rate 1 × 10−3 1 × 10−3

Batch size 256 256
Word vector size 300 300

LSTM hidden 250 250
dropout 0.5 0.5

λ 0.5 0.7
β 0.5 0.5

5.4. Results and Analysis

Table 4 demonstrates the results of fine-grained entity typing. We can observe that our
COPYFET outperforms all baselines for fine-grained entity typing in terms of all metrics
on Wiki/FIGER and BBN. Specifically, our model improves the strict accuracy on the
two datasets with values of 76.4 and 83.6, respectively, which confirms the capability of
COPYFET to incorporate the copy mechanism for FET using the copy-generation mechanism
and to infer types for mentions in text. These results are in line with our intuition, which
indicated that the proposed model was capable of leveraging entity-typing information
from existing KGs to build the type’s copying vocabulary. It is the main feature that leads
to the better performance of CopyFet. It can substantially narrow down the optimal list
of possible type labels for unlabeled mentions, and thus can significantly improve the
performance of FET.

Table 4. Fine-grained entity typing results. Evaluation of different models on Wiki/FIGER and
BBN. The results of baselines are directly taken from the original papers. The best scores are in bold.

Model
Wiki/FIGER (GOLD) BBN

Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1

AFET [44] 53.3 69.3 66.4 67.0 72.7 73.5
Attentive [63] 59.7 80.0 75.4 48.4 73.2 72.4

AAA [45] 65.8 81.2 77.4 73.3 79.1 79.2
NFETC [38] 68.9 81.9 79.0 72.1 77.1 77.5

NFETC-CLSC [48] - - - 74.7 80.7 80.5
IFETET [34] 74.9 86.2 84.0 82.1 88.1 89.3

NDP [7] 67.7 81.8 78.0 72.7 76.4 77.7
HFET [41] 62.9 83.0 79.8 55.9 79.3 78.1

HET [8] 65.5 80.5 78.1 75.2 79.7 80.5
FGET-RR [50] 71.0 84.7 80.5 70.3 81.9 82.3

Box [64] - 79.4 75.0 - 78.7 78.0

COPYFET (Ours) 76.4 86.7 84.6 83.6 89.4 89.9
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5.5. Ablation Study

To evaluate the different component of our model COPYFET, we conducted an ablation
study. To this end, we generated a variant of COPYFET by deleting the use of its copy
components (called COPYFET-Generation-only), and compared the fine-grained entity-
typing performance on Wiki/FIGER and BBN. Table 5 shows the fine-grained entity-typing
results by the variant of our model COPYFET. We can observe that the copy model is
significant. Deleting the copy module leads to drops of all metrics on strict accuracy
in Wiki/FIGER and BBN, respectively, which indicates that learning to infer types for
unlabeled mentions by referring to the known entity-typing facts in KGs can be quite
beneficial. The results demonstrate our model COPYFET can successfully take into account
the known entity-typing information from existing KGs via the copy mechanism to improve
FET. Next, we analyzed the detailed results of COPYFET compared to COPYFET-Generation-
only. In Figure 2, we present the type-wise performance for the top-10 most frequent types
in the FIGER testing dataset. Compared to COPYFET-Generation-only, COPYFET performs
better in all types.

Table 5. Ablation study. Fine-grained entity typing results by different variants of our model
COPYFET on Wiki/FIGER and BBN.

Model
Wiki/FIGER (GOLD) BBN

Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1

COPYFET-
Generation-only 69.9 82.7 80.6 79.8 86.8 87.9

COPYFET 76.4 86.7 84.6 83.6 89.4 89.9

Figure 2. Performance analysis of COPYFET on the top 10 types present in FIGER dataset. In these
ten types, COPYFET performs better than COPYFET-Generation-only.

5.6. Case Study

Table 6 gives two examples of fine-grained entity-typing results on the FIGER and
BBN testing set. For example, given a mention of “Unitec Institute of Technology” and
its context, the possible fine-grained types are inferred by COPYFET-Generation-only
and COPYFET, respectively. The former makes a false prediction (i.e., /location), while
the latter can make a positive inference since the known entity-typing fact (“UNITEC”,
/organization/educational_institution) has already been included in the KG (e.g., Freebase).
This is quite helpful for the prediction, which illustrates the efficacy of the copy model
in COPYFET.
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Table 6. Example type predictions on FIGER and BBN testing sets using COPYFET-Generation-only
and COPYFET. Bold indicates the true prediction.

Data Mention and Context Known Facts in KGs COPYFET-
Generation-only COPYFET

Wiki
The study is from the

Unitec Institute of Technology, Auckland ,
New Zealand.

(UNITEC, /organization)
(UNITEC,

/organ./edu-cational_inst.)
/location organization/edu-

cational_institution

BBN
The Fleet Street reaction was captured in

the Guardian headline, “
Departure Reveals Thatcher Poison.”

(D. R. T. P., /art)
(D. R. T. P., /work_of_art) /organization /work_of_art

6. Conclusions and Future Work

In this paper, we proposed a novel model architecture for fine-grained entity typing
using KGs. The proposed model leveraged the popular copying mechanism that “copies”
an inferred fine-grained type probability distribution of the target from a knowledge graph.
The copied distribution was then combined with the output of a regular generation model
that predicted the distribution of the full set of types. This new method achieved new
SOTA results on FET, outperforming previous methods based on weak supervision or
knowledge injection using KGs. The ablation analysis showed that the copying module of
the model contributed significantly to the improved prediction quality. Interesting future
work directions include exploring how to make the construct operation of mapping from
the target types to the KG types in this model soft (currently it is one-hot) and trainable
and adding a denoising module in the copy-generation networks.
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