
Citation: Merchant, N.; Hart, J.D. A

Bayesian Motivated Two-Sample Test

Based on Kernel Density Estimates.

Entropy 2022, 24, 1071. https://

doi.org/10.3390/e24081071

Academic Editor: Udo Von Toussaint

Received: 1 July 2022

Accepted: 27 July 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Bayesian Motivated Two-Sample Test Based on Kernel
Density Estimates
Naveed Merchant * and Jeffrey D. Hart

Department of Statistics, Texas A&M University, College Station, TX 77840, USA; hart@stat.tamu.edu
* Correspondence: naveedmerchant2@tamu.edu

Abstract: A new nonparametric test of equality of two densities is investigated. The test statistic is
an average of log-Bayes factors, each of which is constructed from a kernel density estimate. Prior
densities for the bandwidths of the kernel estimates are required, and it is shown how to choose
priors so that the log-Bayes factors can be calculated exactly. Critical values of the test statistic are
determined by a permutation distribution, conditional on the data. An attractive property of the
methodology is that a critical value of 0 leads to a test for which both type I and II error probabilities
tend to 0 as sample sizes tend to ∞. Existing results on Kullback–Leibler loss of kernel estimates
are crucial to obtaining these asymptotic results, and also imply that the proposed test works best
with heavy-tailed kernels. Finite sample characteristics of the test are studied via simulation, and
extensions to multivariate data are straightforward, as illustrated by an application to bivariate
connectionist data.
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1. Introduction

Ref. [1] proposed the use of cross-validation Bayes factors in the classic two-sample
problem of comparing two distributions. Their basic idea is to randomly divide the data
into two distinct parts, call them A and B, and to define two models based on kernel
density estimates from part A. One model assumes that the two distributions are the
same and the other allows them to be different. A Bayes factor comparing the two part A
models is then defined from the part B data. In order to stabilize the Bayes factor, Ref. [1]
suggest that a number of different random data splits be used, and the resulting log-Bayes
factors averaged.

In the current paper we consider a special case of this approach in which the part
A data consists of all the available observations save one. If the sample sizes of the two
data sets are m and n, this entails that a total of m + n log-Bayes factors may be calculated.
The average of these m + n quantities becomes the test statistic here considered, and is
termed ALB.

Although ALB is an average of log-Bayes factors, it does not lead to a consistent Bayes
test because each of the log-Bayes factors is based on just a single observation. Ref. [1]
suppose that the validation set size grows to ∞, while in our case it remains of size 1. This
results in the ALB converging to the Kullback–Leibler divergence of the two densities, and
not ∞ as in the case of [1]. We therefore use frequentist ideas to construct our test. The exact
null distribution of ALB conditional on order statistics is obtained using permutations of
the data. Doing so leads to a consistent frequentist test whose size is controlled exactly.
The problem of bandwidth selection is dealt with by using leave-one-out likelihood cross-
validation applied to the combination of the two data sets. This method is computationally
efficient in that the resulting bandwidth is invariant to permutations of the combined
data, and therefore has to be computed just once. Our methodology is easily extended to
bivariate data, and we do so in a real data example.
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Ref. [2] also use a permutation test based on kernel estimates for the two-sample
problem, their statistic being based on an L2 distance. Ref. [3] shows how other distances
and divergences compare when applying them to the general k-sample problem, restricting
their comparisons to the one-dimensional case. Our method mainly differs from these
procedures by virtue of its Bayesian motivation. Existing methodology that most closely
resembles ours is that of [4], who use a kernel-based marginal likelihood ratio to test
goodness of fit of parametric models for a distribution. Their marginal likelihood employs
a prior for a bandwidth, as does ours.

2. Methodology

We assume that X = (X1, . . . , Xm) are independent and identically distributed (i.i.d.)
from density f , and independently Y = (Y1, . . . , Yn) are i.i.d. from density g. We are
interested in the problem of testing the null hypothesis that f and g are identical on the
basis of the data X and Y. Let U = (U1, . . . , Uk) be an arbitrary set of k scalar observations,
and define a kernel density estimate by

f̂K(u|h, U) =
1
kh

k

∑
i=1

K
(

u−Ui
h

)
, −∞ < u < ∞,

where K is the kernel and h > 0 the bandwidth.

