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Abstract: To address the problem of a poor security image encryption algorithm based on a single
chaotic map, this paper proposes a cascade modulation chaotic system (CMCS) that can generate
multiple chaotic maps. On this basis, a multi-image encryption algorithm with block-scrambling-
diffusion is proposed using CMCS. The algorithm makes full use of the features of CMCS to achieve
the effect of one encryption at a time for images. Firstly, the key-value associated with the plaintexts
is generated using a secure hash algorithm-512 (SHA-512) operation and random sequence, and
the three images are fully confused by the double scrambling mechanism. Secondly, the scrambled
image is converted into a bit-level matrix, and the pixel values are evenly distributed using the
bit-group diffusion. Finally, the non-sequence diffusion of hexadecimal addition and subtraction
rules is used to improve the security of the encryption algorithm. Experimental results demonstrate
that the encryption algorithm proposed in this paper has a good encryption effect and can resist
various attacks.

Keywords: cascade modulation chaotic system; multi-image encryption; block-scrambling-diffusion;
double scrambling mechanism; bit-group diffusion

1. Introduction

The rapid and continuous transmission of digital information over the network plat-
form has made network security a common concern. As an essential means of network
digital information protection, image encryption converts meaningful original images into
encrypted images that are unrecognized and similar to noise to ensure the safe transmission
of information in the network [1]. Although traditional encryption technologies such as
DES and AES have achieved good results in text encryption, due to a large amount of image
data and high computational complexity, the effect of image encryption using DES and AES
for text information encryption is not particularly ideal. The randomness and hybridiza-
tion of chaotic systems are similar to the scrambling and diffusion in cryptography [2].
Therefore, chaotic systems are widely used in the field of image encryption.

Image encryption schemes based on chaotic systems have undergone a series of
changes. Earlier chaos-based image encryption algorithms generally used a single chaotic
map [3,4]. Due to the development of the times, a single chaotic map can no longer
guarantee the secure transmission of images. For this reason, many scholars have proposed
an image encryption scheme based on double chaos. For example, Xu et al. [5] converted
the image into a bit-level matrix, using the Logistic map for pixel scrambling and the Chen
map for pixel diffusion. Kurunandan et al. [6] applied a Cat map and 2D-LSCM map to
the medical image encryption by scrambling-diffusion. The use of the multi-chaotic map
improves the security of the algorithm.

In addition, early image encryption schemes typically used a single scrambled encryp-
tion [7,8]. This kind of encryption scheme only changes the pixel’s position and does not
change the statistical characteristics of the pixel, which has great security risks. Current
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image encryption algorithms are mainly based on the cipher principles of Shannon design,
including two parts, scrambling and diffusion. The encryption technology of this structure
can be traced back to the symmetric block encryption technology proposed by Fridrich
in 1997 [9]. Since then, many image encryption systems based on scrambling-diffusion
structures have been developed [10,11]. Chai et al. [10] decomposed the plaintext image
into eight planes for scrambling and then performed bidirectional diffusion on the scram-
bled image to obtain the encrypted image. Ref. [11] proposes a robust image encryption
scheme based on chaotic systems and elliptic curves over finite fields. In this scheme,
Arnold transform is used to scramble the image to be encrypted, and then the pixel value
of the scrambled image is mixed with the random sequence XOR to generate the encrypted
image. In References [10,11], the diffusion operation was added, which changed the value
of pixels and enhanced the ability of the algorithm to resist differential attacks. On this
basis, Talhaoui et al. [12] proposed to combine the scrambling and diffusion processes.
Scrambling and diffusion only take one stage, which reduces the time required for en-
cryption and effectively improves the speed of image encryption. However, the above
encryption algorithms, which only use a single scrambling-diffusion to encrypt the image,
can no longer guarantee high image security. To this end, Zhang et al. [13] used the Arnold
transform to perform primary scrambling of the plaintext image. Then the image was
scrambled twice using phase truncated fractional Fourier transform and random masks.
Finally, DNA diffusion was used to obtain ciphertext images. Chen et al. [14] proposed an
image encryption structure based on diffusion- scrambling- diffusion. Through two rounds
of diffusion, the small differences in the plaintext image are diffused to all pixels of the
encrypted image.

Currently, most image encryption algorithms are based on pixel-level scrambling-
diffusion [15–19]. Because bit-level operation can achieve better scrambling and diffusion
effect, the bit-level operation is often used in some encryption schemes [20–22]. For example,
Sujarani et al. [20] proposed a dynamic bit-flip diffusion image encryption algorithm. Zhu
et al. [21] proposed a 3D bit-level image encryption scheme using Rubik’s cube method.
Li et al. [22] proposed an image encryption scheme combining bit-level scrambling and
multiplication diffusion. However, algorithms based on bit-level operations need to process
eight times as much data as those based on pixel-based operations. Therefore, improving
the speed of the bit-level encryption algorithm becomes particularly important.

Meanwhile, most image encryption algorithms are limited to gray images [23–25]. The
color image has three planes and higher data redundancy than the gray image. However,
whether it is based on color image encryption algorithm [26–28] or gray image encryption,
the algorithm encrypts a single image, cannot encrypt multiple images simultaneously, and
the encryption efficiency is low. As a result, multi-image encryption’s high security and
efficiency have become a new demand.

