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Abstract: Non-malleable codes are a natural relaxation of error correction and error detection codes
applicable in scenarios where error-correction or error-detection is impossible. Over the last decade,
non-malleable codes have been studied for a wide variety of tampering families. Among the most
well studied of these is the split-state family of tampering channels, where the codeword is split into
two or more parts and each part is tampered with independently. We survey various constructions
and applications of non-malleable codes in the split-state model.
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1. Introduction
Motivated by applications in tamper-resilient hardware, Dziembowski, Pietrzak, and

Wichs [1] introduced non-malleable codes as a natural generalization of error correction
and error detection codes.

The error correction and the error detection codes are the most basic objects in the
codes theory. They do, however, have significant drawbacks, which makes them unsuitable
for the applications to tamper-resilient cryptography. In the case of error correction codes,
the message can be retrieved as long as only a limited number of positions of the codeword
have been flipped; however, it is hard to find a scenario where an adversary would limit
himself to flipping only a few positions when given access to the whole codeword. The
error detection codes face a different interesting challenge, namely whatever tampering
limitations we impose on the adversary (be it polynomial time, bounded memory or some
structure limitations like split-state), the adversary can not be allowed to overwrite the
codeword. Overwriting a codeword with another valid pre-computed codeword makes the
detection of tampering clearly impossible. However, overwrites are quite simple attacks,
and the adversary wipes the memory of the device, and uploads some new data. While
this attack seems irrational, there are scenarios when partial overwrites are realistic attacks
on the scheme (Those attacks often allow the adversary to gradually learn the underlying
secret key. They are especially prevalent in the natural scenarios where the adversary gets
to tamper with the device multiple times.). Naturally, we would like to allow for a wide
spectrum of attacks including overwrite attacks.

Motivated by this, Dziembowski, Pietrzak, and Wichs [1] considered a notion of non-
malleable codes (NMC). It was a weakening of detection/correction codes based on the
concept of non-malleability introduced by [2].

The model is very natural and clean. We start with the message m, we encode it
Enc(m) = c, and then we store the encoding on the device; the adversary picks any
adversarial function t ∈ T (where T is a class of tampering channels), a codeword is
tampered to c′ = t(c), and, after decoding, we obtain Dec(t(c)) = m′. In the error-correction
codes, we would like m′ = m; in the error-detection codes, we would like m′ = m or m′ = ⊥
(where ⊥ is a special symbol denoting detection of tampering). As we already discussed, if
the family of channels T contains constant functions, then neither correction nor detection
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is possible. There is, however, a meaningful definition that can be considered here. Non-
malleable code against the family of channels T guarantees that, after the tampering above,
m′ = m or m′ is completely independent of m; for instance, m′ = m + 1 is not possible.

Dziembowski, Pietrzak, and Wichs formalized this notion using the simulation paradigm:
the output of the experiment can be simulated by a simulator that depends only on the
adversarial channel t (and not the message m), and is allowed to output a special symbol
same which is replaced by the encoded message m.

Definition 1 (Non-malleable codes [1]). A pair of randomized (Ref. [1] defined Dec to be
deterministic; however, here we allow decoding to be randomized; it is not clear if randomized and
deterministic decoding are equivalent; in particular, no strong separations are known.) algorithms,
(Enc : {0, 1}k → {0, 1}n,Dec : {0, 1}n → {0, 1}k), is an ε-non-malleable code with respect to a
family of channels T ⊆ { f : {0, 1}n → {0, 1}n}, if the following properties hold:
1. (Correctness)

For every message m ∈ {0, 1}k,

Pr[Dec(Enc(m) = m] = 1

, where the probability is over the randomness of the encoding and decoding procedures.
2. (Security)

For every t ∈ T , there is a random variable Dt supported on {0, 1}k ∪ {same} that is
independent of the randomness in Enc,Dec, such that, for every message m ∈ {0, 1}k

(Dec(t(Enc(m))) ≈ε Copy(Dt, m)),

where ≈ε denotes statistical distance (total variation distance) at most ε, and the function
Copy is defined as

Copy(x, y) =

{
x if x 6= same
y if x = same.

A few years later, Aggarwal, Dodis, Kazana, and Obremski [3] introduced an alter-
native perspective on non-malleable codes by introducing the notion of non-malleable
reductions. To intuitively describe a non-malleable reduction, imagine the scenario dis-
cussed earlier, where the message m is encoded as a codeword c, and c is tampered using
t ∈ T into c′ = t(c). The tampered codeword c′ decodes to m′. A non-malleable reduction
from T to G guarantees that m′ = g(m), where g is a possibly randomized tampering func-
tion sampled from G. In particular, if the family of functions G contains only the identity
function and all constant functions, then the corresponding non-malleable reduction is a
non-malleable code for T .

Motivation: tamper-resilient hardware
The relaxed guarantees of a non-malleable code may seem a bit arbitrary at first glance;

however, the object has natural applications in tamper resilient hardware. In the 1990s,
high profile side-channel attacks on a number of cryptographic schemes were published
that broke security by evaluating the schemes on a sequences of algebraically-related
keys [4,5]. A number of ad-hoc solutions for these “related-key attacks” were suggested,
and eventually theoretical solutions were proposed by Gennaro, Lysyanskaya, Malkin,
Micali, and Rabin [6] as well as Ishai, Prabhakaran, Sahai, and Wagner [7].

In [6], the authors addressed tampering attacks with a solution that assumes a (public)
tamper and leakage resilient circuit in conjunction with leakage resilient memory. The justifi-
cation for using tamper and leakage resilient-hardware was two-fold: (1) leakage-resilience
had been addressed far more systematically in the literature and existing approaches could
be applied off-the-shelf, (2) because the tamper and leakage resilient circuit was public
(in particular, contained no secret keys), it was safer to assume appropriately hardened
hardware could be responsibly manufactured; their approach was to sign the contents of
memory with a strong signature scheme. Unfortunately, this also makes it infeasible to
update the memory without a secret key (which would again need to be protected). In [7],
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it was shown how to compile a circuit into a tamper-resilient one, building on ideas from se-
cure computation. Unfortunately, the tampering attacks handled by this approach are quite
limited, and it has proven difficult to extend their results to more general tampering attacks.

Dziembowski, Pietrzak, and Wichs motivated non-malleable codes as a means of
extending the approach of [6]. They considered the same model of a tamper and leakage
resilient (public) circuit with leakage-resilient memory, but instead of signing the memory
(using a secret key), the memory is encoded with a (public) non-malleable code. This
allows the tamper and leakage resilient circuit to update any state in the memory itself
by decoding, computing, and re-encoding. In contrast with [6], where a trusted third
party holding the secret signing key is needed to sign new memory contents, this achieves
non-malleability for stateful functionalities. The downside is that, while a strong signature
scheme is resilient to arbitrary polynomial time tampering attacks, efficient non-malleable
codes (because they are public) have no hope of handling such attacks (See Feasibility
below, as well as Section 7 for more details).

Feasibility
It is not difficult to see that non-malleable codes only exist for restricted classes of

channels T : otherwise, one can always consider the channel that decodes the message, flips
a bit, and re-encodes the resulting message. Thus, the natural question to ask is against
which classes of tampering channels is it possible to build non-malleable codes. As a
first result, Dziembowski, Pietrzak, and Wichs gave an efficient, explicit construction of a
non-malleable code against channels that can tamper each codeword bit independently (so-
called “bitwise tampering”). They additionally provided a non-constructive argument that
ε-non-malleable codes exist for any class of channels that is not too big, i.e., log log |T | <
n− 2 log 1/ε. They left constructing explicit codes for larger, richer classes of channels as
an open problem.

Split-state non-malleable codes
A well-studied class of tampering functions is the 2-split-state model where the

codeword consists of two states L and R, and the adversary tampers with each of these
states independently. This is a very large class of tampering channels that, in particular,
includes the bitwise tampering family of channels mentioned above. We now sketch the
landscape of this area and particularly summarize the results on 2-split-state NMCs in
Table 1. In [1], in addition to introducing non-malleable codes, the authors also introduced
a model of tampering called the t-split-state model, where the codeword consists of t
independently tamperable states. They give the first NMC constructions in the n-split-
state model (We already mentioned this result above as a non-malleable code against
bitwise tampering. We mention it again just to emphasize that bitwise tampering is a
special case of split-state tampering) (where n is the codeword length) and the 2-split-state
model (using random oracles). Dziembowski, Kazana, and Obremski [8] provided the first
construction of 2-split-state NMCs without any assumptions. Their construction enabled
encoding of 1-bit messages and used two-source extractors. The first NMC in the 2-split-
state model for k-bit messages was given by Aggarwal, Dodis, and Lovett [9], which used
inner product extractors with tools from additive combinatorics. In [10], Cheraghchi and
Guruswami studied the optimal rate of the non-malleable codes for various tampering
families, where the rate of a code is defined as message length

codeword length . In particular, they showed that
the optimal achievable rate for the t-split-state family is 1− 1/t. Note that, in the split-state
tampering model, having as few states as possible is most desirable, with two states being
the best achievable. By the above result, the best possible rate for the 2-split-state model is
therefore 1

2 . A long series of works (Other works have considered non-malleable codes in
models other than the 2-split-state model or under computational assumptions [11–26]).
Refs. [3,24,27–35] have made significant progress towards achieving this rate. We now
discuss some of these results. The work of Cheraghchi and Guruswami [27] gave the
first optimal rate non-malleable code in the n-split-state model (where n is the codeword
length). More importantly, this work introduced non-malleable two-source extractors and
demonstrated that these special extractors can be used to generically build 2-split-state
NMCs. This connection has led to several fascinating works [28–31] striving to improve
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the rate and number of states of non-malleable codes. Most notably, Chattopadhyay
and Zuckerman [28] built a 10-state NMC with a constant rate, making this the first
constant rate construction with a constant number of states. They achieve their result by
first building a non-malleable extractor with 10 sources and then using the connection
due to [10] to obtain the corresponding non-malleable code. The work of Kanukurthi,
Obbattu, and Sekar [32] used seeded extractors to build a compiler that transforms a low
rate non-malleable code into one with high rate and, in particular, obtained a rate 1/3,
4−state non-malleable code. This was subsequently improved to three states in the works
of Kanukurthi, Obbattu, and Sekar [33] as well as Gupta, Maji, and Wang [24]. Li [31]
obtained 2-split-state NMC with rate O(

log log log(1/ε)
log log(1/ε)

) (where ε is the error). Particularly,

this gave a rate of O(log log(n)/ log(n)), for negligible error ε = 2−Ω(n), and a constant
rate for constant error, making this the first constant rate scheme in the 2−split-state model.
The concept of non-malleable reductions due to [3] was used to build the first constant rate
NMC with negligible error in the 2-split-state model [34]. In a recent work, Ref. [35], it
was shown that the construction from [32] (with rate 1/3) is actually non-malleable even
against two split-state tampering (and hence is nearly an optimal rate construction for two
split-state tampering).

Applications of split-state non-malleable codes
The split-state tampering model is a very natural model. In particular, there are cryp-

tographic settings where the separation of states is natural, like in secret sharing or in mul-
tiparty computation (MPC) scenarios. Non-malleable codes in the split-state model have
found many applications in achieving security against physical (leakage and tampering)
attacks [1,36], domain extension of encryption schemes [37,38], non-malleable commit-
ments [39], non-malleable secret sharing [40–43], non-malleable oblivious transfer [44], and
privacy amplification [45]. We discuss the application to non-malleable commitments in
more detail in Section 8.

Additionally, non-malleable codes in the split-state model have found many appli-
cations in the construction of non-malleable codes against other important and natural
tampering families, as mentioned below:
• Decision tree tampering ([46]): each tampered output symbol is a function of a small

polynomial number of (adaptively chosen) queries to codeword symbols.
• Small-depth circuit tampering ([46,47]): the tampered codeword is produced by a

boolean circuit of polynomial size and nearly logarithmic depth.
• (Bounded) Polynomial-size circuit tampering ([48]): the tampered codeword is pro-

duced by circuit of bounded polynomial size, nd for some constant d, where n is the
codeword length.

• Continuous NMCs ( [16]): the tampering is still split-state, but the adversary is allowed
to tamper repeatedly until the tampering is detected.

The applications to decision tree tampering, small-depth circuits, and polynomial size
circuit tampering are discussed in Section 7.

Organization of the Paper
• Section 2 contains preliminaries and definition of non-malleable reductions, and the

reader may refer to it when required;
• Section 3 contains a gentle introduction to different variants of non-malleable codes

and their properties such as secret sharing and leakage-resilience.
• In Section 4, we give the first, and arguably the simplest, construction of non-malleable

codes in the split-state model [9]. The simplicity made it a particularly useful tool for
several follow-up works that required non-standard properties from the underlying
non-malleable code.

• In Section 5, we briefly mention two-source non-malleable extractors, and their con-
nection to non-malleable codes in the split-state model, as well as to other crypto-
graphic primitives.

• In Section 6, we give an overview of the rate amplification technique from [32–35] that
gives an almost optimal rate non-malleable code in the split-state model.
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• In Section 7, we survey some of the applications of split-state non-malleable codes to
constructing non-malleable codes against computationally bounded tampering classes.
In particular, we give an overview of the techniques in the following works: Ref. [46]
for small-depth decision trees, Ref. [47] for small-depth circuit tampering, and Ref.
[48] for polynomial size circuit tampering.