2.1. The Test Statistic

Let Zi = Xi, i = 1, . . . , m, Zi = Yi−m, i = m + 1, . . . , m + n, Z = (Z1, . . . , Zm+n) and
Zi be the vector Z with all its components except Zi, i = 1, . . . , m + n. Furthermore, let
Xi be all the components of X except Xi, i = 1, . . . , m, and Yj all the components of Y
except Yj, j = 1, . . . , n. If we assume that f is identical to g, then potential models for f are
M0i = { f̂K( · |h, Zi) : h > 0}, i = 1, . . . , m + n. Suppose that 1 ≤ i ≤ m. If we allow that f
and g are different, then a model for the datum Zi is M1i = { f̂K( · |a, Xi) : a > 0}. In this
case a legitimate Bayes factor for comparing M0i and M1i on the basis of the datum Zi has
the form

Bi =

∫ ∞
0 π(a) f̂K(Zi|a, Xi) da∫ ∞
0 π(h) f̂K(Zi|h, Zi)dh

, i = 1, . . . , m,

where, mainly for convenience, we have assumed that the bandwidth priors are the same in
all cases. Likewise, if i = m + 1, . . . , m + n, then M1i = { f̂K( · |b, Yi−m) : b > 0} is a model
for the datum Zi, and a Bayes factor for comparing M0i and M1i is

Bi =

∫ ∞
0 π(a) f̂K(Zi|a, Yi−m) da∫ ∞

0 π(h) f̂K(Zi|h, Zi)dh
, i = m + 1, . . . , m + n.

When m and n are large, it is expected that M1i will be a good model for f if i = 1, . . . , m
and for g if i = m+ 1, . . . , m+n. Likewise, each of M0i will be a good model for the common
density on the assumption that f and g are identical. However, none of B1, . . . , Bm+n will
be Bayes factors that can provide convincing evidence for either hypothesis simply because
each one uses likelihoods based on a single datum. At first blush one might think that a
solution to this problem is to take the average of the m + n log-Bayes factors:

ALB =
1

(m + n)

m+n

∑
i=1

log Bi. (1)

However, this results in a statistic that will consistently estimate 0 or a positive constant in
the respective cases f ≡ g or f 6≡ g. In neither case does the statistic have the property of
Bayes consistency, i.e., the property that the Bayes factor tends to 0 and ∞ when f ≡ g and
f 6≡ g, respectively.



Entropy 2022, 24, 1071 3 of 17

The discussion immediately above points out a fundamental fact that seems not to
have been widely discussed: combining a large number of inconsistent Bayes factors
does not necessarily lead to a consistent Bayes factor. A guiding principle in [1] was that
of averaging log-Bayes factors from different random splits of the data with the aim of
producing a more stable log-Bayes factor. However, in order for this practice to yield a
consistent Bayes factor, it is important that each of the log-Bayes factors being averaged is
consistent. Furthermore, to ensure this consistency, it is necessary that the sizes of both the
training and validation sets tend to ∞ with the samples sizes m and n. Obviously this is
not the case when the size of each validation set is just 1, as in the current paper.

An advantage of the approach proposed herein is that the practitioner does not have
to choose the size of the training sets. The cost is that the resulting statistic does not have
the property of Bayes consistency. We thus propose that the statistic be used in frequentist
fashion. An appealing way of doing so is to use a permutation test, which (save for certain
practical issues to be discussed) leads to a test with exact type I error probability for all
m > 1 and n > 1. Let Z(1) < Z(2) < · · · < Z(m+n) be the order statistics for the combined
sample. Let j = (j1, . . . , jm+n) be a random permutation of 1, . . . , m + n, and define T(j)
to be the statistic (1) when the X-sample is taken to be Zj1 , . . . , Zjm and the Y-sample to
be Zjm+1 , . . . , Zjm+n . It follows that, conditional on the order statistics Z(1), . . . , Z(m+n), the
(m + n)! values taken on by T(·) are equally likely. Therefore, if tm,n is a 1− α quantile of
the empirical distribution of T(·), then the test that rejects f ≡ g when T ≥ tm,n will have
an (unconditional) type I error probability of α. As will be shown in the Appendix A.3,
ALB is negative with probability tending to 1 as m, n→ ∞, implying that for any α > 0 tm,n
will be negative for m and n large enough. From an evidentiary standpoint, it is nonsense
to reject H0 for a negative value of ALB. We therefore suggest using the critical value
max(0, tm,n), which ensures that the test is sensible and has level α.

2.2. The Effect of Using Scale Family Priors

Let π0 be an arbitrary density with support (0, ∞). A possible family of priors is one
that contains all rescaled versions of π0. For b > 0, using the prior π(h) = π0(h/b)/b and
making the change of variable h/b = u in the denominator of Bi, we have∫ ∞

0
b−1π0(h/b) f̂K(Zi|h, Zi)dh = f̂L(Zi|b, Zi),

where the kernel L is

L(z) =
∫ ∞

0
u−1π0(u)K(z/u) du, for all z. (2)

So, by using this type of prior, each marginal likelihood comprising ALB becomes a kernel
density estimate with bandwidth equal to the scale parameter of the prior. In one sense this
is disappointing since it means that averaging kernel estimates with respect to a bandwidth
prior does not actually sidestep the issue of choosing a smoothing parameter. One has
simply traded bandwidth choice for choice of the prior’s scale. However, it turns out that
there is a quantifiable advantage to using a prior for the bandwidth of K. As detailed in the
Appendix A.2, likelihood cross-validation is often more efficient when applied to f̂L rather
than to f̂K.