This paper presents a multi-image encryption algorithm based on a cascade modu-
lation system and block scrambling-diffusion. The purpose of this paper is to construct
a chaotic system that can generate multiple chaotic maps and improve the randomness
of sequences. The simultaneous encryption of three gray images is realized by using the
characteristics of image channels; a block scrambling-diffusion mechanism is established
to make the image of mutual influence and full confusion, to improve the security of the
encryption algorithm. The security of the encryption algorithm can be measured by simula-
tion experiments in Section 5: key space, key sensitivity, histogram, correlation, information
entropy and anti-differential attack. At the same time, the anti-cutting attack analysis and
anti-noise attack analysis in Section 5 can reflect the robustness of the algorithm. The main
innovations and contributions of the algorithm are as follows:

(1) Although the image encryption algorithm based on a single chaotic map can achieve
a certain encryption effect, the complexity is not high. Therefore, this paper proposes
a cascaded modulated chaotic system (CMCS) as the key generation source.
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(2) To solve the problem that the scrambling and diffusion steps are independent of the
plaintext image, the initial value of CMCS and the generation of system parameters
depend on the plaintext image, which can effectively brute force and plaintext attacks.

(3) In the scrambling process, three gray images are fused into a color image, and the
three images are divided into blocks. On the basis, through cross-plane scrambling,
the three images influence each other. In addition, the chaotic sequence is used to
scramble intra-block to reduce the correlation between adjacent pixels.

(4) According to the characteristics of the bit-level matrix, it is divided into four types.
The corresponding diffusion algorithm is adopted for the grouping type to make
the pixel distribution more average. Meanwhile, the non-sequential diffusion of the
hexadecimal addition and subtraction rule makes the non-linear relationship between
plaintext and ciphertext more complex. It improves the ability of the algorithm to
resist selective plaintext attacks.

The paper is organized as follows: Section 2 briefly introduces four traditional
chaotic maps and analyzes the characteristics of the map by using the bifurcation di-
agram. Section 3 first defines the structure of the cascaded modulated chaotic system
(CMCS). Then, it lists three examples of maps generated by CMCS. Finally, it verifies its
superior chaos through bifurcation diagrams, Lyapunov exponents, and 0–1 tests. Sec-
tion 4 details the specific steps of encryption and decryption based on CMCS and block
scrambling diffusion. Section 5 gives the image encryption results using Matlab simulation
experiments. A summary of this paper is presented in Section 6.

2. Background

The simulation results of the chaotic map introduced in this paper are all carried out
in the Matlab environment. In Matlab simulation software, the value of π is determined.
When using Matlab for calculation, to directly input π , pi is used to represent π , and the
last four digits of the π decimal point are retained by rounding. That is, pi = π = 3.1416
in Matlab. At the same time, Matlab uses double precision or single precision format to
represent the number of floating points. The highest precision of Matlab is double precision
and the default value is double precision, including 16 valid numbers. This can effectively
avoid the small errors generated in the calculation due to different systems, to avoid the
problem of different keys caused by different calculation accuracy between the encryption
and decryption parties under the same initial value. Therefore, the map generated by the
system can be used for image encryption.

2.1. Henon Map

Henon map is a two-dimensional discrete chaotic map and the simplest non-linear
map in high-dimensional map. Its mathematical definition is as follows:{

xn+1 = 1 + yn − ax2
n

yn+1 = bxn
(1)

where xn and yn are output chaotic sequences, a and b are system parameters for the Henon
map. When b = 0.3 and a ∈ [1.06, 1.4], the Henon map enters a chaotic state. Its bifurcation
diagram is shown in Figure 1a.

2.2. Logistic Map

One-dimensional Logistic chaotic system is often used in image encryption algorithms
as key generation sources. Its mathematical expression is:

xn+1 = µ× xn × (1− xn) (2)

In Equation (2) , µ is the control parameter and µ ∈ (0, 4), xn is chaotic map value and
xn ∈ [0, 1]. When the value of µ is determined, the logistic map is sensitive to the initial
value. It can be observed from Figure 1b that when µ ∈ (3.57, 4), the system enters a chaotic
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state. Although Logistic map is simple and efficient, it also has shortcomings such as a
small key space and poor performance of chaotic sequences.

2.3. Sine Map

The Sine map is derived from sine function as one-dimensional map, which retains
the output range of sine function [0, 1], but changes the input range from [0, π] to [0, 1].
The mathematical definition is as follows:

xn+1 = µ sin(πxn) (3)

where xn is the output chaotic sequence and µ ∈ [0, 1] is the system parameter of the Sine
map. From Figure 1c, it can be observed that when µ ∈ [0.87, 1], the Sine map is chaotic
and can be used for image encryption. Meanwhile, from Figure 1b,c, we can observe that
the chaotic behavior of the Sine map and Logistic map are similar, but the chaotic interval
is different.

2.4. Iterative Map

The Iterative map and Sine map are related to the sine function. However, the form of
Iterative map is more complex. Its mathematical definition is as follows:

xn+1 = µ× xn × (1− xn) (4)

where xn is the output chaotic sequence and a ∈ [0, 1] is the system parameter of the
Iterative map. When a = 0.5, its bifurcation diagram is shown in Figure 1d. From Figure 1d,
it can be observed that the Iterative map can reach the full map state within a certain range,
although there are many empty window periods. In addition, as shown in Figure 1c,d, the
Iterative map has a larger chaotic range compared with the Sine map.

(a) Henon map (b) Logistic map
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Figure 1. Chaotic map bifurcation graph.

3. Chaos System

It can be observed from Figure 1a–d that the traditional one-dimensional map and two-
dimensional map have certain chaos under appropriate parameters. However, their chaotic
interval is too small and the chaotic behavior is relatively simple, which leads to the encryption
effect not being ideal. For this reason, this paper proposes the cascaded modulation chaotic
system (CMCS) and evaluates the performance of the chaotic system through three examples.