• In Section 8, we give a construction of a non-malleable commitment scheme due
to [39] that is one of the most important applications of non-malleable codes in the
split-state model.

Table 1. Prior Work on 2-state NMCs (n is codeword length).

Work Rate

Dziembowski, Pietrzak, Wichs [1] 1/6 (Existential, Random Oracle Model)

Cheraghchi, Guruswami [10] 1/2 (Existential, Lower bound)

Dziembowski, Kazana, Obremski [8] Ω(1/n) (Only for 1-bit messages)

Aggarwal, Dodis, Lovett, Briët [9,49,50] Ω(1/n4/5)

Chattopadhyay, Goyal, Li [29] n−Ω(1)

Li [30] Ω(1/ log(n))

Li [31] Ω(log log(n)/ log(n))

Li [31] Ω(1) (with constant error)

Aggarwal, Obremski [34] ≈ 1/1,500,000

Aggarwal, Sekar, Kanukurthi, Obremski, Obbattu [35] 1/3

2. Preliminaries
2.1. Notation and Mathematical Preliminaries

For a set T, let UT denote a uniform distribution over T, and, for an integer `, let U`

denote uniform distribution over ` bit strings. We say that b = a± δ if a− δ ≤ b ≤ a + δ.
For any random variable A and any set A, we denote A|A∈A to be the random variable A′

such that
∀a, Pr[A′ = a] = Pr[A = a | A ∈ A] .

The statistical distance between two random variables A, B is defined by

∆(A ; B) =
1
2 ∑

v
|Pr[A = v]−−− Pr[B = v]| .

We use A ≈ε B as shorthand for ∆(A, B) ≤ ε.

Lemma 1. For any function α, if ∆(A ; B) ≤ ε, then ∆(α(A) ; α(B)) ≤ ε.

The min-entropy of a random variable W is H∞(W)
def
= − log(maxw Pr[W = w]) , and

the conditional min-entropy of W given Z is H∞(W|Z) def
= − log(Ez←Z maxw Pr[W = w|Z = z]).

Definition 2. We say that a function Ext : Fn × Fn → F is a (k, ε)-2-source extractor if,
for all independent sources X, Y ∈ Fn such that min-entropy H∞(X) + H∞(Y) ≥ k, we have
(Y,Ext(X, Y)) ≈ε (Y, Um), and (X,Ext(X, Y)) ≈ε (X, Um).

Lemma 2. For all positive integers n and any finite field F, and for all ε > 0, the inner product
function 〈·, ·〉 : Fn × Fn → F is an efficient ((n + 1) log |F|+ 2 log

(
1
ε

)
, ε) 2-source extractor.
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In particular, for n being an integer multiple of m, and interpreting elements of {0, 1}m as
elements from F2m and those in {0, 1}n to be from (F2m)n/m, we have that, for any ε > 0, there
exists an efficient (n + m + 2 log

(
1
ε

)
, ε) 2-source extractor Ext : {0, 1}n × {0, 1}n → {0, 1}m.

The following is a definition of an ε-almost universal hash function.

Definition 3. A function C : {0, 1}s × {0, 1}n → {0, 1}t is called an ε-almost universal hash
function if, for any x, y ∈ {0, 1}n such that x 6= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

The following is a standard construction of a polynomial evaluation ε-universal hash
function. The parameters are from [51].

Lemma 3. For any n, t > 2 log n, there exists an efficiently computable 2−t/2-almost universal
hash function C : {0, 1}s × {0, 1}n → {0, 1}t with s = 2t.

Lemma 4 (Lemma 4 of [52], Lemma 9 of [3]). Let A, B be independent random variables and
consider a sequence V1, . . . , Vi of random variables, where for some function φ, Vi = φi(Ci) =
φ(V1, . . . , Vi−1, Ci) with each Ci ∈ {A, B}. Then, A and B are independent conditioned on
V1, . . . , Vi. That is, I(A; B|V1, . . . , Vi) = 0.

2.2. Non-Malleable Codes and Reductions
In [3], the notion of non-malleable codes w.r.t. to a tampering family F (see [1]) was

generalized to a more versatile notion of non-malleable reductions from F to G. The following
definitions are taken from [3].

Definition 4 (non-malleable reduction). Let F ⊂ AA and G ⊂ BB be some classes of functions
(which we call manipulation functions). We will write:

(F ⇒ G, ε)

and say F reduces to G, if there exist an efficient randomized encoding function E : B→ A, and
an efficient deterministic decoding function D : A → B, such that, (a) for all x ∈ B, we have
D(E(x)) = x, and (b) for all f ∈ F , there exists G such that, for all x ∈ B,

∆
(

D( f (E(x))) ; G(x)
)
≤ ε, (1)

where G is a distribution over G, and G(x) denotes the distribution g(x), where g← G.
The pair (E, D) is called (F ,G, ε)-non-malleable reduction.

Intuitively, (F ,G, ε)-non-malleable reduction allows one to encode a value x by y←
E(x), so that tampering with y by y = f (y) for f ∈ F gets “reduced” (by the decoding
function D(y) = x) to tampering with x itself via some (distribution over) g ∈ G.

In particular, the notion of non-malleable code w.r.t. F , is simply a reduction from F to
the family of “trivial manipulation functions” NMk defined below.

Definition 5. Let NMk denote the set of trivial manipulation functions on k-bit strings, which
consists of the identity function I(x) = x and all constant functions fc(x) = c, where
c ∈ {0, 1}k.

We say that a pair (E, D) defines an (F , k, ε)-non-malleable code, if it defines a (F ,NMk, ε)-
non-malleable reduction.

The utility of non-malleable reductions comes from the following natural composition
theorem that was shown in [3], which allows for gradually making our tampering families
simpler and simpler, until we eventually end up with a non-malleable code (corresponding
to the trivial family NMk).
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Theorem 1 (Composition). If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒ H, ε1 + ε2).

We will also need the following trivial observation.
[Union] Let (E, D) be an (F ,H, ε) and a (G,H, ε′) non-malleable reduction. Then,

(E, D) is an (F ∪ G,H, max(ε, ε′)) non-malleable reduction.
USEFUL TAMPERING FAMILIES. We define several natural tampering families we will

use in this work. For this, we first introduce the following “direct product” operator on
tampering families:

Definition 6. Given tampering families F ⊂ AA and G ⊂ BB, let F × G denote the class of
functions h from (A× B)A×B such that

h(x) = h1(x1)‖h2(x2)

for some h1 ∈ F and h2 ∈ G and x = x1‖x2, where x1 ∈ A, x2 ∈ B.
We also let F 1 := F , and, for t ≥ 1, F t+1 := F t ×F .

We can now define the following tampering families:

• Sn = ({0, 1}n){0,1}n
denotes the class of all manipulation functions on n-bit strings.

• Sn,p = (Fn
p)

Fn
p denotes the class of all manipulation functions on Fn

p.
• Given t > 1, S t

n,p denotes the tampering family in the t-split-state model, where the at-
tacker can apply t arbitrarily correlated functions h1, . . . , ht to t separate, parts of mem-
ory each in Fn

p (but, of course, each hi can only be applied to the i-th part individually).
• Given a prime p, AFF p denotes the class of all affine functions parametrized by

a, b ∈ Fp such that fa,b(x) := ax + b for all x ∈ Fp.

2.3. Basic Techniques
The following is a simple result from [9] that says that, if two pairs of random vari-

ables (X1, X2), (Y1, Y2) are statistically close to each other, then X1 conditioned on X2 is
statistically close to Y1 conditioned on Y2.

Lemma 5. Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2);
(Y1, Y2)) ≤ ε. Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

The following is a variant of a similar simple lemma from [8,9]. The proof is just a
simple application of triangle inequality.

Lemma 6. Let S be some random variable distributed over a set S , and let S1, . . . ,Sj be a partition
of S . Let φ : S → T be some function, and let D1, . . . , Dj be some random variables over the set T .
Assume that, for all 1 ≤ i ≤ j,

∆
(
φ(S)|S∈Si ; Di

)
≤ εi.

Then,
∆(φ(S) ; D) ≤∑ εi Pr[S ∈ Si] ,

for some random variable D ∈ T such that for all d Pr[D = d] = ∑i Pr[S ∈ Si] · Pr[Di = d].

Lemma 7. Let F be a finite field. Let X = (X1, X2) ∈ F× F be a random variable. Assume that,
for all a ∈ F not both zero, ∆(X1 + aX2 ; UF) ≤ ε. Then, ∆((X1, X2) ; UFp , X2) ≤ ε|F|2.

Lemma 8. Let X ∈ F be a random variable. Assume that ∆(X ; UF) ≥ ε. Then, if X′ is an i.i.d
copy of X, then

Pr[X = X′] ≥ 1 + ε2

|F| .
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Lemma 9. Let Z = (X, Y) ∈ Fn × Fn be a random variable, and let Z′ = (X′, Y′) be an i.i.d
copy of Z. Then,

Pr[〈X, Y〉 = 〈X′, Y′〉] ≤ Pr[〈X, Y〉 = 〈X′, Y〉].

3. Basic Properties and Variants of Non-Malleable Codes and Continuous
Non-Malleable Codes

In this section, we will discuss various basic properties of the 2−split state non-
malleable codes, as well as numerous variants of their definitions.

3.1. A Few Examples
As a warm up, we will go through few basic examples of codes that are not non-malleable.

Example 1. To encode m ∈ F, we pick L ∈ F and R ∈ F uniformly random such that L + R = m.

Above clearly is not a non-malleable code: pick L = L + 1 and R = R; then,
Dec(L, R) = Dec(L, R) + 1; we have changed the message, but the message is not in-
dependent of the original message.

Example 2. To encode m ∈ Fp, pick L, R ∈ Fn
p uniformly random such that 〈L, R〉 = m, where

〈., .〉 stands for the inner product over Fp.

Again, the attack is quite simple: pick a /∈ {0, 1} and let L = a · L, R = R, then
Dec(L, R) = a ·Dec(L, R). Again, the message has changed but remained strongly corre-
lated with the original message. The above attack depends on a /∈ {0, 1}; however, over F2,
we will not have any other option. Thus, maybe let us consider the following code:

Example 3. To encode m ∈ F2, pick L, R ∈ Fn
2 uniformly at random such that 〈L, R〉 = m, where

〈., .〉 stands for the inner product over F2.

Sadly again, there is a simple attack; let L (and R respectively) be equal to L (and
R respectively) on all positions except the last, we will set the last position to (L)n = 1
(and (R)n = 1). Now, with probability 3

4 , we have Dec(L, R) = Dec(L, R)⊕ 1, and with
probability 1

4 we have Dec(L, R) = Dec(L, R). This can not be a non-malleable code, as [8]
showed for single bit message (We also assume that Dec 6= ⊥, i.e., there are no invalid
codewords) : if we can flip the output of the Decoder with probability greater then 1

2 (plus
some non-negligible factor), then the code can not be non-malleable.

3.2. Secret Sharing
We will show that the 2−split state non-malleable code has to be a 2 out of 2 secret

sharing. Let m0, m1 be two messages and let Enc(m0) = X0, Y0 and Enc(m1) = X1, Y1. If
given Xi, we could guess i, and we would be able to tamper the codewords in a way
that Dec(X0, Y0) = a0 and Dec(X1, Y1) = a1, where a0, a1 are two fixed distinct messages
(different than m0, m1). This clearly breaks non-malleability since the original messages
m0, m1 are not preserved, but the messages after tampering are correlated with the original
messages: tampered message is ai if and only if the original message was mi. This conveys
the main intuition: if the message is not preserved, then tampered message should not
reveal the original message.

Let us construct the above-mentioned attack: find `0, `1, r, a0 6= a1 such that
Dec(`0, r) = a0 and Dec(`1, r) = a1 (we know they must exist else r alone would determine
the output of the decoder, and we could carry on the same attack on the right state). Now
for the tampering: we will completely overwrite the right state Yi → r, and, given Xi, if
we think i = 0, we will tamper with Xi → `0; if we think that i = 1, then we tamper with
Xi → `1; this gives the desired result.

To be more precise, we recall the theorem from [20].
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Lemma 10 (from [20]). If (Enc,Dec) is an ε− non-malleable code, then for any two messages
m0, m1, and for Enc(m0) = X0, Y0 and Enc(m1) = X1, Y1, we obtain:

X0 ≈2ε X1 and Y0 ≈2ε Y1

3.3. Leakage-Resilience
Thus far, we only discussed active adversary that tampers the states. It is natural to

consider its weaker version: a passive adversary.
A long time ago, we thought of a cryptographic device as a box that holds a secret key

and has a strictly defined interface, and the attacker is only allowed to use that well-defined
input/output interface. However, no device is a true blackbox; it consumes electricity,
emits electromagnetic radiation, and has a heat signature and a running time; those values
were not predicted in the clean blackbox-security model, and thus the first wave of passive
attacks was born. Now the adversary could exploit side-channel information like the one
mentioned above and with its help break the security of the device. We often refer to such
side information as leakage, and the adversary that exploits it as a passive adversary.

We can start with the following theorem:

Theorem 2 (from [15]). Let k ≥ 3, and let ε < 1/20. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n,
Dec : {0, 1}n × {0, 1}n → {0, 1}k be an ε−non-malleable code in the split state model. For every
set A, B ⊂ {0, 1}n and every message m0, m1 ∈ {0, 1}k,

|Pr(Enc(m0) ∈ A× B)−−− Pr(Enc(m1) ∈ A× B)| ≤ ε .