When using a scale family of priors, the result immediately above implies that

(m + n)ALB =
m

∑
i=1

log( f̂L(Xi|b, Xi)) +
n

∑
j=1

log( f̂L(Yj|b, Yj))

−
m+n

∑
i=1

log( f̂L(Zi|b, Zi)), (3)



Entropy 2022, 24, 1071 4 of 17

and so the proposed statistic is proportional to the log of a likelihood ratio. The two
likelihoods are cross-validation likelihoods, and the numerator and denominator of the
ratio correspond to the hypotheses of different and equal densities, respectively.

In practice one must select both the kernel L and bandwidth b. For the moment we
assume that L is given. The denominator of exp((m + n)ALB) as a function of b is the
likelihood cross-validation criterion, as studied by [5], based on the combined sample. We
propose using b = b̂, the maximizer of this denominator. This bandwidth has the desirable
property that it is invariant to the ordering of the data in the combined sample. Let ALB∗

be the value of test statistic (1) for a permuted data set. One should use the principle that
ALB∗ is the same function of the permuted data as ALB is of the original data. So, in
principle the bandwidth should be selected for every permuted data set, but because of
the invariance of b̂ to the ordering of the combined sample, this data-driven bandwidth
equals b̂ for every permuted data set. This results in a large computational savings relative
to a procedure that selects the bandwidth differently for the X- and Y-samples. Using the
same bandwidth under both null and alternative hypotheses also fits with the principle
espoused by [6].

Concerning L, Ref. [5] showed that kernels must be relatively heavy-tailed in order for
them to perform well with respect to likelihood cross-validation. In particular, he shows that
likelihood cross-validation fails miserably as a method for choosing the bandwidth of a kde
based on a Gaussian kernel. The tails of the kernel must be considerably heavier than those
of a Gaussian density in order for likelihood cross-validation to be effective. Proposition A1
in the Appendix A.1 shows that under very general conditions L (as defined in (2)) has
heavier tails than those of K. Therefore, the Bayesian notion of averaging commonly used
kernel estimates with respect to a prior brings the resulting kernel estimate more in line
with the conditions of [5]. This has a substantial benefit for our statistic inasmuch as we
use a likelihood cross-validation bandwidth in its construction.

Consider the following kernel proposed by [5]:

L0(u) =
1√

8πe Φ(1)
exp

[
−1

2
(log(1 + |u|))2

]
.

Suppose that a kde is defined using kernel L0 and its bandwidth is chosen by likelihood
cross-validation. Ref. [5] shows that, in general, this cross-validation bandwidth will
be asymptotically optimal in a Kullback–Leibler sense. We will therefore use L0 in all
subsequent simulations. Results in the Appendix A.2 provide a kernel K and corresponding
prior that produce L0.

2.3. Further Properties of ALB

In the Appendix A.3 we will show that the ALB test is consistent in the frequentist
sense. In other words, for any alternative the power of an ALB test of fixed level tends to 1
as m and n tend to ∞.

Interestingly, ALB has the property of being sharply bounded above. It can be rewrit-
ten as follows:

m

∑
i=1

log( f̂L(Xi|b, Xi)/ f̂L(Xi|b, Zi)) +
n

∑
j=1

log( f̂L(Yj|b, Yj)/ f̂L(Yj|b, Zm+j)).

Defining pm,n = (m− 1)/(m + n− 1),

f̂L(Xi|b, Zi) = pm,n f̂L(Xi|b, Xi) + (1− pm,n) f̂L(Xi|b, Y), i = 1, . . . , m,

and therefore

f̂L(Xi|b, Xi)

f̂L(Xi|b, Zi)
=

1
pm,n

· pm,n f̂L(Xi|b, Xi)

pm,n f̂L(Xi|b, Xi) + (1− pm,n) f̂L(Xi|b, Y)
≤ 1

pm,n
.
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A similar bound applies for the other component of ALB, implying that

ALB ≤ −
[(

m
m + n

)
log(pm,n) +

(
1− m

m + n

)
log
(

n− 1
m + n− 1

)]
. (4)

Using the fact that −[x log(x) + (1− x) log(1− x)] has its maximum at x = 1/2 when
0 ≤ x ≤ 1, bound (4) implies that

ALB ≤ log(2) ·max
(

m
(m− 1)

,
n

(n− 1)

)
.