3.1. Definition of Chaotic System

CMCS uses a two-dimensional chaotic map and a one-dimensional chaotic map (called
seed map) to generate a large number of new two-dimensional chaotic maps. Assume that
f (x) is a linear function, F(x) and G(x) are chaotic maps. CMCS is defined as follows:{

xn+1 = F( f (xn) · G(xn))
yn+1 = F( f (yn) · G(yn))

(5)

where xn and yn are output chaotic sequences. In CMCS, the linear function f (x) modulates
the chaotic map G(x). Then, the modulation result is used as the input of the chaotic map
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F(x) further to improve the dynamic characteristics of the chaotic system. At the same time,
using the cascade method to make chaotic maps interact with each other can produce more
complex chaotic sequences.

3.2. Examples of the Proposed Chaotic System

This section lists three examples and analyzes the chaotic characteristics of the example
by bifurcation diagram (BD), Lyapunov exponent (LE) and 0–1 test. Experimental analysis
shows that the newly generated chaotic map has a more extensive chaotic range, less empty
window period and more complex chaotic behavior than the original seed map.

3.2.1. Logistic-Henon Cascade Map (LHCM)

F(x) selects a two-dimensional Henon map and G(x) selects a one-dimensional Logistic
map. The Logistic map is appropriately scaled by f (x) = x + 1 , and then the Logistic-Henon
cascade map (LHCM) is obtained by the cascade method as follows:{

xn+1 = yn + 1− a(x(1− x)(1 + x))2

yn+1 = rbx(1− x)(1 + y)
(6)

where a ∈ [1, 1.6], r and b are the control parameter of LHCM map, and xn and yn are the
output chaotic sequence. When a ∈ [1, 1.6], r = 4 and b = 0.3, the BD, the LE and 0–1 test
results of LHCM are shown in Figure 2a–c.

First, Figure 2a shows the BD of LHCM. From Figure 2a, we can see that the LHCM
map can reach the state of the whole map under certain parameters. Compared with
Figure 1a,b, the chaotic interval of LHCM is larger. Second, having more than one positive
LE value is necessary for a dynamic system to have chaotic behavior. The LE of LHCM
is shown in Figure 2b, and the one LE value of the LHCM map is positive. It shows that
LHCM is chaotic in a certain parameter range. Finally, Figure 2c shows the 0–1 test results
of LHCM. The output of the 0–1 test is close to 1 indicating sequence chaos and close to
0 indicating sequence regularity. Figure 2c shows that the 0–1 test output of the LHCM
map is close to 1, that is, the sequence chaos generated by the LHCM map. Compared with
Logistic and Henon, the chaotic sequence generated by LHCM is more random and more
suitable for image encryption.

3.2.2. Henon-Sine Cascade Map (HSCM)

F(x) is chosen as a one-dimensional Sine map and G(x) is chosen as a two-dimensional
Henon map. Let f (x) = x, x be used to modulate the Henon map and concatenate the modu-
lation results with the Sine map. Finally, the Sine map is extended from one-dimensional to
two-dimensional so that the output is intertwined to obtain the Henon-Sine cascade map
(HSCM), as follows: {

xn+1 = r sin
(
πxn

(
1− ax2

n + yn
))

yn+1 = r sin(πynbxn)
(7)

where r, a and b are the control parameters of the HSCM map. Randomly select the initial
values x0 ∈ (0, 1] and y0 ∈ (0, 1], let b = 0.3, r = 4, the BD, LE and 0–1 test are shown in
Figure 2d–f. From Figure 2d, it can be observed that the chaotic sequence generated by
HSCM is uniformly distributed in [0, 1]. Within the range of parameters, HSCM almost
has no empty window period. HSCM has better chaotic characteristics than the seed map.
From Figure 2e, it can be observed that the HSCM map has two positive LE values, which
is a hyperchaotic map. From Figure 2, it is known that the output result of the HSCM map
is close to 1, which indicates that the LHCM map has good chaotic characteristics.
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3.2.3. Henon-Iterative Cascade Map (HICM)

F(x) selects a one-dimensional Iterative map, G(x) selects a two-dimensional Henon
map, let f (x) = x to obtain the Henon- Iterative cascade map (HICM) as follows:{

xn+1 = sin
(
rπ/

(
xn
(
1− ax2

n + yn
)))

yn+1 = sin(rπ/(bxnyn))
(8)

where r > 0, a > 0 and b > 0 are the control parameters of the HICM map and xn, yn are
the output chaotic sequences.

Figure 2g–i describes the BD, LE and 0–1 test of HICM for states x0 ∈ (0, 1], y0 ∈ (0, 1],
b = 0.3, r = 4. It can be observed from Figure 2g that no matter what value a takes, HICM
enters a chaotic state, which is a complete graph. Compared with Equations (1) and (4),
HICM increases the key space and the range of a. Moreover, Figure 2h–i shows that HICM
has two positive LE values, and the output of the 0–1 test is close to 1. HICM has a good
chaotic behavior similar to LHCM and HSCM.