Before we get to the proof, notice that one can run the above lemma for the following
sets: A× {0, 1}n and {0, 1}n × B and A× B (for the set, the {0, 1}n × {0, 1}n statement
is trivial); this means that, given the indicators 1A(Xi), 1B(Yi), we can not distinguish
between i = 0 and i = 1 (where (Xi, Yi) encode message mi). One should remark that,
while the above is just a one bit leakage, one can easily leverage it to the arbitrary size
t leakage at the price of the 2t multiplicative penalty in the error; we refer to the similar
reasoning below Remark 4.

This is only a mild version of leakage resilience, and we will expand it further in
this section.

Below we go over the proof of Theorem 2, and we mention that a similar reasoning
forms the core of Remark 4 and Theorem 5.

Proof. We claim that there exist x, y, z, w ∈ {0, 1}n such that m0, m1,Dec(x, w), Dec(z, w),
and Dec(z, y) are all different from Dec(x, y). Before proving this claim, we show why this
implies the given result. Let Enc(m) = X, Y, consider the tampering functions f , g such
that f (X) = x if X ∈ A, and f (X) = z otherwise, and g(Y) = y if Y ∈ B, and g(Y) = w,
otherwise. Thus, for b = 0, 1, Dec(X, Y) = Dec(x, y) if and only if Enc(mb) ∈ A× B. The
result then follows from the ε-non-malleability of (Enc,Dec).

Now, to prove the claim, we will use the probabilistic method. Let U be uniform
in {0, 1}k, and let X, Y ← Enc(U). Furthermore, let W, Z ∈ {0, 1}n be uniform and
independent of X, Y, U. We claim that X, Y, Z, W satisfy the required property with non-
zero probability.

It is easy to see that the probability that Dec(X, Y) = U is either of m0 or m1 is at most
2/2k. In addition, by Lemma 10, we have that, except with probability 2ε, X is independent
of U. In addition, W is independent of U. Thus, the probability that Dec(X, W) = U is at
most 2ε + 1/2k. Similarly, the probability that Dec(Z, Y) = U is at most 2ε + 1/2k. Finally,
W, Z are independent of U, and so the probability that Dec(Z, W) = U is at most 1

2k .
Thus, by union bound, the probability that X, Y, Z, W do not satisfy the condition of

the claim is at most 5
2k + 4ε ≤ 5

8 + 4ε < 1.

As we already hinted, the above is only a mild version of leakage resilience; for the full
version, we would expect, for example, that the decoded message along with the leakage
does not reveal anything about the message.
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To formalize the above intuitive notion, we first have to recall the original definition
from [1]:

Definition 7 (Non-Malleable Code from [1]). Let (Enc : M → X ×X ,Dec : X × X →
M∪ {⊥}) be an encoding scheme. For f , g : X → X and for any m ∈ M, define the experiment
DPWTamper

f ,g
m as:

DPWTamper
f ,g
m =


(X, Y)← Enc(m),

X := f (X), Y := g(Y)
m := Dec(X, Y)

output: m


The above represents the state of the message after tampering. The claim that the message has either
not changed or is completely independent of the original message is expressed in a following way:
We say that the encoding scheme (Enc,Dec) is ε-DPW-non-malleable in the split-state model if,
for every function f , g : X → X , there exists distribution D f ,g onM∪{same,⊥} (without the
access to the original message) such that, for every m ∈ M, we have

DPWTamper
f ,g
m ≈ε

 d← D f ,g

if d = same then output m
otherwise output d.


In other words, there exists a simulator D f ,g that can simulate the tampering exper-

iment; the simulator has no access to the original message: he can only output special
symbol same that will be replaced with an original message.

Adding Leakage Resilience to Non-Malleable Codes
To add a true leakage resilience, we have few options:

1. Tampering functions might depend on the leakages (e.g., [20,36,46]):

TamperLeak
f ,g,LeakX ,LeakY
m =


(X, Y)← Enc(m),

X := f (X, LeakY(Y)), Y := g(Y, LeakX(X))
m := Dec(X, Y)

output: m


2. We can also consider outputting the leakage along with the tampered message

(e.g., [35,53]):

TamperLeak
f ,g,LeakX ,LeakY
m =


(X, Y)← Enc(m),

X := f (X), Y := g(Y)
m := Dec(X, Y)

output: m, LeakX(X), LeakY(Y)


3. In addition, of course, we can also consider a combination of the above, where

tampering depends on the leakage, and the leakage is also part of the tampering
output:

TamperLeak
f ,g,LeakX ,LeakY
m =


(X, Y)← Enc(m),

X := f (X, LeakY(Y)), Y := g(Y, LeakX(X))
m := Dec(X, Y)

output: m, LeakX(X), LeakY(Y)
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In all of the above, we expect the (modified) simulator to be indistinguishable from the
tampering experiment. In the case of the experiment 2 and experiment 3, we slightly modify
the simulator: The D f ,g,LeakX ,LeakY simulates not only the message but also the leakage:

TamperLeak
f ,g,LeakX ,LeakY
m ≈ε

 (d, `X , `Y)← D f ,g,LeakX ,LeakY

if d = same then output m, `X , `Y
otherwise output d, `X , `Y.


Remark 1. Usually, we consider LeakX, LeakY to be bounded output size leakages. In addition,
LeakX and LeakY might be a series of adaptive leakages depending on each other; then, one has to
apply Lemma 4 to obtain the independence of X and Y given the leakages. We have to remark here
that Lemma 4 states that X and Y are independent given LeakX = `X and LeakY = `Y; however,
one has to remain vigilant since X|LeakX = `X and Y|LeakY = `Y might not be efficiently
sampleable sources; thus, the extension to the adaptive leakage case is straightforward only in the
information theoretic world.

Remark 2. The second definition might seem a bit artificial; however, it is quite useful for technical
reasons. Sometimes, non-malleable code is merely one of many building blocks of bigger proto-
col/application, and the leakage is a byproduct of the technical proof—other parts of the protocol
might behave differently depending on the non-malleable encoding (which is most conveniently
modeled as a leakage), thus non-malleable code is tampered in a usual way while the rest of the
protocol leaks extra information.

The first compiler that returns a leakage resilient (with respect to the variant 1) non-
malleable code was given by [20]; it could tolerate up to 1

12 leakage rate (i.e., output size of
leakage functions can be up to 1

12 of the input size), but it required a symmetric decoder
(Dec(X, Y) = Dec(Y, X)). Later, Ball, Guo, and Wichs gave a better compiler:

Theorem 3 (from [46,48]). For any α ∈ [0, 1
4 ), there exists a compiler that takes any 2−split state

non-malleable code and outputs a leakage resilient (with respect to definition variants 1, 2, and 3)
non-malleable code with leakage rate α. The rate of the new code is Θ(original− rate), and the
error stays the same except for an extra exp (−Ω(n)) factor (where n is the new code’s length).

Remark 3 (from [46]). Originally, it only showed that their compiler worked for the variant 1.
However, Ref. [48] later extended their analysis to the latter variants.

In addition, for the variants 2 and 3, we have the following result:

Theorem 4 (from [53]). Any 2−split-state ε−non-malleable code is also 2t · ε−non-malleable
code that tolerates up to t bits of leakage (with respect to Definition 2 or 3).

Remark 4. Originally, the above paper considered Definition 2 only, but simple inspection of the
proof gives the security with respect to the variant 3 too.

The idea of the proof is quite simple: we guess the leakage functions (thus the penalty
2t) and tampering function check if the leakage is consistent with their view; if any of the
views does not match the guessed leakage, then the tampering aborts ( f or g outputs ⊥,
and the decoder aborts). Else, if the guessed leakage is consistent with the views of the
tampering functions, the tampering happens as intended.; the above expands the power
of tampering functions: instead of f , g : {0, 1}n → {0, 1}n, we have f , g : {0, 1}n →
{0, 1}n ∪ {⊥}; this is without a loss of generality—in a similar fashion as in Theorem 2, we
can show that adding ⊥ as a possible output of the tampering functions does not break the
definition.

Later, Ref. [35] expanded the result from Theorem 4 for augmented (see Section 3.4)
non-malleable codes.
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Theorem 5 (from [35]). Any 2−split-state augmented ε−non-malleable code is also an augmented
2t · ε−non-malleable code that tolerates up to t bits of leakage (with respect to Definition 2 or 3).

Similarly, the [46] compiler also preserves the augmented property:

Theorem 6 (from [48]). For any α ∈ [0, 1/4), 2-split-state augmented ε−non-malleable code
can be compiled into an augmented split-state ε + exp(−Ω(n))-non-malleable code with rate
Θ(original− rate) and leakage rate α (with respect to any variant above).

3.4. Augmented NMCS
Many applications require an extra property, namely that adversary on top of re-

ceiving a tampered message can get one of the states (similar to the leakage resilience
discussed above).

Definition 8 (Left-augmented NMC). Let (Enc : M → X × X ,Dec : X × X → M∪
{⊥}) be an encoding scheme. For f , g : X → X and, for any m ∈ M, define the experiment
Tamper

f ,g
m as:

Tamper
f ,g
m =


(X, Y)← Enc(m),

X := f (X), Y := g(Y)
m := Dec(X, Y)

output: m, X


We say that the encoding scheme (Enc,Dec) is left-augmented ε-non-malleable in a 2−split-
state model if, for every function f , g : X → X , there exists a distribution D f ,g on M∪
{same,⊥} (without the access to the original message) such that, for every m ∈ M, we have

Tamper
f ,g
m ≈ε

 (d, x)← D f ,g

if d = same then output m, x
otherwise output d, x.


Symmetrically, we can consider the right-augmented property, where the right state is

revealed.
Most of the known constructions like [9,29–31,35] are augmented (both left and right

augmented). Interestingly [33], the non-malleable randomness encoder (see Section 6.1 for
details) is right-augmented but not left-augmented.

3.5. Simulation vs. Game
Definition 7 is the most common simulation-based definition. However, in some

situations, it is actually more convenient to consider a game based definition, where the
adversary picks two messages m0, m1; the challenger encodes mb for uniformly chosen b,
and the adversary has to guess b based on the tampering of Enc(mb) = (Xb, Yb).

In particular, the following alternative definition of a non-malleable code will give a
smoother transition to the subsequent definitions in this section.

The transition from a simulator to a game is not quite trivial: let Enc(m0) = L, R and
imagine the tampering with f (X) = L and g(Y) = R; now, both messages have been
completely overwritten and both tampering experiments should output m0. However,
notice that tampering experiment Tamper

f ,g
m0 has two options: it can answer m0 or it can

answer same, while Tamper
f ,g
m1 can only answer m0. In the above example, Tamper

f ,g
m0 can

not answer same else it will be distinguishable. To solve the dilemma, we have to add an
extra “helper” sitting inside the tampering experiment that will decide if the tampering
experiment should output same or m.

Definition 9. (Game definition for non-malleable code, from [15]). We say that an encoding
scheme (Enc :M→ X ×X ,Dec : X ×X →M∪ {⊥}) is ε-non-malleable in the split-state
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model if, for every function f , g : X → X , there exists a family of distributions {D f ,g
x,y}x,y∈X each

on {0, 1} such that for every m0, m1 ∈ M

Tamper
f ,g
m0 ≈ε Tamper

f ,g
m1

where

Tamper
f ,g
m =


(X, Y)← Enc(m),

output same if Dec(X, Y) = Dec( f (X), g(Y)) ∧ D f ,g
X,Y = 0

else output: Dec( f (X), g(Y))


In [15] (Appendix A), the authors show the equivalence of Definitions 7 and 9.

Theorem 7 (from [15]). If (Enc,Dec) is an ε−non-malleable code according to the game-based
definition, then it is also an ε−non-malleable code according to the definition from [1].

Theorem 8 (from [15]). If (Enc,Dec) is an ε−-non-malleable code according to the definition
from [1], then it is 4ε−non-malleable code according to the game-based definition.

To prove the above, the authors construct explicit “helper” distribution. There was
another game-based definition already considered in [1], but the above definition is easier
to generalize to the definition for stronger notions of non-malleable codes.

3.6. Strong, Super, and Super-Strong Variants
Some results in the literature like [12,14] have considered a notion of super-strong non-

malleable codes. We start with the following intermediate notion of super non-malleable
codes introduced in [15]. In this variant, if the tampering is successful and non-trivial
i.e., output is not ⊥ or same, then the tampering experiment outputs the whole tampered
codeword. In other words, we require that, for valid tampering, either tampering does not
change the message, or even the tampered codeword itself does not carry any information
about the original message.

Definition 10. (Super non-malleable code). We say that an encoding scheme (Enc : M →
X ×X ,Dec : X × X → M∪ {⊥}) is ε-super non-malleable in a split-state model if, for
every function, f , g : X → X , there exists a family of distributions {D f ,g

x,y}x,y∈X each on {0, 1}
such that for every m0, m1 ∈ M

SuperTamper
f ,g
m0 ≈ε SuperTamper

f ,g
m1

where SuperTamper
f ,g
m =


(X, Y)← Enc(m),

output same if Dec(X, Y) = Dec( f (X), g(Y)) ∧ D f ,g
X,Y = 0

else if Dec( f (X), g(Y)) = ⊥ output ⊥
else output: ( f (X), g(Y))


Remark 5. This definition is clearly stronger than the standard version, since, given the tampered
codeword, we can apply the decoder and obtain the tampered message.