Unless one of m and n is very small, the effective bound on ALB is log(2). This reinforces
the fact that ALB does not have the property of Bayes consistency. While it is true that ALB
is an average of Bayes factors, none of these Bayes factors can ever provide compelling
evidence in favor of the alternative. To reiterate, this problem is overcome by employing
ALB in frequentist fashion.

While ALB can take on positive values when the null hypothesis is true, our proof of
frequentist consistency shows that, under H0, P(ALB < 0)→ 1 as m, n→ ∞. This implies
that if 0 is used as a critical value, then the resulting test level tends to 0 as m, n→ ∞. So,
even though |ALB| does not tend to ∞, the sign of ALB provides compelling evidence for
the hypotheses of interest when the sample sizes are large.

The exact conditional distribution of ALB is known under the null hypothesis, as we
use a permutation test. Nonetheless, it is of some interest to have an impression of the
unconditional distribution of ALB. To this end, we randomly select two normal mixture
densities that differ. The number of components M in the first mixture is between 2 and
20 and chosen from a distribution such that the probability of m is proportional to m−1,
m = 2, . . . , 20. Given M = m, mixture weights are drawn from a Dirichlet distribution with
all m parameters equal to 1/2. Given M = m and mixture weights, variances σ2

1 , . . . , σ2
m of

the normal components are a random sample from an inverse gamma distribution with
both parameters equal to 1/2. Finally, means µ1, . . . , µm of the normal components are
such that µ1, . . . , µm given σ1, . . . , σm are independent with µj|σj ∼ N(0, σ2

j ), j = 1, . . . , m.
The second normal mixture is independently selected using exactly the same mechanism.
Random selection of densities in this manner for simulation studies has been proposed and
explored in [7].

We draw a sample of size 100 from each of the two randomly generated densities
(so that m = n = 100), and then compute ALB. This procedure is replicated on the same
two densities 100 times. After this, we repeat the whole procedure for nine more pairs of
randomly selected densities. The results are seen in Figure 1. Save for case 3, the proportion
of positive ALBs is nearly 1 in all cases.

We repeated a similar procedure for the null hypothesis setting. The simulation was
exactly the same except that in each of the ten cases, only one density was generated, and a
pair of independent samples (of size 100 each) was selected from this same density. The
resulting ALB distributions can be seen in Figure 2. The proportion of the cases where
ALB < 0 for the 10 densities were, respectively, 0.89, 0.83, 0.83, 0.84, 0.85, 0.87, 0.91, 0.84,
0.84, and 0.76. These results are consistent with the fact that P(ALB < 0) tends to 1 with
sample size.
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Figure 1. Distribution of ALB under various alternative hypotheses.

We feel that ALB has potential for screening variables in a binary classification problem.
Since ALB is negative with high probability under H0, we feel that 0 is a nicely interpretable
cutoff for variable inclusion. However, we leave this topic for future research.
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Figure 2. Distribution of ALB under various null hypotheses.

3. Simulations

We perform a small simulation study to investigate the size and power of our test. To
explore the effect of the number of permutations, we generate 500 pairs of data sets, with
one data set being a random sample of size m = 50 from a standard normal distribution,
and the other a random sample of size n = 50 from a normal distribution with mean 0 and
standard deviation 2. For each of the 500 pairs of data sets, the 95th percentile of ALBs is
approximated using a range of different numbers (N) of permutations starting at 100 and
increasing by a factor of 1.5 up to 3845. Results are indicated by the boxplots in Figure 3.
The percentiles are centered at approximately the same value for all N. Not surprisingly,
the variability of the percentiles becomes smaller as N increases. This implies a certain
amount of mismatch between percentiles at N = 3845 and those at smaller N.



Entropy 2022, 24, 1071 8 of 17

150 225 338 507 760 1140 1709 2563 3845

−
2

−
1

0
1

2
3

Permutation size

95
th

 p
er

ce
nt

ile
 o

f P
er

m
ut

ed
 B

F
s

Figure 3. Effect of number of permutations on the 95th percentile of permutation distributions.

The consequence of the mismatch just alluded to can be investigated by determining
the true conditional and unconditional levels of tests based on small N. For the null
case, two data sets, each of size 50, are generated from a common normal distribution.
Since the distribution of ALB is invariant to location and scale in the null case, we use a
standard normal without loss of generality. For each pair of data sets, the data are randomly
permuted 338 times, which leads to 338 values of ALB. A second set of 3845 permutations
is then performed, leading to 3845 more values of ALB. The proportion of ALBs from the
second set that exceed the 95th percentile of the ALBs formed from the first set is then
determined. This proportion is approximately equal to the conditional level of the test
based on 338 permutations. This same procedure is used for each of 500 data sets, and the
resulting distribution of approximate levels is shown in Figure 4.

