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Abstract: A key element for reducing energy consumption and improving thermal comfort on high-
speed rail is controlling air-conditioning temperature. Accurate prediction of air supply temperature
is aimed at improving control effects. Existing studies of supply air temperature prediction models
are interdisciplinary, involving heat transfer science and computer science, where the problem is
defined as time-series prediction. However, the model is widely accepted as a complex model that is
nonlinear and dynamic. That makes it difficult for existing statistical and deep learning methods, e.g.,
autoregressive integrated moving average model (ARIMA), convolutional neural network (CNN),
and long short-term memory network (LSTM), to fully capture the interaction between these variables
and provide accurate prediction results. Recent studies have shown the potential of the Transformer
to increase the prediction capacity. This paper offers an improved temporal fusion transformers
(TFT) prediction model for supply air temperature in high-speed train carriages to tackle these
challenges, with two improvements: (i) Double-convolutional residual encoder structure based on
dilated causal convolution; (ii) Spatio-temporal double-gated structure based on Gated Linear Units.
Moreover, this study designs a loss function suitable for general long sequence time-series forecast
tasks for temperature forecasting. Empirical simulations using a high-speed rail air-conditioning
operation dataset at a specific location in China show that the temperature prediction of the two
units using the improved TFT model improves the MAPE by 21.70% and 11.73%, respectively the
original model. Furthermore, experiments demonstrate that the model effectively outperforms seven
popular methods on time series computing tasks, and the attention of the prediction problem in the
time dimension is analyzed.

Keywords: supply air temperature forecasting; transformer; temporal fusion transformers; causal
convolution

1. Introduction

The comfort of taking high-speed rail is receiving a lot of attention from passengers;
there has been rapid development of the high-speed rail industry and a sharp increase
in the number of people who choose to travel by high-speed rail [1–3]. The change in
the environment during the high-speed train driving is a critical ingredient that causes
the temperature change in the high-speed train compartment, such as outside tempera-
ture, light intensity, speed, and other factors [4]. Because of its high hysteresis, the air
conditioner’s air supply temperature will fluctuate with the temperature of the high-speed
train compartment, causing human discomfort and making control difficult. An accurate
estimate of the supply air temperature is critical to improving thermal comfort, reducing
the energy required for air conditioning, and building high-speed train air-conditioning
management systems. According to the actual forecast demand, it is necessary to predict
the value of the supply air temperature for a long time to improve the control effect of the
control system. In a complicated environment, it is therefore challenging to obtain accurate,
dependable, high-quality, high-precision, and long-term temperature forecasts for high-
speed train carriages. Thus, precisely predicting supply air temperature is a challenging
and significant task.
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Methods for supply air temperature prediction can be summarized into three cate-
gories: physical models prediction methods, statistical prediction methods, and artificial
intelligence prediction methods.

Physical models predict the supply air temperature by building a heat transfer model.
The components of the high-speed rail air-conditioning system are primarily composed of
compressors, condenser fans, and other components. The thermodynamic model of the air
conditioner has been proposed in some research, but, due to the model’s complexity, only a
simplified and conditional model can be supplied [5]. The heat transfer prediction model
based on thermodynamics is quite complex, and the parameters of the heat transfer model
are different, so the supply air temperature prediction based on the physical model cannot
satisfy the demand.

Statistical models for temporal forecasting include autoregressive (AR) [6], auto-
regressive integrated moving average (ARIMA) [7], and exponential smoothing (ETS).
AR uses the dependent relationship of the historical time series of the prediction target
between the values in different periods to establish a regression equation for the prediction.
Combining AR and MA approaches results in ARMA, which captures the linear relationship
between variables across time and yields prediction results. The ARIMA model evolved
from the Auto-Regressive Moving Average (ARMA) model, which differentially processes
non-stationary data before modeling with ARMA. In addition to these methods, there are
numerous prediction techniques such as gray forecast [8], the Kalman filter [9], and the
Hammerstein auto-regressive method [10], among others. Most statistical methods build
a time series model using past temperature data that can extract linear features, and they
perform well in ultra-short-term or single-step forecasting. However, these methods cannot
be employed to anticipate long-term temperatures accurately. Long-term dependencies
between variables deteriorate over time as well.