In [1], the authors considered a strong variant. This is a variant that follows the
standard definition closely except it puts a restriction on the use of same—it can only
be outputted only if f (X) = X ∧ g(Y) = Y (Notice that outputting same in that case
is unavoidable). This variant is perhaps the closest to the intuition; if the codeword is
tampered with, then it is either invalid or it decodes to something independent of the
original message.
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Definition 11. (Strong non-malleable code). We say that an encoding scheme (Enc : M →
X ×X ,Dec : X ×X →M∪ {⊥}) is ε-strong non-malleable in the split-state model if for
every function f , g : X → X and for every m0, m1 ∈ M

StrTamp
f ,g
m0 ≈ε StrTamp

f ,g
m1

where

StrTamp
f ,g
m =


(X, Y)← Enc(m),

output same if (X, Y) = ( f (X), g(Y))
else if Dec( f (X), g(Y)) = ⊥ output ⊥

else output: Dec( f (X), g(Y))


Notice that above we do not need a “helper” distribution anymore since the conditions

to output same are so restrictive.
Finally, one can consider both the super and strong version. Here, we require that

same can only be outputted if f (X) = X ∧ g(Y) = Y, and, if the codeword is valid
and not trivially tampered with, then the whole tampered codeword does not reveal any
information about the original message.

Definition 12. (Super strong non-malleable code). We say that an encoding scheme (Enc :
M → X ×X ,Dec : X × X → M∪ {⊥}) is ε-super strong non-malleable in the split-state
model if for every function f , g : X → X and for every m0, m1 ∈ M

SupStrTamp
f ,g
m0 ≈ε SupStrTamp

f ,g
m1 ,

where

SupStrTamp
f ,g
m =


(X, Y)← Enc(m),

output same if (X, Y) = ( f (X), g(Y))
else if Dec( f (X), g(Y)) = ⊥ output ⊥

else output: ( f (X), g(Y))


Examples of the codes:
• Ref. [8] is not super and not strong;
• Ref. [9] is super but not strong;
• all non-malleable extractors including [29–31] are strong but not super;
• Ref. [9] compiled with [15] is super and strong.

Informal Theorem 1 (from [15]). There exists a compiler that turns any super non-malleable
code (with certain sampling properties which we discuss below) in a 2-split state model into a
super-strong non-malleable code in a 2−split state model, at a minimal loss to the rate of the code.
The above compiler also turns a non-malleable code into a strong non-malleable code.

The idea behind the compiler is to introduce a certain level of circularity: Enc(m||checkX ,
checkY) = X, Y; in other words, the codeword encodes its own “checks”. Notice that the
difference between the strong and not-strong variant is only in the use of same output. The
checks ensure that, if the code was tampered with and still decodes to the same message,
then the checks remain unchanged—this leads to the decoder error since the checks will
not match the changed codeword.

This approach has a problem: the circularity introduced above does not necessarily
allow for efficient encoding, and thus there are additional requirements on the underlying
non-malleable code. The authors show that the extra assumptions are fulfilled by the code
from [9], thereby giving a super-strong non-malleable code.
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3.7. Continuous Non-Malleable Codes
We can push the definition further; imagine that the codeword is tampered not once,

but multiple times. This is the idea behind continuous non-malleable codes. Meanwhile,
in principle, we can take any of the four variants: standard, strong, super, super-strong,
and extend the definition to multiple tamperings for various technical reasons (The main
problem of non-super variants is that, immediately after the first tampering, X, Y are not
independent anymore given Dec( f1(X), g1(Y)); this causes huge technical problems; thus,
in practice, it is actually easier to aim for the strongest variant. Intuitively speaking X, Y
remain “somewhat-independent” given f (X), g(Y), where by “somewhat-independent”,
we mean that X, Y still form a valid codeword, but revealing extra information does not add
any additional correlations) the super-strong extension is the one that received attention.

There are again four variants that stem from two possible flags: self-destruct (yes/no)
and persistence (yes/no).

Self-destruct decides what happens when one of the tamperings outputs ⊥—should
we stop the experiment, or should we allow the adversary to continue tampering? We
will discuss later that non-self-destruct codes do not exist for the most of the reasonable
tampering families.

Persistence (often referred to as resettability) decides how the tampering is applied; say
codeword c was tampered into c′, is the next tampering applied to original c, or should
it be applied on top of c′? As long as c → c′ is a bijection, that is not a problem, but, if
the tampering function was very lossy given c′, we can not recreate c, thus this becomes a
non-trivial choice. Indeed, later we will discuss impossibility results that strongly separate
persistent (not-resettable) and non-persistent (resettable) codes.

Remark 6 (Note on two-source non-malleable extractors). It is important to stress few things:
two-source non-malleable extractors do not output ⊥, thus (for the same reason why non-self-
destruct codes do not exist for reasonable tampering classes) we can not consider a continuous
version of them. However, we can, and usually do, consider a t−times tampering variants, where a
two-source non-malleable extractor is tampered t times for some fixed in advance t.

Definition 13. (Continuous Non-Malleable Code). Ref. [14] define four types of continuous
non-malleable codes based on two flags: sd ∈ {0, 1} (self-destruct) and prs ∈ {0, 1} (persistent).
We say that an encoding scheme (Enc : M → X ×X ,Dec : X × X → M∪ {⊥}) is (T, ε)-
continuous [sd, prs] non-malleable in the split-state model if, for every Adversary A and for
every m0, m1 ∈ M

ConTamperA,T,m0
≈ε ConTamperA,T,m1

,

where ConTamperA,T,m =



(X, Y)← Enc(m),
f0, g0 ≡ id,
Repeat i = 1, 2, ...,T
A chooses functions f ′i , g′i
if prs = 1 then fi = f ′i ◦ fi−1, gi = g′i ◦ gi−1

else fi = f ′i , gi = g′i
if ( fi(X), gi(Y)) = (X, Y) then output same

else
if Dec( fi(X), gi(Y)) = ⊥ then output ⊥ if sd = 1 then experiment stops

else output ( fi(X), gi(Y)) if prs = 1 then experiment stops


Remark 7. In the case of persistent tampering, the above definition by [14] assumes that the
tampering experiment stops if there is a non-trivial tampering that does not decode to ⊥, since,
in this case, the adversary learns the entire tampered codeword and can simulate the remaining
tampering experiment himself (since the tampering is persistent).

Remark 8. In any model allowing bitwise tampering, in particular the 2−split state model, it is
not difficult to conclude that the non-self-destruct property is impossible to achieve even in the case
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of persistent tampering if the space of messages contains at least three elements. To see this, notice
that one can tamper the codeword c = (c1, c2, c3, . . .) to obtain c′1 = (0, c2, . . .). The adversary
then obtains the output of the tampering experiment, which is same if and only if c1 = 0. Thus, the
adversary learns c?1 = c1 and continues the tampering experiment with (c?1 , 0, c3, . . .) (note that
this tampering is persistent). Thus, the adversary can continue to learn the codeword one bit at a
time, thereby learning the entire codeword in N steps where N is the length of the codeword.

The constructions:

Theorem 9 (from [15]). If (Enc,Dec) is an ε-super strong non-malleable code in the 2−split-state
model, then (Enc,Dec) is a (T, (2T + 1)ε)−continuous self-destruct, persistent non-malleable code
in the 2−split-state model. This combined with [9] compiled with [15] gives an explicit and efficient
continuous self-destruct persistent non-malleable code in the 2−split-state model.

Remark 9. The number of tampering rounds T does not have to be specified in advance (unlike
with two-source non-malleable extractors). We expect the number of tamperings to be polynomial,
and ε to be negligible; one can plug those in and obtain a code with unlimited (but polynomial)
number of tamperings and security εα for any α < 1.

The idea behind the theorem is as follows: there are only two output patters that we
can observe: either there will be some number of same outputs followed by a ⊥ or followed
by the tampered codeword c′. The authors argue that the long same chain does not teach
us much, thus the only tampering that really matters is the last one (the one that leads
to not-same). Thus, the continuous tampering is actually reduced to the one non-trivial
tampering; we just have to pay a small price in epsilon, since we basically have to guess in
which round the non-same tampering will happen.

Remark 10. The above technique was extended and generalized by [54] for the other tamper-
ing classes. In particular, the authors achieve continuous NMC against persistent decision tree
tampering.

Informal Theorem 2 (from [16]). There exists an explicit and efficient self-destruct, non-persistent
(resettable) continuous non-malleable code in the 8-split state model (i.e., where we have eight states
instead of 2).

Remark 11. Ref. [12] shows that non-persistent continuous non-malleable codes are impossible
to construct in a 2-split state model. We know that eight states is enough, and we hypothesize
that the idea behind [16] could be extended to give an existential (not efficient or explicit) 6-state
construction. The exact number of states required to construct non-persistent code remains an
opened question even in the non-explicit case.

4. The Non-Malleable Code Construction via Inner Product
In this section, we show a construction of non-malleable codes via an inner product

due to [9,49,50].

Theorem 10. There exist absolute constants c, c′ > 0 such that the following holds. For any finite
field Fp of prime order, and any n > c′ log4 p,

(S2
n,p ⇒ AFF p, 2−cn1/4

) .

We will prove the following theorem which immediately implies Theorem 10. To
see this, consider the encoding function that takes as input an element of x ∈ Fp and
chooses uniformly random L, R ∈ Fn

p conditioned on 〈L, R〉 = x, and the decoding function
Dec(`, r) is defined as Dec(`, r) := 〈`, r〉.
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Theorem 11. There exist absolute constants c, c′ > 0 such that the following holds. For any
finite field Fp of prime order, and any n > c′ log4 p, let L, R be random variables uniform and
independent in Fn

p, and f , g : Fn
p → Fn

p be arbitrary functions. Then,

∆(〈L, R〉, 〈 f (L), g(R)〉 ; UFp , D(UFp) ,

where UFp is uniform and independent of L, R, and D is a distribution over AFF p.

We need the following result that can be seen as a generalization of the linearity test
from [55] and that is discussed and proved in [9].

Theorem 12. Let p be a prime, and n be a positive integer. For any ε = ε(n, p) > 0, γ1 =
γ1(n, p) ≤ 1, γ2 = γ2(n, p) ≥ 1, the following is true. For any function f : Fn → Fn, let
A ⊆ {(x, f (x)) : x ∈ Fn} ⊆ F2n. If |A| ≥ γ1 · |Fn| and there exists some set B such that
|B| ≤ γ2 · pn, and

Pr
a,a′∈A

[a−−− a′ ∈ B] ≥ ε,

then there exists a linear map M : Fn → Fn such that

Pr
(x, f (x))∈A

[ f (x) = Mx] ≥ p−O(log6(
γ2
γ1ε )) .

4.1. Proof Sketch
Now we sketch the proof of Theorem 11 The following lemma shows that, for any

large enough subdomain of Fn×Fn for which 〈L, R〉, 〈 f (L), g(R)〉 is not close to the desired
distribution for some D, there exists a large enough subdomain on which f is linear.

Lemma 11. Let p be a prime, n a positive integer, and 0 < t < n. Let L ⊆ Fn
p such that

|L| ≥ pn−t. Let L, R be independent random variables uniformly distributed in L and Fn
p,

respectively. Then, either there exists a distribution G over AFF p such that

∆(〈L, R〉, 〈 f (L), g(R)〉 ; UFp , D(UFp) ≤ p−t ,

or there exists a subset |L′ ⊆ L|, a linear map M ∈ (Fn
p)

Fn
p , and a constant C such that |L′| ≥

|L| · p−Ct4 log4 p, and f (x) = Mx for all x ∈ L′.

Proof. We assume that

∆(〈L, R〉, 〈 f (L), g(R)〉 ; UFp , D(UFp) > p−t ,

as otherwise the result trivially holds. Then, by Lemma 7, there exist a ∈ F such that
∆(〈L, R〉+ a〈 f (L), g(R)〉 ; UFp) ≥ p−t−2. Define functions F, G : Fn → F2n as follows:

F(x) = (x, f (x)), G(y) = (y, ag(y)).

We have that ∆(〈F(L), G(R)〉 ; UFp) ≥ p−t−2. Applying Lemma 8, we get that, for (L′, R′)
i.i.d to (L, R), we have

Pr[〈F(L′), G(R′)〉 = 〈F(L), G(R)〉] ≥ 1
p
+

1
p2t+5 .

Applying Lemma 9 with X = F(L), Y = G(R), X′ = F(L′), Y′ = G(R′), we get that

Pr[〈F(L)− F(L′), G(R)〉 = 0] ≥ 1
p
+

1
p2t+5 .
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Define

B :=
{

α ∈ F2n
p : Pr[〈α, G(R)〉 = 0] ≥ 1

p
+

1
p2t+6

}
.

Let B ∈ B be uniform. Then, ∆(〈B, G(R)〉, UFp) ≥ 1
p2t+6 . In addition, since R is uniform in

Fn
p, G(R) has min-entropy n log p. Hence, by Lemma 2, we have H∞(B) ≤ (n + 4t + 13) ·

log p, which implies |B| ≤ pn+4t+13. Furthermore, we have that

Pr[〈F(L′)− F(L′′), G(R′)〉 = 0] ≤ Pr[F(L′)− F(L′′) ∈ B] + 1
p
+

1
p2t+6 .

Thus, we must have that

Pr[F(L′)− F(L′′) ∈ B] ≥ 1
p2t+5 −

1
p2t+6 ≥

1
p2t+6 .