The histogram is centered near 0.05, and 87% of the conditional levels are between 0.03
and 0.07. Furthermore, an approximation to the unconditional level is ∑500

i=1 α̂i/500 = 0.053,
where α̂i is the approximate conditional level for the ith data set, i = 1, . . . , 500. Based on
these results, use of only 338 permutations is arguably adequate.

The same experiment is repeated except now the two data sets are drawn from different
distributions, a standard normal and a normal with mean 0 and standard deviation 2.
Results from this experiment are given in Figure 5.
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Figure 4. Distribution of approximate conditional levels of permutation tests under the null hypothe-
sis. Each conditional level is the proportion of 3845 ALBs from permuted data sets that exceed the
95th percentile of ALBs formed from 338 permuted data sets. Results are based on 500 replications in
each of which both distributions are standard normal.
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Figure 5. Distribution of approximate conditional levels of permutation tests under an alternative
hypothesis. Each conditional level is the proportion of 3845 ALBs from permuted data sets that
exceed the 95th percentile of ALBs formed from 338 permuted data sets. Results are based on
500 replications in each of which one distribution is standard normal and the other is normal with
mean 0 and standard deviation 2.

As in the null case, the conditional levels based on the use of 338 permutations are quite
good. Eighty-eight percent of the levels are between 0.03 and 0.07, and the approximate
unconditional level is 0.051.

The proportion of ALBs from permuted data sets that are larger than the ALB com-
puted from the original data provides a p-value. The p-values obtained with our method
(based on 3845 permutations) are compared to the p-values obtained with the Kolmogorov–
Smirnov test and Bowman’s two-sample test. Results are summarized in Figures 6 and 7. In
98% of the replications the K-S p-value was larger than the ALB p-value, and in 57% of the
cases the Bowman p-value was equal to or larger than the ALB p-value. These results sug-
gest that in this case our test has much better power than that of the Kolmogorov–Smirnov
test and power at least comparable to that of Bowman’s test.
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Figure 6. Kolmogorov–Smirnov p-values versus ALB p-values. Results are based on 500 data sets in
each of which one distribution is standard normal and the other is normal with mean 0 and standard
deviation 2. The ALB p-value is less than the KS-test p-value in 98% of cases. There are only 183
p-values from the KS-test that are less than 0.05.
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Figure 7. Bowman p-values versus ALB p-values. Results are based on 500 data sets in each of which
one distribution is standard normal and the other is normal with mean 0 and standard deviation 2.
The number of p-values less than 0.05 for Bowman’s test and the ALB test are 454 and 458, respectively.
The ALB p-value is less than, more than and equal to the Bowman p-value in 49%, 43% and 8% of
cases, respectively.

4. A Bivariate Extension of the Two-Sample Test and Application to Connectionist
Bench Data

Our method can be extended to the bivariate case by using a bivariate kernel density
estimate. Assume now that X = (X1, ..., Xm) are independent and identically distributed
from density f and Y = (Y1, ..., Ym) are independent and identically distributed from g,
where Xi and Yj are each bivariate observations, i = 1, . . . , m, j = 1, . . . , n.

A product kernel K will be used, i.e., the bivariate kernel K is the product of two
univariate kernels. For k arbitrary bivariate observations U = (U1, . . . , Uk), Ui = (Ui1, Ui2),
i = 1, . . . , k, and u = (u1, u2), the kernel estimate is defined by

f̂K(u|h, U) =
1

kh1h2

k

∑
i=1

K
(

u1 −Ui1
h1

)
K
(

u2 −Ui2
h2

)
,
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where −∞ < u1 < ∞, −∞ < u2 < ∞ and h = (h1, h2) is a two-vector of (positive)
bandwidths.

We will use the same sort of notation as before, i.e., Zi = Xi, i = 1, . . . , m, Zi = Yi−m,
i = m + 1, . . . , m + n, Z = (Z1, . . . , Zm+n) and Zi is the object Z with all its components
except Zi, i = 1, . . . , m + n. In this case the ith Bayes factor is defined as

Bi =

∫ ∞
0

∫ ∞
0 π(h1, h2) f̂K(Zi|h, Xi) dh1dh2∫ ∞

0

∫ ∞
0 π(h1, h2) f̂K(Zi|h, Zi)dh1dh2

, i = 1, . . . , m,

and similarly for i = m + 1, . . . , m + n. As before the test statistic is ALB = ∑m+n
i=1 log Bi/

(m + n).
This form may seem daunting, but reduces to a more familiar form if we take