In summary, it can be observed from Figure 2 that under certain conditions, the
bifurcation diagrams of LHCM, HSCM, and HICM show random distribution, and their
trajectory is difficult to predict, which can be used for the generation of random sequences.
The Lyapunov exponent is a quantitative description of the sensitivity of chaotic systems to
small changes in initial conditions. When the system has a positive LE value, the system
is chaotic. LHCM, HSCM, and HICM maps have positive LE values, indicating that they
have initial sensitivity, which coincides with the key sensitivity required in the encryption
process. Because LHCM, HSCM, and HICM map trajectories are difficult to predict and
sensitive to the initial value, when the map is used for image encryption, it is difficult for
attackers to speculate its equation, which can improve the security of the algorithm to a
certain extent.
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Figure 2. Performance analysis of chaotic map: (a) Bifurcation diagram of LHCM, (b) LE of LHCM,
(c) 0–1 test of LHCM, (d) Bifurcation diagram of HSCM, (e) LE of HSCM, (f) 0–1 test of HSCM,
(g) Bifurcation diagram of HICM, (h) LE of HICM, and (i) 0–1 test of HICM.
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4. Encryption and Decryption Algorithm

To improve the efficiency and security of the encryption algorithm, we designed a
CMCS-based multi-image encryption scheme in this section. In the scrambling-diffusion
stage, the random sequence generated by different chaotic maps can effectively improve the
security of the encryption algorithm. At the same time, the double scrambling mechanism
between inter-block and intra-block, as well as the multiple diffusion of bit-level and hex-
adecimal, can break the strong correlation between pixels and make pixel values uniformly
distributed to resist various attacks. The whole process of the encryption algorithm is
shown in Figure 3.

Figure 3. Encryption algorithm process diagram.

4.1. Generating the Initial Value Key

The scrambling-diffusion process of many algorithms is independent of plaintext
images. It leads to the algorithm not being sensitive to plaintext images and keys and
cannot resist known-plaintext attacks or differential attacks. Refs. [29–31] shows some
typical methods for cracking cryptosystems based on scrambling-diffusion structures. To
solve the problems of low-density sensitivity and plaintext sensitivity, researchers have
proposed some image encryption schemes related to plaintext in recent years [32,33]. They
all relate the key system to the characteristics of the plaintext image through different
methods.

SHA-512 is used to process the plaintext image to generate 128-bit hexadecimal digest
values and convert them into 512-bit binary numbers to realize the key associated with the
plaintext. Assuming that the generated first group of digest values is k1, the second group
of digest values is k2, the third group of digest values is k3. The initial key k of 512 bits is
obtained by XOR between three groups of summary values and 512 bits random sequence
k4. Then k = {x0, y0, r, b, w1, w2, w3, w4} can be obtained from Equation (9).

k = k1 ⊕ k2 ⊕ k3⊕k4 (9)

where x0, y0, r and b are the initial value and control parameters of LHCM, HSCM and
HICM. wi is the interference parameter used to change the value of the control parameters.

The initial value of the chaotic map is generated by the key k, which can achieve the
effect of a one-time-one-key. The initial state of the chaotic map is generated as shown in
Algorithm 1. Where sum1 is the sum of the pixel values of the first gray image, sum2 is the
sum of the pixel values of the second gray image, sum3 is the sum of the pixel values of the
third gray image, sum is the sum of the pixel values of the three gray images.
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Algorithm 1 Generate the initial values and control parameters of the chaotic map.

Input: key k with length of 512 bits.
Output: Initial state (x1

0, y1
0, r1, b1),(x2

0, y2
0, r2, b2),(x3

0, y3
0, r3, b3)and (x4

0, y4
0, r4, b4).

1: x0 =
(

∑64
i=1 k[i]× 2i−1

)
/264 ;

2: y0 =
(

∑128
i=65 k[i]× 2i−65

)
/264 ;

3: r =
(

∑192
i=129 k[i]× 2i−129

)
/264 ;

4: b =
(

∑256
i=193 k[i]× 2i−157

)
/264 ;

5: for j = 1 to 4 do
6: wj =

(
∑

256+64j
i=193+64j k[i]× 2i−193−64j

)
/264 ;

7: end
8: for i = 1 to 4 do
9: xi

0 = mod(x0 + wi × sum1, 1) ;
10: yi

0 = mod(y0 + wi × sum2, 1) ;
11: ri = mod(r0 + wi × sum3, 6) ;
12: bi = mod(b0 + wi × sum, 1) ;
13: end

4.2. Image Preprocessing

Step 1: Scan three gray images to generate matrices P1 , P2, P3, Mi and Ni, which are
rows and columns of the image matrix.

Step 2: If the image size is different, let Mmax = max(Mi), Nmax = max(Ni), where max()
represents the maximum.

Step 3: The initial states x1
0, y1

0, r1, b1 generated in Algorithm 1 are substituted into
LHCM for iteration. Then, the chaotic sequence generated by LHCM is added around the
image with a small size so that the size of all three gray images is Mmax × Nmax.

Step 4: Perform the channel fusion operation on the three gray images. The fused
image is divided into blocks with the size of L1 × L2. The number of blocks can be obtained
from Equation (10). Where T denotes the number of blocks, L1 represents the length of the
block divisible by Mmax, and L2 means the width of the block divisible by Nmax.

T = (Mmax/L1)× (Nmax/L2) (10)

4.3. Double Scrambling

Step 1: Substitute the initial state x1
0, y1

0, r1, b1 into the HSCM for (500 + T) itera-
tions. The first 500 iterations are discarded to reach the full chaotic state, and two chaotic
sequences A1 and A2 are obtained. The chaotic sequences A1 and A2 are processed by
Equation (11) to obtain pseudo-random sequences A∗1 and A∗2 .{

A∗1 = mod
(
round(A1)× 107, 6

)
A∗2 = mod

(
round(A2)× 107, 5

) (11)

where mod() is the modulo operation and round() denotes rounding a number to a specified
number of digits.

Step 2: Firstly, according to the elements in A∗1 find the corresponding rules in Table 1
for cross-plane scrambling between blocks. Then, the elements in A∗2 correspond to the
rules of Table 2 one by one, according to which, the block matrix is rotated and flipped.
Finally, the three gray images are combined into a color image P (Mmax × Nmax × 3), which
is shown in Figure 4.
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Table 1. Cross plane scrambling rules.