Thus, using Theorem 12, we obtain that there exists a linear map M : Fn → Fn for
which

Pr
x∈Fn

[Mx = f (x)] ≥ p−O(t4 log4 p) .

We now show that, if f is linear, then we get the desired distribution.

Lemma 12. Let p be a prime, n a positive integer, and 0 < s < n. Let L′ ⊆ Fn
p such that

|L′| ≥ pn−s, and f (x) = Mx for all x ∈ Fn
p, where M is a linear map in (Fn

p)
Fn

p . Let L, R be
independent random variables uniformly distributed in L′ and Fn

p, respectively. Then, there exists a
distribution G over AFF p such that

∆(〈L, R〉, 〈 f (L), g(R)〉 ; UFp , G(UFp) ≤ p−s .

Proof. We will prove that the given statistical distance is small for almost all fixing of
R ∈ Fn

p, and hence concludes the desired result.
Let S be the set of all x ∈ Fn

p such that ∆(〈L, s〉, UFp) > p−3−s. By Lemma 2,
|S| ≤ p3s+8.

Note that
〈 f (L), g(r)〉 = 〈ML, g(r)〉 = 〈L, MT g(r)〉 .

Thus, without loss of generality, we assume M to be the identity function, and replace g by
MT g. Assume (〈L, r〉, 〈 f (L), g(r)〉) is not p−s−1-close to UFp , G(UFp) for any G distributed
over AFF p. This means that, for any a ∈ Fp, (〈L, r〉, 〈 f (L), g(r)〉) is not p−s−1-close to
UFp , aUFp + B, for some random variable B independent of UFp . By Lemma 7, for every
a ∈ Fp, there exists b ∈ Fp such that

∆(〈L, r + b(g(r)− ar)〉 ; UFp) ≥ p−3−s . (2)

We will show that this implies that r ∈ FpS + FpS.

r ∈ {α1x1 + α2x2 | α1, α2 ∈ Fp, x1, x2 ∈ S} .

By Equation (2) with a = 0, there is some b = b∗ such that r + b∗g(r) = x1 ∈ S . We
assume without loss of generality that b∗ 6= 0 since, if b∗ = 0, then r ∈ S , and the desired
statement is true.

Letting a = −1/b∗, we have that there exists b such that r(1+ b/b∗) + bg(r) = x2 ∈ S .
Combining, we get that r = (bx1 −−− bx2)/b∗, thereby proving that r ∈ FpS + FpS.

Thus, by Lemma 6, the desired statistical distance is at most

p6s+20

pn · 1 + p−1−s ≤ p−s .
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Finishing the Proof Sketch
By Lemma 11, whenever 〈L, R〉, 〈 f (L), g(R)〉 are not close to U, D(U) for some affine

function D, we can always find a large subset of the domain on which f is linear, and thus,
using Lemma 12, we obtain that, on this subset, 〈L, R〉, 〈 f (L), g(R)〉 is close to U, D(U) for
some D. We thus continue to find a large subset of the domain on which 〈L, R〉, 〈 f (L), g(R)〉
is close to U, D(U) until we are left with a very small fraction of the entire domain. The
result then follows from Lemma 6.

4.2. Non-Malleable Codes against Affine Tampering in Fp

To complete the construction of non-malleable codes in the split-state model, we need
non-malleable codes against affine tampering in Fp. The following was shown in [49].

Theorem 13. For any integer k > 0, and p > 24k,

(AFF p ⇒ NMk, 2−Ω(k)) .

The construction for this is quite simple. A so-called affine-evasive subset S of Fp

of size significantly larger than 2k was constructed with the property that for any fixed
(a, b) ∈ Fp × Fp \ {1, 0}, we have that |aS + b ∩ S| � |S|. The set S is then partitioned into
K = 2k subsets S1, . . . , SK, and the encoding of the i-th message is a uniformly random
element of Si, and all elements in Fp not in S decode to a special symbol ⊥.

5. The Non-Malleable Codes via Two-Source Non-Malleable Extractors
Towards the goal of constructing non-malleable codes, Cheraghchi and Guruswami [27]

introduced non-malleable extractors as a stronger primitive that immediately yields effi-
cient non-malleable codes as long as the preimage of the extractor is efficiently sampleable.
Informally, a non-malleable two-source extractor nmExt guarantees that, for any indepen-
dent random sources X, Y, and any functions f , g with at least one of them having no fixed
points, nmExt(X, Y) is indistinguishable from uniform even given nmExt( f (X), g(Y)) (We
say that the extractor is a strong non-malleable two-source extractor if, for any independent
random sources X, Y, and any functions f , g with at least one of them having no fixed points,
nmExt(X, Y) is indistinguishable from uniform even given nmExt( f (X), g(Y)) and Y). It
is easy to see that a non-malleable two-source extractor gives non-malleability for a uni-
formly random message (average-case security) while a non-malleable code achieves non-
malleability for every message (worst-case security). A non-malleable two-source extractor
can be transformed into a non-malleable code (Enc,Dec) by setting Enc(m) := nmExt−1(m),
and Dec(x, y) := nmExt(x, y).

NME to NMC: Limitations. We note that the transformation from nm2Ext to NMCs
requires arguing worst-case security from average-case security, which incurs a factor
2|message size| penalty in the security parameter. Most results on building 2-split-state NMCs
have focused on improving the rate of non-malleable two-source extractors and relied on
this lossy transformation to build NMCs.

Since their conception, the non-malleable two-source extractors went a long way and
found independent applications, from the network extraction [56], to variants of privacy
amplification [57]. More importantly, we know numerous connections and reductions
between two-source extractors, seeded non-malleable extractors, and two-source non-
malleable extractors (see [29,30,57,58]). This gives us hope that further progress in the
constructions of these objects might give us an explicit two-source extractor with a negligible
error and a low entropy requirements for both sources.

6. Rate Amplification Techniques
Another useful technique towards improving the rate of NMC constructions is rate

amplification or bootstrapping. It is a recurring theme in cryptography to combine a scheme
with a very strong security but bad efficiency with a scheme with bad security but a great
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efficiency in such a way that the resulting scheme inherits the best of both worlds: good
security and efficiency.

In the context of non-malleable codes, it was first used by [13]. The authors achieved
a rate 1 non-malleable code against bitwise tampering and permutations by combining
the rate 0 scheme (from [59]) with an error correcting a secret sharing scheme (that has
no non-malleability guarantee). In the context of a 2-split state tampering, it was used
by [32–35].

The abstract idea is to use an efficient code to encode the message, while the bad rate
code will encode tags and checks independent of the message’s size. What is left is to argue
that those tags will guarantee the security of the construction.

In the remainder of this section, we will dive deeper into the construction of [32,33,35].
The latter paper achieves a current state-of-the-art rate of 1

3 , but it strongly builds on the
construction of the former paper; thus, we can not discuss one without the other.

6.1. Technical Overview of “Non-malleable randomness encoders and their applications”
This paper ([33]) does not build non-malleable code, but it forms a crucial building

block for the construction of [35].

Informal Theorem 3 (Main Result of [33]). There exists an efficient, information theoretically
secure non-malleable randomness encoder with a rate arbitrarily close to 1

2 , and the negligible error.

Kanukurthi, Obbattu, and Sekar [33] introduced the notion of non-malleable random-
ness encoders (NMRE). Similar to a 2-split-state NMC, a 2-split-state NMRE consists of
two independently tamperable states L and R. Contrary to an NMC, where the encoder
encodes arbitrary messages, an NMRE’s encoder outputs L and R such that they decode
to a random string, and herein lies all the difference: as we have already discussed in the
context of non-malleable extractors, it might not be possible to efficiently find the preimage
of the specific message, or the security parameter might be too small to allow for fixing the
specific message in a blackbox way.

While the problem of building high-rate NMCs has eluded researchers for over a
decade, we know how to build NMREs with rate 1

2 (see [33]). At the same time, we
emphasize that obtaining a high-rate NMC (instead of an NMRE) is critical for many
applications (such as non-malleable commitments.) Informally, the NMRE of [33] (see
Figure 1) picks the source w and seed s to a strong seeded extractor (Ext) as well as a key
k to a message authentication code (MAC). The code consists of two states, left: `‖w‖σw,
and right: r, where `, r are an encoding of s, k with any low-rate augmented non-malleable
code, and σw is a tag evaluated on w with k as the key. The codeword, if valid, decodes
to Ext(w; s).



Entropy 2022, 24, 1038 21 of 38

!

"

#
$%&'(#)

*+, !, " = /, 0

Left State

Right State

Message = 678 #, /

Decoder:

Figure 1. Construction of the non-malleable randomness encoder by [33] .

To denote the tampering of a variable x, we will use the x notation. The security proof
can be split into an analysis of the following three cases:
• Pid = {(`, w, σw, r) : (w, σw) = (w, σw) ∧NMDec(`, r) = NMDec(`, r)}. This partition

corresponds to the adversary not tampering with the codeword. In this case, the
codeword will decode to the same message.

• Ptag = {(`, w, σw, r) : (w, σw) 6= (w, σw)∧NMDec(`, r) = NMDec(`, r)}. This partition
corresponds to the case where s = s and k = k. Since the MAC’s key remains secure
and hidden from the adversary, the codeword will decode to ⊥ with high probability
via the security of the message authentication codes.

• Prest = {(`, w, σw, r) : NMDec(`, r) 6= NMDec(`, r)}. Finally, this partition represents
the case when adversary did apply non-trivial tampering to `, r. By the properties
of non-malleable code, if the codeword falls into this partition (and the likelihood of
falling into this partition is not too small) S is independent of S (even given L).
Now we will proceed with the following trick: we will reveal S and L, since W is now a
function of W only (We can ignore tag σw as a tiny leakage, alternatively the tag can be
moved inside the non-malleable encoding) we obtain that H∞(W|Ext(W, S), S, L) ≥
|W| − |Ext| − |S|, where |S| penalty comes since L might have depended on W and
thus S might depend on W.
This is a spot where we need augmented property as S remains uniform and inde-
pendent of W, S and L. Thus, as long as H∞(W|Ext(W, S), S, L) > |Ext|, we will
obtain that Ext(W, S) is uniform given Ext(W, S). This means that the original mes-
sage remains uniform given the message after tampering. The only thing to ensure
is that |W| − |Ext| − |S| > |Ext|. Since the size of S is small, we roughly obtain that
|W| > 2|Ext|, which leads to the rate 1

2 .
In order to extend this construction to encode an arbitrary message m, one option

would be to reverse sample w and s such that Ext(w; s) = m. Unfortunately, this will not
work because, on the one hand, we require the seed s to be short (as it is encoded using a
poor-rate NMC) and, on the other hand, given a source w, there will be at most 2|s| possible
messages that could have been encoded; thus, adversary tampering with w will likely be
able to distinguish between two messages of his choice (since, only for one of them, there
will exist si such that Ext(w, si) = mi). In other words, to obtain any meaningful security, s
needs to be as long as the message. However, if s is long, the above approach will not yield
an improvement in the rate.
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6.2. Technical Overview of “Rate One-Third Non-Malleable Codes”
Theorem 14 (Main Result of [35]). There exists an efficient, information-theoretically secure
ε-right-augmented (The right-augmented property guarantees that the right state of the NMC is
simulatable independent of the message, along with the tampered message) non-malleable code in
the 2-split-state model with rate 1/3 . The authors give two instantiations of the scheme: the first
gives a strikingly simple construction and achieves an error of 2−Ω(κ1/5/ polylog(κ)); the second

instantiation loses out on the simplicity but achieves an error of ε = 2
−Ω( κ

log3 κ
)
, where κ is the size

of the message.

As we discussed earlier, fixing a specific message in the scheme of [33] is not possible.
The idea is to add extra information to the right state that will allow for fixing a specific
message. The construction described in Figure 2 goes as follows: as before, we will pick
random w, s; then, we will fix c = Ext(w, s)⊕m, and, after that, we will pick two random
keys kc, kw and encode using a non malleable code: Enc(s, kc, kw) = `, r. Finally, we calculate
σw an MAC of w under key kw and σc a tag of c under key kc. The encoding is left state:
(`||w||σw) and right state: (r||c||σc).

As a side note, we mention that the encoding scheme is identical to that due to
Kanukurthi, Obbattu, and Sekar [32]. While [32] gave a four-state construction, Ref. [35]
merged states to obtain a two-state construction.

We now offer an overview of the proof.

r

𝑀𝐴𝐶(𝑐)

𝑀𝐴𝐶ೢ(𝑤)

 ௪

Left State

Right State

Message m

Decoder:

Figure 2. Overview of the construction from [35]. Blocks `, r come from augmented non-malleable
code. The encoder proceeds in steps: first, we randomly sample s, kw, kc, w (all independently of
the message we are encoding); then, we encode s, kw, kc using NMC into `, r. We then set c =

Ext(w; s)⊕m, and evaluate σc as an MAC tag of c on key kc, and σw as an MAC tag of w on key kw.

This construction uses the following building blocks: a message authentication code, a
strong seeded extractor, and a low-rate non-malleable code which we shall use to encode the
keys of the message authentication code and the seed for the seeded extractor. In addition,
for a variable X, X will denote its tampering. We proceed with a slightly simplified sketch
of the proof.
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Proof Overview
The proof proceeds by partitioning the codeword space. We describe the parti-

tions below:
• P1 = {(`, w, σw, r, c, σc) : (w, σw, c, σc) = (w, σw, c, σc) ∧ NMDec(`, r) = NMDec(`, r)}.