π(h1, h2) = π0(h1/b1)π0(h2/b2)/(b1b2). In this case, proceeding exactly as in Section 2, Bi
has the form

Bi =
f̂L(Zi|b, Xi)

f̂L(Zi|b, Zi)
, i = 1, . . . , m,

and similarly for i = m + 1, . . . , m + n, where b = (b1, b2) and L is defined by (2).
We will analyze a subset of the connectionist bench data, which consist of measure-

ments obtained after bouncing sonar waves off of either rocks or metal cylinders. The data
may be found at the UCI Machine Learning repository, Ref. [8]. There are 60 variables in the
data set, with m = 111 and n = 97 measurements of each variable for the metal cylinders
and rocks, respectively. Variable numbers (1 to 60) correspond to increasing aspect angles
at which signals are bounced off of either metal or rock, and each of the 60 numbers is an
amount of energy within a particular frequency band, integrated over a certain period of
time. We will apply our test to see if the first two variables (corresponding to the smallest
aspect angles) have a different distribution for rocks than they do for metal cylinders. In
our analysis K is taken to be φ, the standard normal density, and π0 to be of the form (A1).
In this event L is a t-density with ν degrees of freedom. We will use ν = 3, leading to a
fairly heavy-tailed kernel, which is desirable for reasons discussed previously.

The data for each variable are inherently between 0 and 1, and bivariate kernel esti-
mates display boundary effects along the lines x = 0 and y = 0, with the largest bias near
the origin. We therefore use a reflection technique to reduce bias along these two lines.
Suppose one has k observations (x1, y1), . . . , (xk, yk) on the unit square. Each observation
(xi, yi) is reflected to create three new observations: (xi,−yi), (−xi,−yi) and (−xi, yi),
i = 1, . . . , k. One then simply computes, at points in the unit square, a standard kernel
density estimate from the data set of size 4k, and multiplies it by 4 to ensure integration
to 1. The value of ALB is computed as described previously except that each leave-out
estimate leaves out four values: the observation at which the estimate is evaluated plus its
three reflected versions. In this way the kde is constructed from data that are independent
of the value at which the kde is evaluated.

Kernel density estimates for variables 1 and 2 in the form of heat maps are shown
in Figures 8 and 9, and contours of the estimates are given in Figure 10. The latter figure
suggests that the distributions for metal cylinders and rock are different. The value of ALB
turned out to be 0.013, and an approximate p-value based on 10,000 permuted data sets
was 0.0076. So, there is strong evidence of a difference between the rock and metal bivariate
distributions. Interestingly, the percentage of negative ALBs among the 10,000 permuta-
tions was 0.9785. A kernel density estimate based on the 10,000 values of ALB∗ is shown in
Figure 11.
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Figure 8. A heat map of the first two variables for the signals bounced off the metal cylinder. Variables
x and y correspond to the smallest and next to smallest aspect angles, respectively.
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Figure 9. A heat map of the first two variables for the signals bounced off the rock object. Variables x
and y are as defined in Figure 8.
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Figure 10. Contour plots of the first two variables of both rock and cylinder objects. The blue contours
correspond to the rock measurements and red to the cylinder measurements. Variables x and y are as
defined in Figure 8.
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Figure 11. A kernel density estimate computed using 10,000 values of ALB from permuted data sets.
The value of ALB for the original data set was 0.013.

5. Conclusions and Future Work

We have proposed a new nonparametric test of the null hypothesis that two densities
are equal. An attractive property of the test is that its critical values are defined by a
permutation distribution, allaying essentially any concern about test validity. The fact that
the statistic is an average of log-Bayes factors leads to another attractive property: a critical
value of 0 leads to a test with type I error probability tending to 0 with sample size. A
simulation study showed the new test to have much better power than the Kolmogorov–
Smirnov test in a case where the two densities differed with respect to scale. An application
to connectionist data illustrated the usefulness of our methodology for bivariate data.

Future work includes efforts to increase the speed of computing the test statistic and its
permutation distribution, especially for large data sets. We are also interested in applying
the new test to the problem of screening variables prior to performing binary classification.
A common method of doing so is to compute a two-sample test statistic for each variable,
and to then select variables whose statistics exceed some threshold. An inherent problem
in this approach is objectively choosing a threshold. Results of the current paper suggest
that 0 would be a natural and effective threshold for variable screening.
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Appendix A

Appendix A.1. Relationship of K and L

By far the most popular choice of kernel in practice is the Gaussian kernel, K(x) = φ(x),
−∞ < x < ∞, where φ is the standard normal density. For ν > 0, define

π0(u) =
2(ν/2)ν/2

Γ(ν/2)
u−(ν+1) exp

(
− ν

2u2

)
, u > 0. (A1)

If one takes K to be the the standard normal kernel and uses prior (A1), then the correspond-
ing kernel L is a t-density with ν degrees of freedom. An interesting aspect of these kernels
is that they have heavier tails than those of the Gaussian kernel. This is especially true for
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the more diffuse, or noninformative priors, i.e., those for which ν is small. (The mean and
variance of (A1) exist for ν > 2. At ν = 3, the two are 1.382 and 1.090, respectively, and as
ν→ ∞ they converge to 1 and 0).