0 1 2 3 4 5

P1 P1 P2 P2 P3 P3
P2 P3 P1 P3 P1 P2
P3 P2 P3 P1 P2 P1

Table 2. Rotation and inversion rules.

0 1 2 3 4

Rotate 90◦ Rotate 180◦ Rotate 270◦ Horizontally
Inversion

Vertically
Inversion

Figure 4. Multiple images are scrambled across planes.

Step 3: The initial state x3
0, y3

0, r3, b3 is substituted into HSCM to iterate (L + L1) times
and (L + L2) times, respectively, and the previous L results are discarded to reach the full
chaotic state. The remaining L1 and L2 results are stored in arrays A4 and A5, respectively.

Step 4: Sort the arrays A4 and A5 separately to get the arrays A′4 and A′5. The new arrays
A∗4 and A∗5 record the position of each element in A′4 and A′5 in A4 and A5, respectively.

Step 5: Think of each element in A∗4 as the x-coordinate and each element in A∗5 as
the y-coordinate for inter-block scrambling. The scrambled image B is obtained by the
following Equation (12):

B(i, j) = P(A∗4(i), A∗5(j)) (12)

4.4. Bit-Level Grouping Diffusion

Because the bit-level operation can achieve a better scrambling and diffusion effect,
the scrambling matrix B is converted into a binary matrix B1. However, bit-level algorithms
need to process eight times more data than pixel-based algorithms. And single diffusion
algorithm, especially the diffusion algorithm with XOR operation, is vulnerable to various
attacks. Therefore, in this paper, matrix B1 is uniformly divided into four parts, namely,
0, 1, 2, and 3, while B1 is transformed into a bit-level matrix. When the pixel value of the
image is converted to the bit-level matrix, each pixel value is converted to an 8-bit binary
value. According to 2i, it can be divided into 8-bit group, 4-bit group, 2-bit group, and
1-bit group. At this time, the value of i corresponds to the value represented by the four
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parts. According to the grouping characteristics, each part’s diffusion process is realized by
using bit spiral transformation, perfect shuffle, DNA encoding and V-shaped diffusion to
improve the security of the encryption algorithm.

4.4.1. Definition of Bit Spiral Transformation

When i = 0, 2i = 1, the 8-bit binary number is regarded as a whole. At this time, the
whole bit spiral transformation is performed on the 0th part of the bit-level matrix B1. The
specific process is shown in Figure 5.

Step 1: Read the first row of pixels and put the read pixels into the newly generated
matrix.

Step 2: Delete the elements of the first row of the original matrix and rotate the deleted
matrix clockwise by 90◦.

Step 3: Repeat steps 1 and 2; when the 0th part of the bit-level matrix B1 has no
elements, the diffusion matrix B0

1 is obtained.

Figure 5. Bit spiral transformation.

4.4.2. Perfect Shuffle

When i =1, 2i = 2, the 8-bit binary number is divided into two parts, which can be used
to perform bit diffusion on the first part of B1 using the perfect shuffle algorithm.

Step 1: Divide the 8-bit binary sequence into two groups, and the sequence after
grouping is {a1, a2, a3, a4, b1, b2, b3, b4}.

Step 2: From the initial sequence {a1, a2, a3, a4, b1, b2, b3, b4} to the final sequence
{b1, a1, b2, a2, b3, a3, b4, a4} by observing its subscript value, two closed cycles 1→ 2→ 4→
8→ 7→ 5→ 1 and 3→ 6→ 3 can be formed.

Step 3: There is no intersection between two cycles, and the circle algorithm is executed
for each cycle.

Step 4: The sequence after diffusion is {b1, a1, b2, a2, b3, a3, b4, a4}.
Step 5: Repeat the above steps and finally obtain the diffusion matrix B1

1.

4.4.3. DNA Encoding

When i = 2, 2i = 4, the 8-bit binary number is divided into four parts corresponding to
the DNA sequence’s four bases A, G, C and T. The DNA algorithm can be used to perform
the diffusion operation on the second part of B1.

Firstly, the DNA sequence is obtained by DNA encoding according to the DNA
encoding rule 6 shown in Table 3. Then, the DNA sequence is decoded by the DNA
encoding rule 2, shown in Table 3. Finally, the diffusion matrix B2

1 is obtained.
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Table 3. Eight kinds of DNA codes satisfying complementarity rules.

Rule 0 1 2 3 4 5 6 7

A 00 00 01 01 10 10 11 11
T 11 11 10 10 01 01 00 00
G 01 10 00 11 00 11 01 10
C 10 01 11 00 11 00 10 01

4.4.4. Definition of V-Shaped Diffusion

When i = 3, 2i = 8, the 8-bit binary number can be divided into eight parts. At this
time, the V-shaped diffusion operation is performed on the third part of B1.

Step 1: The initial state x4
0, y4

0, r4, b4 is substituted into HICM to iterate (1000 + T) times
and discarded the results of the first 1000 iterations to generate the chaotic sequence B′. The
chaotic sequence B′ is processed by Equation (13) to obtain the pseudo-random sequence B∗.

B∗ = mod
(

round
(

B′
)
× 107, 6

)
(13)

Step 2: Assuming that each element in B∗ is Bj, separate a row from each Bj bit
according to the ‘V’ shape.

Step 3: Starting from the first row, read each row character in sequence, and then
connect each column character together, and finally, obtain the ciphertext. The specific
operation is shown in Figure 6.

Step 4: Splicing B0
1 , B1

1 , B2
1 , B3

1 to generate the primary diffusion matrix B∗1 .

Figure 6. V-shaped diffuse.