This partition captures the scenario when, even after tampering, the inner codeword
(`, r) decodes to the same message, and W, σw, C, σc remain unchanged; in this case,
the final codeword must decode to the same message.

• P2 = {(`, w, σw, r, c, σc) : (w, σw, c, σc) 6= (w, σw, c, σc) ∧ NMDec(`, r) = NMDec(`, r)}.
P2 captures the scenario when the decoding of the inner code remains unchanged
after tampering, while one of the pairs (W, σw) or (C, σc) are changed; if this event
occurs, then, using the security of MACs, the tampering is detected with overwhelm-
ing probability.

• P3 = {(`, w, σw, r, c, σc) : NMDec(`, r) 6= NMDec(`, r)}. P3 captures the scenario that
the inner code is non-trivially tampered and does not decode to NMDec(L, R). The
authors show that the tampered codeword is independent of the original message m.
This is the most interesting case.
In order to prove non-malleability, we need to demonstrate the existence of a simu-

lator whose outputs are indistinguishable from the output of the tampering experiment.
The simulator does not use the message; however, it outputs a special symbol same to
indicate that the tampered message is unchanged. The simulator’s output is run through a
special wrapper function (typically called “Copy” function) that, in this case, outputs the
original message.

The simulator generates the codeword ((L, W, σw), (R, C̃, σ̃c)) of a random message.
If this simulated codeword is in P1, it outputs same. Recall that the wrapper function
will then output the original message. If the simulated codeword is in P2, the simulator
outputs ⊥, else the simulator outputs Dec

(
(L, W, σw), (R, C̃, σ̃c)

)
. (Note that the code is

right-augmented i.e., it satisfies a stronger notion of security where the right state of the
codeword can be revealed without breaking non-malleability.)

To prove non-malleability, we need to show that this behavior of the simulator is
indistinguishable from that of the tampering experiment. To do this, we first need to
argue that the probability of a codeword being in any given partition is independent of the
message. The authors do it by showing how to determine a partition given small leakages
from the left and right state and then arguing that those small leakages can not leak the
encoded message, and thus the probability of falling into each partition can not depend on
the encoded message (This proof relies on the secret sharing property of the non-malleable
code as well as the security of the strong randomness extractor).

Next, the authors show that the output of the tampering experiment is, in each case,
indistinguishable from the simulator’s output.

For the case where the codeword is in partition P1, it is clear that the simulator output
is identical to that of the tampering experiment. We, therefore, focus on the other two cases.

6.2.1. Codeword is in P2 i.e., NMDec(L, R) = NMDec(L, R)
Intuitively, we would like to argue that the tag keys Kw, Kc will remain securely hidden

from the adversary, and, if he decides to tamper with W or C, he will not be able to fake
tags σw, σc. Thus, either the whole codeword remains untampered (in which case, we are in
P1) or the new codeword will not be valid.

The standard approach would be to argue that, if Pr(NMDec(L, R) = NMDec(L, R)) is
not too small, then

Pr(tampered codeword is valid ∧ (W, C) 6= (W, C) | NMDec(L, R) = NMDec(L, R))

is negligible. However, we have to be delicate here. For example, if the adversary wants
to tamper with W, he has access to L and knows that NMDec(L, R) = NMDec(L, R). This
reveals some information about R and thus the adversary potentially might get hold of
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some partial information about the encoded data (and Kw, Kc in particular). This is why it
is actually easier to directly argue that

Pr(tampered codeword is valid ∧ (W, C) 6= (W, C) ∧NMDec(L, R) = NMDec(L, R)) (3)

is negligible. Notice that the codeword will not be valid in only one of three cases: if
NMDec(L, R) = ⊥ or if one of the MACs on W or C does not verify correctly. Since
NMDec(L, R) = NMDec(L, R), we know that the only options left are the failures to verify
MACs. Moreover, we know that (Kw, Kc) = (Kw, Kc), thus Inequality (3) can be rewritten:

Pr(VrfyKw(W, σw) = VrfyKc(C, σc) = 1∧ (W, C) 6= (W, C) ∧NMDec(L, R) = NMDec(L, R)) (4)

is negligible. Now, we can upper-bound the term in the Inequality (4) by the following

Pr(VrfyKw(W, σw) = VrfyKc(C, σc) = 1∧ (W, C) 6= (W, C)),

which by the union bound can be upper-bounded with

Pr(VrfyKw(W, σw) = 1∧W 6= W) + Pr(VrfyKc(C, σc) = 1∧ C 6= C).

Finally, we can argue that each of the elements of the sum is negligible. Notice that when
tampering with a W adversary has access to L but that can not reveal any information
about Kw since every non-malleable code is a secret sharing scheme. The rest follows from
the security of MACs.

6.2.2. Codeword Is in P3 i.e., NMDec(L, R) 6= NMDec(L, R)
In this case, we will follow the adventures of the seed S; the MACs and keys do

not play any role here. In fact, for the purposes of this proof sketch, we will ignore the
MAC keys and tags. We will also assume that this case (i.e., codeword ∈ P3) occurs with
substantial probability (else we do not have to worry about it). In such a case, we will argue
that the final message is independent of the original message.

We start with replacing C (see Figure 2) with C̃ where C̃ is completely uniform
and independent of the message (eventually, we would need to replace C̃ back with
C = Ext(W, S)⊕m).

After technical transformations, the authors obtain that:

Ext(W; S) ≈ U|S, L, C̃, L,Ext(W; S), S (5)

The intuition behind the equation above is very similar to the case of Prest in Section 6.1;
the proof is more involved than the one in [33], but we omit the technical details behind
Equation (5). In addition, note that, in the equation above, there is no dependence on m
on either side as C̃ is independent of m. Ultimately, we would like to say that the output
of the tampering experiment is indistinguishable from the simulated output. The authors
accomplish this in three steps:

1. Adding R
In Equation (5), the only information correlated to W and R is S. Since Ext(W; S) ≈ U

even given S, we can safely add R to Equation (5).

Ext(W; S) ≈ U|S, L, C̃, L,Ext(W; S), S, R, g1(R, C̃, σ̃c) .

From here, we would ideally like to drop C̃ and somehow bring back the dependence on m
via C. For now, we drop C̃

Ext(W; S) ≈ U|S, L, L,Ext(W; S), S, R, R . (6)

The way, we will bring C is to condition C̃ on being a “cipher of m”. For that, we first
need to prove that C̃ is independent of W given appropriate auxiliary information.
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2. Capturing C̃’s correlation with W

In this step, the authors prove that C̃ is independent of W given S, L, L,Ext(W; S), S, R, R.
We first observe that C̃ is independent of W given (L, R, S). Now, we would like to add
the other random variables in the auxiliary information. The authors use a Lemma due
to Dziembowski and Pietrzak which states that independence in the presence of additional
auxiliary information is indeed possible, provided it satisfies a few properties:
• The auxiliary information may be computed in multiple steps;
• Computation in all of the steps can use (L, R, S) and the part of the auxiliary informa-

tion generated in previous steps;
• Computation in a given step can either depend on C̃ or W but not both.

By computing auxiliary information in the order L followed by R followed by Ext(W; S),
one can easily prove that C̃ is independent of W given S, L, L,Ext(W; S), S, R, R.

3. Conditioning C̃ appropriately

Since W is independent of C̃ given appropriate auxilliary information, in Equation (6),
we can condition C̃ to either be m⊕ Ext(W, S) or m⊕U. (Note that the former is identical
to C.) By doing so, Equation (6) will lead to the following C, S, L, L,Ext(W; S), S, R, R ≈
U , S, L, L,Ext(W; S), S, R, R, where R, S are appropriately computed.

The desired result follows by observing that the tampered codeword is a function of

L, R,Ext(W; S), C, R .

Putting It Together
Thus far, we have described the simulator and sketched the proof for showing that the

simulated output is indistinguishable from the tampered output in each of the cases. To
complete the proof, we need to combine all three cases and, in particular, the probability
that the codewords (tampered vs. simulated) lie in each of the partitions needs to be
analysed.

To do this, the authors follow a standard argument: they consider a “skewed” code-
word, which, like the tampered codeword, encodes the real message. However, the proba-
bility with which the skewed codeword lies in various partitions are the same as for the
simulated codewords (in other words, “skewed” codeword behaves like original codeword
on each partition, but partitions are “assembled” with slightly modified probabilities). The
authors complete the proof by showing that the probability that the tampered codeword
lies in a partition is independent of the message and then combines all three cases using
the skewed codeword as an intermediate hybrid.

This allows the authors to finish the argument about tampered message not revealing
the original message.

Candidate Instantiation
While one can turn any augmented non-malleable code (or randomness encoder) into

a good rate non-malleable code, a very simple result can be obtained using [9]. To encode a
message m, all we will need is an affine evasive function h. It is a function h : Fp →M∪⊥
such that Pr(h(aU + b) 6= ⊥ | h(U) = m) is negligible for all a, b, m, and U|h(U) = m
should be efficiently sampleable, the construction of the said function can be found in [9,49].
The encoding procedure is described in Figure 3.
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Short and Simple: The Encoding Procedure:

1. Sample s, kw, kc, w uniformly at random.

2. Sample x uniformly random, such that h(x) = s, kw, kc.

3. Sample `, r ∈ Fn
p uniformly random, such that 〈`, r〉 = x.

4. Evaluate c = Ext2(w; s)⊕m.

5. Calculate MACs σc = Tagkc(c) and σw = Tag′kw(w).
The final output is: on the left: `, w, σw, and on the right: r, c, σc.

Figure 3. Simple non-malleable code with a great rate. Here, h is an affine evasive function. The
decoding procedure is analogous: the decoder inverts Steps 3 and 2, obtains keys kw, kc, verifies
MACs from the Step 5 and proceeds to obtain the message via Step 4. If in Step 2 the function h
outputs ⊥, then the decoder aborts and outputs ⊥.

7. Application: Non-Malleable Codes for Computable Tampering
Split-state tampering functions, even when allowed leakage between the states, are

subject to strong independence constraints. In this section, we will look at tampering
families without any such constraints but instead having limited computational complexity. In
fact, we will show, in some sense, how to reduce computational constraints to independence
by showing how to construct non-malleable codes for a variety natural computational
tampering classes from split state non-malleable codes. We will consider the following
tampering classes:
• Decision tree tampering (Section 7.1 [46]): each tampered output symbol is a function

of a small polynomial number of (adaptively chosen) queries to codeword symbols.
• Small-depth circuit tampering (Section 7.2 [22,46,47]): the tampered codeword is

produced by a boolean circuit of polynomial size and nearly logarithmic depth.
• (Bounded) Polynomial-size circuit tampering (Section 7.3 [48]): the tampered code-

word is produced by circuit of bounded polynomial size, nd for some constant d where
n is the codeword length.

On computational complexity and non-malleable codes
We begin with some remarks connecting non-malleable codes with more conventional

computational complexity. First, we note that non-malleable codes for circuit classes require
circuit lower bounds.

Proposition 1 (Informal). For most natural tampering classes, C, an explicit non-malleable code
resilient to tampering by class C implies a circuit lower bound for that class: an explicit function
that is hard for C to compute.

In particular, if (Enc,Dec) is a non-malleable code resilient to C tampering, then
Dec cannot be computed by C. Suppose not; then, consider the tampering function that
computes Dec and outputs a fixed encoding 0 if the first bit of the message is 1 and outputs
a fixed encoding of 1, otherwise. Moreover, it is not difficult to observe that Enc gives rise
to (efficiently sampleable) input distributions against which Dec is hard-on-average for C
to compute.

Given our difficulties in proving circuit lower bounds, one interpretation of this obser-
vation is that we can only expect to construct unconditionally secure non-malleable codes
against very limited circuit classes—or in other words, non-malleable codes for expressive
circuit classes, such as polynomial size circuits, require computational assumptions.

Given that (strong) circuit lower bounds are necessary for non-malleable codes, one
might wonder if they are sufficient. In general, this is not true.
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Theorem 15 (Informal [60]). Explicit hard functions for a class C do not imply non-malleable
codes for C.

Consider the class of tampering functions, Localn−1 = { f }, such that each output
bit is an arbitrary function of all but 1 of the input bits, i.e., for each j ∈ [n] the function
computing the jth tampered bit, f j can be written as f j(c1, c2, . . . , cij−1, cij+1, . . . , cn) for
some ij ∈ [n]. It is easy to observe that such functions cannot compute Parity, i.e ⊕ici.
(There is a syntactic problem here in that the output length of Parity does not match that
of the tampering class, but consider instead a function whose first bit of output is the
Parity of its inputs.) In fact, functions in Localn−1 have no advantage over random guessing
computing Parity of uniformly random inputs.

One might hope to use the fact that Parity is hard for this class, Localn−1, directly by
encoding a single bit b as uniformly bits c1, . . . , cn such that ⊕ici = b. However, note that
this code, while providing some form of leakage-resilience, is trivially malleable by the
class: consider the function that flips the first bit.

This straw man argument intuitively leads us to believe that non-malleability requires
much more than (average-case) circuit lower bounds. Ref. [60] justified this intuition,
proving that non-malleable codes for Localn−1 tampering do not exist.

Key Idea: Communication Bottlenecks
We saw that the straw man approach of encoding directly using a hard function

for a computational tampering class will not succeed; instead, we show how to leverage
split-state non-malleable codes to construct non-malleable codes against computational
tampering classes. The high level intuition for all of these constructions is to induce and
exploit communication bottlenecks in the tampering computation.