The fact that the kernel L is more heavy-tailed than K in the previous example is not an
isolated phenomenon, as indicated by the following proposition (which is straightforward
to prove):

Proposition A1. If π0 has support (0, C) with 1 < C ≤ ∞ and the tails of K decay exponentially,
then the tails of L are heavier than those of K in that K(u)/L(u)→ 0 as u→ ∞.

In principle, many different choices of π0 and K could produce the same kernel L. Or,
one might ask “given kernel K, what prior π0 would produce a specified L?” When K is
Gaussian, the latter question is answered by solving an integral equation. Unfortunately,
doing so, at least in a general sense, exceeds our mathematical abilities. In the case where K
is uniform, though, an elegant solution exists, as seen in the next section.

Appendix A.2. When K Is Uniform

In the special case where K is uniform on the interval (−1/2, 1/2), it is easy to check
that, for all u,

L(u) =
∫ ∞

2|u|
α−1π0(α) dα. (A2)

If π0 has support (0, ∞), then L has support (−∞, ∞), and hence we see again that averaging
kernels with respect to a prior leads to a more heavy-tailed kernel.

Since our statistic ends up being a log-likelihood ratio based on kernel L, an interesting
question is “what prior π0 gives rise to a specified kernel L?” Taking u ≥ 0, (A2) implies that

π0(2u) = −uL′(u). (A3)

When L is decreasing on [0, ∞) it follows that π0 is a density. (Under mild tail conditions
on L and assuming that L′(0+) exists finite, it is easy to show using integration by parts
that (A3) integrates to 1 on (0, ∞).)

Suppose that a kde is defined using the Hall kernel L0 and its bandwidth is chosen by
likelihood cross-validation. Ref. [5] shows that, in general, this cross-validation bandwidth
will be asymptotically optimal in a Kullback–Leibler sense. In contrast, using cross-validation
to choose the bandwidth of a uniform kernel kde will produce a bandwidth that diverges to ∞ as the
sample size tends to ∞.

Using (A3) the prior, shown in Figure A1, that produces L0 is

π0(2u) = L0(u)
u log(1 + u)

1 + u
.

This shape for the bandwidth prior could be considered canonical inasmuch as L′ will be
similarly shaped for kernels that are decreasing on (0, ∞).
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Figure A1. The prior that produces the Hall kernel when K is uniform.

Appendix A.3. Consistency

Here we prove

R1. frequentist consistency of our test, and
R2. P(ALB < 0)→ 1 as m, n→ ∞.

Our proof uses the following assumptions.

A1. Under the null and alternative hypotheses the following integrals exist finite:

IX =
∫ ∞

−∞
f (x) log f (x) dx and IY =

∫ ∞

−∞
g(y) log g(y) dy.

When the alternative hypothesis is true, f and g are assumed to be different in the
sense that the total variation distance, δ( f , g), is positive.

A2. The kernel L in ALB (expression (3)) is the Hall kernel, L0.
A3. The combined data likelihood cross-validation is maximized over an interval of the

form [(m + n)−1+ε, (m + n)−ε], where ε is an arbitrarily small positive constant. The
maximizer of this cross-validation is denoted b̂m+n.

A4. The ratio m/(m + n) tends to ρ, 0 < ρ < 1, as m, n tend to ∞.
A5. The densities f , g and ρ f (x) + (1− ρ)g(x) satisfy the conditions of [5] that are needed

for the asymptotic optimality of a likelihood cross-validation bandwidth.
A6. Under the null hypothesis, let `k(b) be the Kullback–Leibler risk of a kernel density

estimate based on sample size k, kernel L0 and bandwidth b. Then `k satisfies

`k(b) = CV(nb)−1+a + CBb4 + o
(
(nb)−1+a + b4

)
for positive constants a, CV and CB with 0 < a < 1.

Before proceeding to the proof, remarks about assumption A6 are in order. This
condition is needed only in proving R2, and represents a subset of the cases studied by [5].
It has been assumed merely to allow a more concise proof of R2, which remains true under
more general conditions on `k.