The process of bit-group-diffusion is shown in Figure 7.
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Figure 7. Bit-group diffusion.

4.5. Hexadecimal Addition and Subtraction Diffusion Operations

Step 1: Convert every four-bit binary number of the diffusion matrix B∗1 into one
hexadecimal digit to obtain the hexadecimal matrix C1.

Step 2: Formulate hexadecimal addition and subtraction rules such as: ‘A’ + ‘A’ = ‘4’
and ‘E’−‘3’ = ‘B’.

Step 3: The initial state x1
0, y1

0, r1, b1 generated in Algorithm 1 is substituted into HICM.
Then, random matrices D and E of the same size as the scrambling matrix C1 are generated
in the same way as arrays A1 and A2. Finally, the ciphertext matrix C is obtained by two
rounds of forward and reverse non-sequential diffusion by Equations (14) and (15).

F(1, 1) = mod
(

C1(1, 1) + D(1, 1), 256
)

F(1, j) = mod
(

C1(1, j) + D(1, j)− F(1, j− 1), 256
)

F(i, 1) = mod
(

C1(i, 1) + D(i, 1)− F(i− 1, 1), 256
)

F(i, j) = mod
(

C1(i, j) + D(i, j)− F(i− 1, j)− F(i, j− 1), 256
) (14)


C(M, N) = mod(F(M, N) + E(M, N), 256)
C(M, j) = mod(F(M, j) + E(M, j)− C(M, j + 1), 256)
C(i, N) = mod(F(i, N) + E(i, N)− C(i + 1, N))
C(i, j) = mod(F(i, j) + E(i, j)− C(i + 1, j)− C(i, j + 1), 256)

(15)

4.6. Decryption Algorithm

The encryption process is reversible and the decryption process is an inverse process.
Firstly, the key k is substituted into LHCM, HSCM and HICM maps to generate the chaotic
sequence used in the encryption process. Then, the ciphertext image C is processed by
inverse hexadecimal addition and subtraction diffusion operation to obtain the diffusion
matrix B∗1 , and the B∗1 is proportionally divided into four sub-blocks and the scrambling
matrix B is obtained by inverse packet diffusion. Finally, the scrambled image B is subjected
to reverse coordinate matrix scrambling and reverse cross-plane scrambling to obtain the
reconstructed image. The reconstructed image is separated to obtain three gray images.
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5. Simulation Results and Security Analysis

According to the feature that a color image has three channels and a gray image has
only one channel, this paper constitutes three gray images into a three-channel encrypted
image. To verify the effectiveness and feasibility of the algorithm, three plaintext images
of Boat, Lenna and Peppers of size 512 × 512 are selected for encryption and decryption
experiments on MATLAB 2017 platform. The encryption and decryption effects are shown
in Figure 8. Through the simulation results, it can be observed that the image encryption
and decryption effect are good.

Figure 8. Encryption and decryption results: (a) Boat; (b) Lena; (c) Peppers; (d) Ciphertext image;
(e) Decrypt image Boat; (f) Decrypt image Lena; (g) Decrypt image Peppers.

5.1. Key Space Analysis

In order to resist brute-force attacks, the key length of the image encryption algorithm
based on chaos should be greater than 100 bits [34]. In this algorithm, the key mainly
consists of two parts: (1) 256-bit initial key k = {x0, y0, r, b, w1, w2, w3, w4} generated by
SHA-512. (2) DNA encoding and decoding rules. Since the encoding and decoding rules of
DNA are two integers, the key space is 2256 + 2 > 2100. Currently, the proposed algorithm
has a large enough key space to resist brute-force attacks.

5.2. Key Sensitivity Analysis

Key sensitivity is an important indicator for testing the security of encryption algo-
rithms. Key sensitivity can be tested in two ways. The first is to change the key to see if it
can be decrypted correctly. The second is to change the key and observe the difference in
ciphertext images. Experimentally, three plaintext images of Boat, Lenna and Peppers with
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512 × 512 are selected for the key sensitivity test. In the trial, one group used the correct
key for decryption. In the other two experiments, the initial value of x0 was increased by
1014, and the value of the control parameter µ was reduced by 1014. The test results are
shown in Figure 9a–c. As can be observed from the Figure 9b,c, after changing the keys x0
and µ, it cannot be decrypted correctly. Similar results can be obtained if you change other
keys for testing.

In order to obtain the ciphertext difference caused by the change of the key parameters
more accurately, further experiments are carried out in this paper.The difference between
decrypted images obtained by different keys (Figure 9a–c) is calculated, and the results are
shown in Figure 9d–f. In Figure 9d–f, the ciphertext pixels obtained by the three groups of
experiments are very different, and the image encryption algorithm based on CMCS has
high key sensitivity.

The experimental results in Figure 9 show that the original image cannot be obtained
even if the slightly changed key is used to decrypt the image. Only by using the correct key
can the original image be decrypted correctly.

(a) (b) (c)(b) (c)

(d) (e) (f)

Figure 9. Key sensitivity test: (a) Combined image decrypted with correct key; (b) x0 = x0 + 1014;
(c) µ = µ + 1014; (d) Difference image between (a) and (b), (e) Difference image between (a) and (c);
(f) Difference image between (b) and (c).

5.3. Histogram Analysis

The histogram directly demonstrates the distribution of pixel intensity. The more
uniform the histogram of the image, the stronger the ability to resist statistical analysis
attacks, and the more difficult the attacker to obtain image information. The algorithm first
uses the double scrambling mechanism to change the pixel value positions of the image,
but it cannot change the pixel values and make them uniformly distributed. Therefore, the
pixel values are changed by bit grouping diffusion, hexadecimal addition and subtraction
non-sequence diffusion. The histogram comparison before and after image encryption is
shown in Figure 10.
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Figure 10. Histogram: (a) Boat, (b) Lena, (c) Peppers, (d) Boat plaintext histogram, (e) Lena plain-
text histogram, (f) Peppers plaintext histogram, (g) R-channel ciphertext histogram, (h) G-channel
ciphertext histogram, and (i) B-channel ciphertext histogram.