What do we mean by communication bottlenecks? Imagine that the (random) inputs
to a computation can be partitioned into two subsets X and Y such that two parties, Alice
(holding X) and Bob (holding Y), can simulate the computation by communicating at most
t bits. Why is this helpful? This class of computation (independent tampering on X and
Y conditioned on small communication between X and Y) precisely corresponds to the
tampering class handled by (adaptive) leakage-leakage resilient split-state non-malleable
codes (See extensions to Definition 7 and Remark 1). For clarity, we define this tampering
class as two-party t-communication tampering (This class is also referred to as “leaky split
state tampering” in the literature. ).

Definition 14. Let f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n be a function and fA : {0, 1}n →
{0, 1}n, fB : {0, 1}n → {0, 1}n such that f (x, y) = fA(x, y), fB(x, y).

We say that f is a two-party t(n)-communication tampering function if there is a two-
party protocol Π f where two parties Alice and Bob communicate at most t(n) bits such that,
for any x, y ∈ {0, 1}n, if Alice is given x and Bob is given y, Alice outputs fA(x, y) and Bob
outputs fB(x, y).

We denote the class of two-party t(n)-communication tampering functions as t(n)−SS.
Moreover, we say a non-malleable code for this tampering class is augmented if the left half
of the codeword, communication transcript, and outcome of the tampering experiment can be
jointly simulated.

Our goal, in this section, is to construct coding schemes, Enc,Dec that induce com-
munication bottlenecks when composed with any tampering function in the target class,
i.e., for any tampering f , the function Dec( f (Enc(X, Y)) can be simulated by a two party
protocol with at most t bits of communication (existing leakage-resilient split-state codes
can handle t that is a constant fraction of |X| and |Y|). More precisely, we want to construct
a non-malleable reduction (Definition 4), Enc,Dec, from the computational tampering class,
C, to two-party t-communication tampering, i.e., for every tampering function f ∈ C there
exists some distribution D f over two-party t-communication tampering protocols such that

Dec( f (Enc(X, Y)) ≈ε D f (X, Y).
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In Section 7.1, we will see how [46] constructs such a non-malleable reduction for the
class of decision tree tampering functions: where each tampered output bit is produced by
a bounded number of queries to the input bits. Ref. ([46]’s construction extends an earlier
of [61] for local tampering functions, which corresponds to the case where the queries are
static: chosen independently of the input.)

Section 7.2 will not construct a communication bottlenecking non-malleable reduction
directly, but implicitly. In particular, this section will present [47]’s non-malleable reduction
from small-depth circuit tampering to decision tree tampering. This reduction, as well as
an earlier (but inefficient) construction of [22], critically uses a technique from the circuit
lower bound literature: random restrictions.

Finally, in Section 7.3, we will see how assumptions in the derandomization literature
can be used to induce communication bottlenecks in polynomial size circuit tampering. In
particular, how Ref. [48] uses hardness against nondeterministic circuits to construct non-
malleable codes for polynomial size circuit tampering from augmented leakage-resilient
split-state non-malleable codes. The code presented here has only inverse polynomial
security. Other constructions for this class are known that do not rely on split-state non-
malleable codes. Unfortunately, while these constructions are beautiful and achieve negli-
gible security error, they are not fully explicit: relying either on an untamperable common
random strings (CRS model) [10,62], or poorly understood heuristic cryptographic as-
sumptions [63,64]. (The latter constructions from cryptographic assumptions only achieve
computational security: no efficient distinguisher (polynomial size circuit) can distinguish
the real and simulated experiments)

Challenges (Comparison with Pseudorandomness)
The idea of communication bottlenecks has a fruitful history in pseudorandom-

ness [65–68], but our setting presents unique challenges that make it difficult to extend
results directly.

Firstly, non-malleable codes are required to meaningfully encode (and decode) infor-
mation. (In contrast, pseudorandomness is only required to “fool” the computation.) While
it is often intuitive how to tweak a pseudorandom generator to encode information, we
must also simulate decoding of whatever the computation outputs with low communi-
cation, which can be delicate as the adversarial tampering could try to force decoding to
behave badly.

Secondly, and perhaps more importantly, non-malleable codes must handle adversarial
computations that take n bits of input and output n bits. (Compare with pseudorandomness,
where it only necessary (and possible) to consider adversarial computations with short
output.) For example, while it is straightforward to fool a single decision-tree (using
bounded-inependence), n decision trees can copy X to the Y portion which cannot be
simulated with low communication.

On the upside, here the adversarial computation does not have the last word: the
(standard) non-malleability experiment only outputs after decoding. Additionally, non-
malleable codes are not concerned with pseudorandomness, so there is no need to strin-
gently account for the randomness consumed by the encoding.

Despite these differences, some of the constructions here will draw on techniques from
the pseudorandomness literature, particularly those of Sections 7.2 and 7.3.

7.1. Decision Tree Tampering
Now we will give an overview of [46]. As mentioned above, decision trees of depth

d capture tampering where each output bit is set arbitrarily after adaptively reading d
locations of the input, where the choice of which input location to read next at any point in
time can depend on the values of all the previous locations read.

Definition 15 (Decision Trees). A decision tree with n input bits is a binary tree whose internal
nodes have labels from x1, . . . , xn and whose leaves have labels from {0, 1}. If a node has label xi,
then the test performed at that node is to examine the i-th bit of the input. If the result is 0, one
descends into the left subtree, whereas, if the result is 1, one descends into the right subtree. The
label of the leaf so reached is the output value on that particular input. The depth of a decision tree
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is the number of edges in a longest path from the root to a leaf. Let DT(t) denote decision trees with
depth at most t.

Ref. [46] constructs non-malleable codes resilient to tampering by decision-trees of
depth n1/4−o(1).

Theorem 16 ([46]). For any t = O(n1/4/ log3/2 n), there is an explicit and efficient non-malleable
code that is unconditionally secure against depth-t decision trees with codeword length n =

O(kt2 log4 n/ log log n) and error exp(−Ω(n/t4 log5 n)) for a k-bit message.

Technical Overview
This theorem follows by constructing a non-malleable reduction (Definition 4) from

decision-tree tampering to two-party bounded communication tampering. Theorem 16
follows from composing this reduction with a leakage-resilient split-state non-malleable
code (i.e., a non-malleable code for two-party bounded communication tampering).

Lemma 13 (NMR from [46]). For any constant α ∈ (0, 1) and t = O(n1/4/ log3/2 n), there is a
(DT(t) ⇒ t(n)−SS, ε)-non-malleable reduction with rate Ω(1/t2 log3 n) where ε ≤
exp(−Ω(n/t4 log5 n)).

We will outline [46]’s reduction for decision tree tampering. Their reduction builds on
a reduction of [61] for local tampering (where the bounded number queries to codeword are
made non-adaptively). In fact, the two reductions are quite similar (though not identical);
however, the analysis differs substantially.

The key idea of this construction is to exploit size differences. The encoder and decoder
will work independently on the left and right pieces of the message, so we will in turn
think of having left and right encoders, decoders, codewords, and tampering functions
(corresponding to the respective outputs).

First, suppose that the right piece of the message (corresponding to the right split-
state codeword) is much longer than that of the left. Then, suppose both the right and
left encoders and decoders are simply the identity function. Then, all the left tampering
functions together will make a number of queries to the right codeword that is below the
leakage threshold.

However, because the right is much longer than the left, the above analysis will not
help in simulating tampering on the right with low leakage from the left. Instead, Ref. [46]
modifies the left encoder/decoder to make it much longer than the right, but while retaining
the property that the left can be decoded from just a few decision trees. To do so, sample a
random small set, whose size is that of the message, in a much larger array. Then, plant the
message in these locations and zero everything else out. Then, the bit-wise secret shares a
description of the small set (i.e., its seed) such that the secrecy threshold is relatively large.
To decode, simply extract the seed and output what is in the corresponding locations of
the array.

Now, note that decoding the left still only requires at most relatively few queries to the
right: decision tree depth times both encoded seed length plus message length. However,
we can not make the encoded seed too long or we will be dead again. Instead, Ref. [46]
critically uses the fact that tampering is by a forest of decision trees. In particular, for any
small set of tampering functions on the right, the seed remains uniformly chosen regardless
of what queries the set makes, so we expect only a small fraction of any queries made to
the array to actually hit the message locations. Strong concentrations bounds guarantee
that this is more or less what actually happens. Then, simply union bound over all such
subsets to guarantee that collectively the right tampering function makes few queries to
the left with overwhelming probability.

Finally, apply the same style of encoding used on the left to the right side to fix
the syntactic mismatch and reduce to the case where the right and left messages are the
same size.
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7.2. Small-Depth Circuit Tampering
We will give an overview of [47]. Small-depth circuit tampering captures the case

where each tampered output bit is produced by a size S(n) = nω(1) circuit of depth
d(n) = o(log n/ log log n) over the standard basis with arbitrary fan-in, we denote this
class ACd(S(n)). (This includes the case where each output is produced by a constant depth
polynomial size circuit, AC0.)

Theorem 17 ([46,47]). For d ≤ c1 log n/ log log n, there exists an explicit, efficient, information
theoretic non-malleable code for d-depth circuits (of unbounded fan-in) of size exp(nc2/d) with error
exp(−nΩ(1/d)) and encoding length n = k1+c, where c, c1, c2 ∈ (0, 1) are constants.

For the special case of AC0-tampering, there exist efficient non-malleable codes for O(1)-depth
polynomial size circuits circuits with negligible error and encoding length n = k1+o(1).

Ref. [47] showed how to use a tool from circuit lower bounds and derandomization,
pseudorandom switching lemmas, to construct a non-malleable reduction from small-depth
circuit tampering to decision tree tampering (which, as we have seen, can be reduced to
split-state tampering). Prior to this construction, Chattopadhyay and Li had constructed an
(invertible) seedless non-malleable extractor for small-depth circuit tampering [22]. However,
unlike the construction here, the error of their extractor yields inefficient non-malleable
codes (k length messages encode into codewords of length n = 2Ω(

√
k)). We state [47]’s

main technical lemma, a non-malleable reduction from small-depth circuit tampering to
small-depth decision tree tampering, before sketching their non-malleable reduction and
its analysis here.

Lemma 14 ([47]). For S, d, n, t ∈ N, p, δ ∈ (0, 1), there exists σ = poly(t, log(2tS), log(1/δ),
log(1/p)) and m = O(σ log n) such that, for any 2m ≤ k ≤ n(p/4)d,

(ACd(S) =⇒ DT(dmt), ε)

where
ε = nS

(
22t+1(5pt)t + δ

)
+ exp(− σ

2 log(1/p) ).

Let us start by considering the simpler case of reducing w-DNFs (each clause contains
at most w literals) to low-depth decision tree tampering. The reduction for general small-
depth circuits will follow from a recursive composition of this reduction.

A non-malleable reduction (E ,D) reducing DNF-tampering to small-depth decision
tree tampering needs to satisfy two conditions (i) Pr[D(E(x)) = x] = 1 for any x and,
(ii) D ◦ f ◦ E is a distribution over small-depth decision trees for any width-w DNF f .
A classic result from circuit complexity, the switching lemma [69–72] states that DNFs
become small-depth decision trees under random restrictions (“killing” input variables by
independently fixing them to a random value with some probability). Thus, a natural choice
of E for satisfying (ii) is to simply sample from the generating distribution of restrictions
and embed the message in the surviving variable locations (fixing the rest according to
restriction). However, although f ◦ E becomes a decision tree, it is not at all clear how to
decode and fails even (i). To satisfy (i), a naive idea is to simply append the “survivor”
location information to the encoding. However, this is now far from a random restriction
(which requires among other things that the surviving variables are chosen independently
of the random values used to fix the killed variables) is no longer guaranteed to “switch”
the DNFs to decision trees with overwhelming probability.

To circumvent those limitations, we consider pseudorandom switching lemmas, usually
arising in the context of derandomization [73–78], to relax the stringent properties of the
distribution of random restrictions needed for classical switching lemmas. In particular,
we invoke a pseudorandom switching lemma from Trevisan and Xue [77], which reduces
DNFs to decision trees while only requiring that randomness specifying survivors and
fixed values be σ-wise independent. This allows us to avoid problems with independence
arising in the naive solution above. Now, we can append a σ-wise independent encoding
of the (short) random seed that specifies the surviving variables. This gives us a generating
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distribution of random restrictions such that (a) DNFs are switched to decision trees, and
(b) the seed can be decoded and used to extract the input locations.

At this point, we can satisfy (i) easily: D decodes the seed (whose encoding is always
in, say, the first m coordinates), then uses the seed to specify the surviving variable locations
and extract the original message. In addition to correctness, f ◦ E becomes a distribution
over local functions where the distribution only depends on f (not the message). However,
composing D with f ◦ E induces dependence on underlying message: tampered encoding
of the seed may depend on the message in the survivor locations. The encoded seed
is comparatively small and thus (assuming the restricted DNF collapses to a low-depth
decision tree) requires a comparatively small number of bits to be leaked from the message
in order to simulate the tampering of the encoded seed; given a well simulated seed, we
can accurately specify the decision trees that will tamper the input (the restricted DNFs
whose output locations coincide with the survivors specified by the tampered seed). This
intermediate leaky decision tampering class, which can be described via the following
adversarial game: (1) the adversary commits to N decision trees, (2) the adversary can
select m of the decision trees to get leakage from, and (3) the adversary then selects the
actual tampering function to apply from the remaining local functions. However, provided
the seed length, m, is short enough, this just amounts to querying a slightly higher depth
decision tree.