The critical values of a test with fixed size α > 0 will tend to 0 as m, n tend to ∞ so
long as ALB tends to 0 in probability under the null hypothesis. Therefore, the power
of the test will tend to 1 if we can show that ALB tends to a positive constant under the
alternative. Our proof of consistency thus boils down to showing that, as m, n tend to ∞,
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ALB converges in probability to 0 and a positive number under the null and alternative
hypotheses, respectively.

For data U = (U1, . . . , Uk), define

CV(b|U) =
1
k

k

∑
i=1

log( f̂L(Ui|b, Ui)), b > 0.

The statistic ALB may then be written

ALB =

(
m

m + n

)
CV(b̂|X) +

(
n

m + n

)
CV(b̂|Y)− CV(b̂|Z),

where b̂ maximizes CV(b|Z) for b ∈ [(m + n)−1+ε, (m + n)−ε].
Now suppose that U is a random sample from density d, `k(b) is the expectation of

the Kullback–Leibler loss of f̂L(·|b, U) and define

Q(k) =
1
k

k

∑
i=1

log d(Xi)−
∫

d(x) log d(x) dx,

where
∫

d(x) log d(x) dx exists finite. Then if d satisfies the conditions of [5] and k→ ∞,

CV(b|U) =
∫

d(x) log d(x) dx− `k(b) + Q(k) + op(`k(b)) (A4)

uniformly in b ∈ [k−1+ε, k−ε], where ε is arbitrarily small. By the strong law of large
numbers Q(k) converges to 0 in probability. Furthermore, maxb∈[k−1+ε ,k−ε ] `k(b) tends to 0
as k→ ∞. If the maximizer b̃ of CV(b|U) is in [k−1+ε, k−ε] it therefore follows that CV(b̃|U)
converges in probability to

∫
d(x) log d(x) dx as k→ ∞.

In the null case, (A4) implies that(
m

m + n

)
CV(b|X) +

(
n

m + n

)
CV(b|Y)− CV(b|Z) =

−
[(

m
m + n

)
`m(b) +

(
n

m + n

)
`n(b)

]
+ `m+n(b) + op(`m(b)), (A5)

uniformly in b ∈ [(m + n)−1+ε, (m + n)−ε], where we have used all of A1–A5. Since
b̂m+n ∈ [(m + n)−1+ε, (m + n)−ε], (A5) implies that ALB converges to 0 in probability as
m, n→ ∞, which proves one part of R1.

To prove R2, we first observe that the bias component of `k(b) is free of sample size,
and hence the first order term of (A5) is free of bias components. Along with A3 and A6,
this implies that (

m
m + n

)
CV(b|X) +

(
n

m + n

)
CV(b|Y)− CV(b|Z) =

−CV((m + n)b)−1+a(ρa + (1− ρ)a − 1) + op

(
((m + n)b)−1+a + b4

)
, (A6)

uniformly in b ∈ [(m + n)−1+ε, (m + n)−ε]. By A5, b̂m+n is asymptotic in probability to
bm+n, the minimizer of the Kullback–Leibler risk `m+n. Along with (A6), this implies that

ALB = −CV((m + n)bm+n)
−1+a(ρa + (1− ρ)a − 1)

+op

(
((m + n)bm+n)

−1+a + b4
m+n

)
.
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By A6, we have
bm+n ∼ C0(m + n)−(1−a)/(5−a),

where

C0 =

[
CV(1− a)

4CB

]1/(5−a)
.

Combining the previous results yields

ALB = −
(

CV

C1−a
0

)
(ρa + (1− ρ)a − 1)(m + n)−4(1−a)/(5−a)

+op((m + n)−4(1−a)/(5−a)).

Using the fact that (ρa + (1− ρ)a − 1) > 0 it now follows that P(ALB < 0) → 1 as
m, n→ ∞.

Turning to the alternative case, we apply (A4) to conclude that CV(b̂|X), CV(b̂|Y) and
CV(b̂|Z) are consistent for

∫
f (x) log f (x) dx,

∫
g(x) log g(x) dx, and

∫
fρ(x) log fρ(x) dx,

respectively, where
fρ(x) = ρ f (x) + (1− ρ)g(x).

It follows that ALB is consistent for ∆ = ρKL( f , fρ) + (1− ρ)KL(g, fρ), where KL( f1, f2)
denotes the Kullback–Leibler divergence between f1 and f2. By the Csiszár-Kemperman-
Kullback-Pinsker inequality,

∆ ≥ log e
2
·
[
ρδ( f , fρ)

2 + (1− ρ)δ(g, fρ)
2
]

=
log e

2
·
[
ρ(1− ρ)2δ( f , g)2 + (1− ρ)ρ2δ( f , g)2

]
=

(
log e

2

)
ρ(1− ρ)δ( f , g)2 > 0,

with the last inequality following by assumption. This completes the proof of R1.
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