From Figure 10, we can observe that the pixel values of three plaintext images are
randomly distributed, and the pixel values of ciphertext images are uniformly distributed
in the range of 0–255. The statistical properties of images are fundamentally changed.
Therefore, this algorithm can effectively resist attacks based on statistical analysis.

5.4. Correlation Analysis

The strong correlation between adjacent pixels makes the image vulnerable to statistical
attacks. Thus, breaking the strong correlation between adjacent pixels becomes one of the
main purposes of encryption. The algorithm uses chaotic sequences generated by the CMCS
system to perform an inter-block cross-plane scramble and intra-block coordinate matrix
scramble of plaintext pixel values to eliminate the correlation between adjacent pixels.

Experimentally, 1000 pixel points are randomly selected from each of the image’s hori-
zontal, vertical and diagonal directions for correlation analysis. The pixel value distribution
of the plaintext image is shown in Figure 11, and that of the ciphertext image is shown
in Figure 12. It can be observed that the correlation between adjacent pixels of ciphertext
images is significantly reduced.

In addition, Table 4 shows the correlation data between the original and encrypted
images of Lena images in the algorithm of this paper and other recent encryption algorithms.
The closer the image correlation is to 0, the closer the image is to the random image. From
Table 4, it can be observed that the correlation of adjacent pixels in horizontal, vertical and
diagonal directions of the original image is close to 1, and the correlation of the encrypted
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image is close to 0. The results of comparing the image correlation under the action of different
algorithms also proves that the algorithm in this paper has a better encryption effect.

Table 4. Correlation coefficient.

Image Horizontal Direction Vertical Direction Diagonal Direction

Boat 0.9450 0.9758 0.9283
Peppers 0.9732 0.9847 0.9550

Lena 0.9666 0.9823 0.9566
Ref. [35] 0.0032 −0.0182 −0.0021
Ref. [36] 0.0635 0.1981 0.1698
Ref. [37] 0.0041 0.0043 0.0084

Our scheme 0.0020 −0.0006 −0.0062
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Figure 11. Plaintext image correlation analysis: (a) Boat horizontal direction, (b) Boat vertical
direction, (c) Boat diagonal direction, (d) Lena horizontal direction, (e) Lena vertical direction,
(f) Lena diagonal direction, (g) Peppers horizontal direction, (h) Peppers vertical direction, and
(i) Peppers diagonal direction.
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Figure 12. Ciphertext image correlation analysis: (a) R-channel ciphertext horizontal direction,
(b) R-channel ciphertext vertical direction, (c) R-channel ciphertext diagonal direction, (d) G-channel
ciphertext horizontal direction, (e) G-channel ciphertext vertical direction, (f) G-channel ciphertext
diagonal direction, (g) B-channel ciphertext horizontal direction, (h) B-channel ciphertext vertical
direction, and (i) B-channel ciphertext diagonal direction.

5.5. Information Entropy Analysis

Information entropy reflects the randomness of information distribution in images.
The higher the information entropy, the more random is the image. Assuming that the
information in an image contains L different values, and the set of values is (S0, S1 . . . SN−1),
its information entropy H(S) can be expressed by the following Equation (16):

H(S) = −
L−1

∑
i=0

P(Si) log[P(Si)] (16)

where P(Si) represents the probability of Si appearing in the image S. Obviously, for an
8-bit grayscale image, its ideal value H(s) = 8 [38]. The information entropy of the encrypted
image of the proposed algorithm is the mean value of three channels. The information
entropy of the plaintext image is shown in Table 5, and the comparison results between the
proposed algorithm and other algorithms are shown in Table 6.
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Table 5. Information entropy plain images and encrypted images.

Algorithm Image
Information Entropy

Plain Image Cipher Image

Our scheme
Boat 7.1914

7.9998Lena 7.4451
Peppers 7.5937

Table 6. Information entropy of different algorithms.

Algorithm Our Scheme Ref. [39] Ref. [40] Ref. [41] Ref. [34]

Information
entropy 7.9998 7.9994 7.9996 7.9995 7.9994

It can be observed from Table 5 that the information entropy of the ciphertext image is
greatly improved compared with the plaintext image, which is close to 8, indicating that
the ciphertext image is close to the random image. The results in Table 6 show that the
proposed algorithm has more tremendous advantages than other algorithms.

5.6. Anti-Cropping Attack Analysis

As a common attack method, the cropping attack can be used to measure the robust-
ness of an encryption algorithm. It crops against the ciphertext image and measures the
algorithm’s robustness by deciphering the decrypted plaintext information. The experiment
crops an arbitrary size region of the encrypted image at random and decrypts the cropped
image, as shown in Figure 13.

Figure 13. Anti-cropping attack analysis.
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From the perspective of decryption, even if different shapes are cropped to varying
positions of the ciphertext image, the information of the original image is basically restored
after decryption. Therefore, the algorithm proposed in this paper has the ability to resist
cropping attacks.

5.7. Anti-Noise Attack Analysis

When the encrypted image is attacked by noise, most of the information of the plaintext
image can still be obtained after decryption, which indicates that the algorithm has good
robustness. Experiments add 5%, 10%, 20% salt and pepper noise to the plaintext image. Their
corresponding decrypted images are shown in Figure 14. It can be observed from Figure 14
that even if the images are added with different proportions of noise, the basic information of
the images can still be obtained after decryption, and the algorithm can resist noise attacks.