To deal with depth d circuits, we can recursively apply this restriction-embedding
scheme d times. Each recursive application allows us to trade a layer of gates for another
(adaptive) round of m bits of leakage in the leaky decision tree game. One can think of the
recursively composed simulator as applying the composed random restrictions to collapse
the circuit to decision trees and then, working inwardly, sampling all the seeds and the
corresponding survivor locations until the final survivor locations can be used to specify
ultimate decision tree tampering.

7.3. (Bounded) Polynomial Size Circuit Tampering
In this subsection we follow [48], we show how to construct non-malleable codes

for tampering by nc-size circuits, where c is some constant. As mentioned at the outset,
non-malleable codes for circuit tampering imply circuit lower bounds. Given that explicit
lower bounds against superlinear size circuits are well-beyond our current techniques in
complexity, assumptions are needed for such non-malleable codes. Ref. [48] showed how
to use hardness assumptions against nondeterministic circuits to construct such codes from
split-state non-malleable codes. We begin by presenting the hardness assumption before
giving a brief overview of [48]’s construction.

Definition 16 (Nondeterministic circuit). A nondeterministic circuit C is a circuit with
“non-deterministic” inputs, in addition to the usual inputs. We say C evaluates to 1 on x if and
only if there exists an assignment, w, to the non-deterministic input wires such that the circuit,
evaluated deterministically on input (x, w) outputs 1.

Assumption 1 (E requires exponential size nondeterministic circuits). There is a language
L ∈ E = DTIME(2O(n)) and a constant γ such that, for sufficiently large n, non-deterministic
circuits of size 2γn fail to decide L on inputs of length n.

Informally, the above assumption says that non-uniformity and non-determinism do
not always imply significant speed-ups of uniform deterministic computations.

Theorem 18 ([48]). If E requires exponential size non-deterministic circuits, then, for every
constant c, and for sufficiently large k, there is an explicit, efficient, n−c-secure non-malleable code
for k-bit messages, with codeword length n = poly(k), resilient to tampering by nc-size circuits.

Ref. [48] constructs their codes by “fooling” non-malleable codes for split-state tamper-
ing with special properties: augmented, leakage-resilient, and admitting a special form of
encoding (given half a codeword can efficiently sample the other half to encode any mes-
sage).
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Split-state tampering functions may manipulate the left and right halves of a codeword
arbitrarily, but independently (i.e., functions such that (cL, cR) 7→ ( fL(cL), fR(cR)) for some
fL, fR). Leakage-resilient split-state tampering allows each tampered codeword half to
depend on bounded leakage from the opposite codeword half. In addition to split-state
NMC, Ref. [48] also uses a pseudorandom generator (PRG) for nondeterministic circuits,
where c′ > c is a constant. In particular, they require that the PRG, G, is secure even when
given the seed (seed extending), i.e., no nondeterministic circuit of bounded polynomial
size can distinguish G(s) from a uniformly random string and s is a prefix of G(s). The
existence of such PRGs follows from Assumption 1 [79–84].

Given a (leakage-resilient) split-state non-malleable code, with necessary properties
and a seed-extending pseudorandom PRG for nondeterministic circuits, G, we encode a
message x by sampling the following:

(s, cR) such that (G(s), cR)is a split-state encoding of x.

The proof proceeds by contradiction starting with the assumption that the construction
is not non-malleable. The analysis follows by giving a nondeterministic reduction that uses
the (assumed) malleablity of the construction to violate the PRG security.
1. Assume towards contradiction that (s, cR) is malleable and fix the corresponding poly-

size tampering function g, which is not split-state and violates non-malleability.
2. Transform g into a split-state tampering function fL, fR on (cL, cR), where (1) fL is

unbounded, relies on |s| bits of leakage from cR and returns some c′L, (2) fR is efficient,
relies on |s| bits of leakage from cL and returns c′R. Crucially, a split-state tampering
function ( fL, fR) is guaranteed to break non-malleability when cL = (s||y) = G(s).

3. Since (cL, cR) is a leakage-resilient split-state non-malleable code where cL is uni-
form random, then when cL is random (as opposed to in the construction where
codewords are sampled as (G(s), cR)), every tampering functon ( f ′L, fR) fails to break
non-malleability, even when f ′L is unbounded and chooses its output c′L in the “opti-
mal” way.

4. Construct an Arthur–Merlin protocol (with bounded poly-size Arthur), that distin-
guishes between input cL being random or pseudorandom. Such a protocol can then
be transformed into a non-deterministic polynomial bounded circuit (this follows
from classical results: IP[O(1)] ⊆ AM ⊆ NP/poly [84–87]).

5. Intuitively, Arthur can efficiently compute all the values needed to simulate the
tampering experiment except for c′L, which is obtained from Merlin. Specifically, on
input cL, Arthur samples cR, and computes c′R = fR(cR), as well as the leakage on
cR. Arthur sends cL and the leakage on cR to Merlin who responds with c′L. If cL is
pseudorandom, then an honest Merlin will return c′L = fL(cL), and, with Merlin’s
help, Arthur can check that non-malleability is violated with this c′L. If cL is random,
then, despite any response c′L = f ′L(cL) from Merlin, non-malleability will not be
violated, and a dishonest Merlin cannot convince Arthur otherwise.

8. Application to Non-Malleable Commitments
In this section, we discuss one of the most important applications of non-malleable

codes in the split-state model. In [35], the authors construct a 1/3-rate NMC (which we
described in Section 6.2), and then use the textbook non-malleable commitment scheme
with computational binding and statistical hiding from [39]. This construction achieves a
communication cost of approximately 41 times the length of the message being committed;
we begin by defining non-malleable commitments, introduced by Dolev, Dwork, and
Naor [88] that give computational binding and statistical hiding property.

Definition 17. Ref. [39] A non-malleable commitment scheme, 〈C,R〉 is a two-phase, two-party
protocol between a committer C and a receiverR. In the commit phase, C uses secret m and interacts
with R who uses no input. Let z = Com(m; r) denote R’s view after the commit phase. Let
(w, m) = Decom(z, m, r) denote R’s view after the decommit phase, which R either accepts or
rejects. We say that 〈C,R〉 is a computationally binding and ε-statistically hiding non-malleable
commitment scheme if the following properties hold:



Entropy 2022, 24, 1038 33 of 38

1. Correctness: If the parties follow the protocol, thenR(z, w, m) = 1, i.e., the receiver accepts.
2. Binding: For any PPT adversarial receiverR∗ that outputs (w′, m′), (w, m), z, with m′ 6= m,

the probability thatR(z, w, m) = 1 = R(z, w′, m′) is negligible.
3. Hiding: For all distinct message pairs m, m′, {Com(m; r)}r ≈ε {Com(m′; r′)}r′ .
4. Non-malleability: For avoiding trivial man-in-the-middle attack of copying the identity

of the committer, we consider the committer and receiver to additionally have an identity
Id ∈ {0, 1}λ as common input (λ is the computational security parameter). To define
non-malleability, we consider the real/ideal paradigm. In the real interaction, there is a man-in-
the-middle adversary M interacting with a committer, C, in the left session and a receiverR
in the right. All the quantities associated with the right interaction are denoted by the “tilde’d”
versions of their left counterparts (e.g., C commits to m in the left interaction while M commits
to m̃ in the right). Let MIMm denote the random variable describing (VIEW, m̃), consisting of
M’s view in the experiment and the value M commits to in the right interaction, given that
C committed to m on the left. The ideal interaction is the same, except that C commits to an
arbitrary message, say 0, on the left. Let MIM0 denote the corresponding random variable for
0. M is forced to use an identity Ĩd on the right, which is distinct from Id used on the left.
MIMm and MIM0 output a special symbol ⊥Id when M has used the same identity on the
right as received on the left.
Non-malleability guarantees that, for every PPT man-in-the-middle M, and for all messages
m, we have {MIMm(y)}y∈{0,1}∗ ≈c {MIM0(y)}y∈{0,1}∗ , where y is the auxiliary input
received by M.

The round complexity of a commitment scheme denotes the number of rounds of interaction between
the committer and receiver. The communication complexity of a commitment scheme denotes the
total size of the transcript of the interaction between the committer and the receiver.

The non-malleable commitment scheme from [39] uses a 2-split-state augmented non-
malleable code tolerating leakage as an underlying building block. By Theorems 3 and 5,
the leakage-resilience requirement can be removed; thus, if one instantiates this scheme
with the 1/3-rate augmented non-malleable code, one gets a non-malleable commitment
scheme with a communication complexity of 41 · |message length|. We begin by looking at
the building blocks used.

8.1. Building Blocks
The construction from [39] requires two building blocks, which were instantiated

in [35] as follows.
• A non-interactive computationally binding and statistically hiding commitment,

(Com,Decom), with message space {0, 1}2β1 , which is a non-interactive two phase pro-
tocol as in Definition 17 satisfying correctness, computational binding and statistical
hiding. There is a hashing based statistically hiding commitment of [89], which has
commitment size of ≈ 9 · (message length).

• A leakage resilient and augmented non-malleable code, (Enc,Dec), with message
space {0, 1}α and codeword space {0, 1}β1 × {0, 1}β2 .

8.2. Constructions
We now describe the construction of non-malleable commitments from [39], using

the building blocks from Section 8.1. For multiplication and addition operations in the
construction below, we assume a natural correspondence between the binary β1-bit strings
and the field GF(2β1).
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• Setup: Let Id ∈ {0, 1}λ be C’s identity, also given as input toR. λ is the computational
security parameter.

• Inputs: C has input message m ∈ {0, 1}α to be committed to. Id is a common input of
both C andR.

• Commit Phase:

1. C → R: Let (L, R)← Enc(m‖Id). Pick random r ← {0, 1}β1 and send Com(L‖r)
toR.

2. R → C: Send random a← {0, 1}β1\{0|β1|}.
3. C → R : Send b = ra + L and R.

• Decommit Phase: C opens the commitment in Step 1. Let L′‖r′ be the decom-
mited value.

• Receiver’s Output: If L′ and r′ do not satisfy r′a + L′ = b, then output ⊥inc. Else,
compute m′‖Id′ = Dec(L′, R), and output ⊥Id if Id′ = Id. Else output m′.

Figure 4. Non-malleable Commitment Scheme 〈C,R〉.

In [39], the additional property needed from the underlying NMC is called conditional
augmented property ([39], [Definition 10]), which guarantees that, if the left state L is first
picked at random from the space of left state of valid codewords (whose decode is 6= ⊥) and
then the right state is picked, conditioned on the message and the left state, the augmented
non-malleability (with right augmentedness) is still guaranteed; one can observe that the
proof of ([39], [Claim 2]), showing that a non-malleable code is conditional augmented,
only requires leakage resilience from the left state of the NMC. Hence, the main theorem
of ([39], [Theorem 1]), with instantiations from Section 8.1, can be stated as follows.

Theorem 19. Refs. [35,39] If (Com,Decom) is a non-interactive computationally binding and
statistically hiding commitment scheme, and (Enc,Dec) is a leakage resilient augmented non-
malleable code, then the protocol 〈C,R〉 in Figure 4 is a non-malleable commitment scheme against
synchronizing adversary with computational binding and statistical hiding.

Furthermore, using the hashing based non-interactive commitment scheme [89] and the non-
malleable code from [35], the communication cost of the above scheme is 41 α, where α is the
message length.

9. The New Frontier, Open Questions
In this section, we will describe few interesting unresolved questions that are related

to this survey:

Exponential error
To date, none of the explicit split-state non-malleable codes achieve genuinely exponen-

tial error, ε = 2−Ω(n). In particular, if one desires error 2−k, no construction with a codeword
of length O(k) is currently known. This is of particular importance in applications where
the security parameter may be larger than the message length.

Surpassing Bourgain’s extractor
As we already mentioned in Section 5, further improvements to the constructions of

non-malleable extractors would imply an explicit construction of a two-source extractor
with a negligible error and low sources entropy requirements. For more reading on the
problem, we refer to [90]. Finding such non-malleable extractors is an interesting open
question.

Rate above 1
3

The techniques mentioned in Section 6 do not allow us to build a non-malleable code
with a rate better than 1/3. Each of the states has to be at least as long as the message
(because of the secret sharing property discussed in Section 3), and the seeded extractor
trick requires the length of one of the states to be double the message length. Thus, going
below 1/3 requires a new approach, and is left as a (perhaps challenging) open question.
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Is the construction from [9] way stronger than we can prove?
We discuss this construction in Section 4. The construction requires a very large size

of the vectors (Ω(n4)’ coordinates, each of size Ω(n) for an n-bit message). We hypothesise,
however, that [9] should remain secure even for a constant number of coordinates. Even if
the above is not true, finding an explicit attack would greatly expand our understanding of
tamper resistance of the inner product. This might even have interesting consequences in
additive combinatorics.

Eight is a crowd
As we discuss in Remark 11, the question about the minimum number of states

necessary to build a continuous non-malleable code remains unanswered; we know it is at
least 3 and at most 8. We hypothesise that extending the techniques from [16] to existential
results in non-malleable extractors will yield an existential result in 6-state model. Closing
the gap between 3 and 8 would be very interesting, especially if the answer is not 3!
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