Figure 14. Anti-noise attack analysis: (a) 5% pepper noise; (b) 5% pepper noise; (c) 5% pepper noise;
(d) 10% pepper noise; (e) 10% pepper noise; (f) 10% pepper noise; (g) 20% pepper noise; (h) 20%
pepper noise; (i) 20% pepper noise.

5.8. Analysis of Anti-Differential Attack

Differential attack means the attacker uses the same encryption algorithm to encrypt
different plaintext images with similar pixels and determines the correlation between plaintext
and ciphertext through the changes between additional encrypted images to crack the image
encryption algorithm. The algorithm needs good diffusion characteristics to resist differential
attacks. Therefore, the algorithm proposed in this paper first conducts block diffusion through
bit spiral transformation, perfect shuffle, DNA encoding, and V-shaped diffusion. Then, the
addition and subtraction algorithm of hexadecimal is used to conduct overall diffusion to
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resist differential attacks. The ability of the algorithm to resist differential attack is quantified
by calculating the number of pixels’ change rate (NPCR) and unified averaged changed
intensity (UACI). The calculation formula is as follows in Equations (17) and (18).

NPCR =
1

M× N

M

∑
i=1

N

∑
j=1

Q(i, j)× 100% (17)

UACI =
1

M× N

M

∑
i=1

N

∑
j=1

|C1(i, j)− C2(i, j)|
255

× 100% (18)

where M and N, respectively, denote the length and width of the image, C1(i, j) and C2(i, j),
respectively, represent the pixel values of the (i, j) point in the corresponding image of two
plaintext images, Q(i, j) represents the different pixels of two ciphertext images.

For 8-bit gray images, the ideal expectation values for NPCR and UACI are 99.61%
and 33.46%, respectively [42]. By changing one of the pixel values, the results of NPCR and
UACI of the proposed algorithm in this paper compared with other literature algorithms
for image Lena are shown in Table 7. It can be concluded from the table that the algorithm
has a high ability to resist differential attacks.

Table 7. NPCR and UACI of different encryption algorithms.

Algorithm NPCR UACI

Our scheme 99.6289 33.5006
Ref. [39] 99.6250 33.4510
Ref. [40] 99.1841 33.5284
Ref. [41] 99.5907 33.4811
Ref. [34] 99.6208 33.5025

5.9. NIST Test

NIST test consists of 15 subtests, which can be used to estimate the randomness of
the sequence. The test results mainly demonstrate the advantages and disadvantages of a
random sequence by analyzing the uniformity, consistency and pass rate of the sequence.
The probability value (p-value) represents the uniformity of the sequence, and the propor-
tional value represents the pass rate of the sequence. Each test gives a significant level of
α = 0.01. If the p-value is more incredible than α, then the sequence has good randomness.
Otherwise, the randomness of the sequence is insufficient.

The wash-ir (2250 × 2250 × 3) was selected as the test image for encryption. The first
8,000,000 pixels were converted to 64,000,000 binary sequences for the NIST test. The test
results are shown in Table 8. Table 8 shows that the values of p-value are above 0.01, and
the Proportion values are above 98%. The statistical test results show that the ciphertext
sequence has good randomness.
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Table 8. NIST test.

Sub-Tests p-Value Proportion Pass/Fail

Frequency Test 0.275709 62/64 Pass
Block Frequency Test 0.134686 64/64 Pass

Cumulative Sums 0.931952 62/64 Pass
Runs Test 0.706149 64/64 Pass

Longest Run Test 0.350485 64/64 Pass
Rank Test 0.568055 61/64 Pass

FFT 0.602458 63/64 Pass
Non-Overlapping Template Test 0.772760 64/64 Pass

Overlapping Template Test 0.213309 64/64 Pass
Universal Test 0.568055 63/64 Pass

Approximate Entropy Test 0.637119 63/64 Pass
Serial Test 0.437274 63/64 Pass

Random Excursions Test 0.585209 44/44 Pass
Random Excursions Variant Test 0.739918 44/44 Pass

Linear Complexity Test 0.299251 64/64 Pass

5.10. Analysis of Encryption Efficiency

Encryption efficiency can be visually displayed by the running time of the image
encryption algorithm. The encryption time of this algorithm is compared with other
encryption algorithms, as shown in Table 9.

Table 9. Running time of encryption algorithm.

Algorithm Image Times(s)

Our scheme 3 × 256 × 256 0.9375
AES scheme [43] 1 × 256 × 256 5.5312

Ref. [44] 1 × 256 × 256 2.0422
Ref. [45] 3 × 256 × 256 1.5910
Ref. [46] 3 × 256 × 256 1.5700

6. Conclusions

Analyzing the problems in the traditional scrambling-diffusion process cannot ef-
fectively balance the algorithm time and security. In this paper, we propose an image
encryption algorithm based on a cascaded modulated chaotic system and block-scrambling-
diffusion. In the encryption process, scrambling and diffusion are associated with plaintext,
which can improve the algorithm’s security to a certain extent. Meanwhile, the design of
block-scrambling-diffusion can effectively reduce the time cost. The experimental results
demonstrate that the algorithm has ample key space, and can resist statistical analysis,
noise attack, cropping attack and differential attack. However, the algorithm can only
encrypt three gray images of different types into one ciphertext image and cannot encrypt
multiple plaintext images into multiple ciphertext images in one encryption. In order to
expand the scope of applicability of the algorithm, the next step will be to study the image
encryption algorithm with an unlimited number and types of encryption.
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