Artificial intelligence forecasting methods are employed for time series forecasting,
including traditional machine learning and the more prevalent deep learning methods.
In practical applications, machine learning methods mainly include support vector re-
gression (SVR) [11], random forest (RF) [12], and XGBoost [13]. These approaches have
experienced quality assurance in many prediction tasks and performed well in some tests.
However, standard machine learning algorithms cannot handle data in the time dimension
since the relevance of data at each location is identical for these methods, preventing the
extraction of usable knowledge in the time dimension. With the rapid development of
deep learning, some meaningful learning methods have been improved and applied in the
direction more suitable for extracting time series features, such as Long Short-Term Memory
Neural Network (LSTM), Temporal Convolutional Network (TCN), and Transformer. The
Recurrent Neural Network (RNN) processes preceding and subsequent related input by
memorizing features, ideally suited for processing time series. As an enhanced recurrent
neural network model, LSTM can successfully extract relevant information from historical
data, and its “gate” structure can selectively extract useful historical information [14]. TCN
is a network specialized in processing sequence information, which has the high paral-
lel processing capability, stable gradient, and a more flexible receptive field that LSTM
lacks [15–17]. In addition, with the excellent performance of attention mechanisms in the
image and natural language processing, many scholars have also begun to apply attention
mechanisms to time series prediction tasks [18,19]. The Transformer model uses the size of
the attention weight to identify the salient part of the input for each instance, enhancing
the model’s interpretability. The Transformer model far outperforms the RNN model in
capturing long-range dependencies.

In the process of high-speed train driving, the environment of the air conditioning
system in the carriage is complicated and changing. Prediction of supply air temperature
is a very challenging task. For this reason, this study selected the TFT model for the first
time in multivariate and interpretable high-performance temperature prediction [20]. TFT
models are under various variable input structures, while TFT can provide insightful
interpretations of temporal dynamics. Furthermore, a novel design is introduced under its
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original architecture to enhance the performance of TFT and extract deeper data features.
Specifically, our improvements are as follows:

• Double-dilated causal convolutional network (DDN), two causal convolutions with
different dilation factor sizes, forms a layer of DDN. A multi-layer DDN structure
includes a new known variable encoder component to replace the LSTM encoder struc-
ture;

• Double gating residual network (DGRN), a temporal convolution structure, is added
to the original gated residual network to minimize the influence of irrelevant variables
and variable moments.

In addition, a shape and time distortion loss function (DILATE) based on dynamic
time warping is introduced to guide the model in the direction of sequence similarity
during training [21]. In practical temperature prediction problems, the closer time nodes in
the future are better than those farther away. The effect of time nodes will be pretty poor.
In this regard, a time distance loss matrix is added to the loss function so that the model
pays greater attention to the learning at longer time distances.

The experiments in this paper are based on the data on the operation of the air-conditioning
system of a high-speed railway in Shanghai, China, during summer driving. The framework
of this paper is as follows: Section 2 describes the underlying theory, Section 3 describes the
model framework and two improvements, Section 4 describes the loss function, Section 5
plots and analyzes experimental results, and Section 6 presents conclusions.

2. Methodology
2.1. Time Series Forecasting Problem

A time series is a sequence of events characterized by continuous-valued variables,
and the initial stage of a time series forecasting issue is to determine the target sequence.
As shown in Figure 1, the supply air temperature sequence is a prediction sequence in
this task. The supply air temperature is the temperature sent into the cabin after the
air conditioning cools the air. Different covariates will affect the target series, such as
temperature fluctuation, pressure rise, and fall, and compressor start and stop.

Figure 1. Time series multi-scale variable temperature forecast illustration.

In this study, the covariates are divided into two covariates according to the time
knowability, as shown in Figure 1: the observed time covariates xi,t ∈ Rmx and the future
time control covariates Zi,t ∈ Rmz . The observed time covariate is the known sensor obser-
vation value. The future time control covariate is the control variable value (compressor
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frequency, electronic expansion valve opening, and other information) to be predicted
within a period. One time step is the data sampling frequency, t ∈ [0, 1, . . . , n].

There are two forecasting methods for general time series forecasting problems: itera-
tive forecasting and direct forecasting. Each iteration of the iterative prediction method
is invoked as the input for the next iterative prediction. The predicted value at time τ is
achieved in the iteration τ step. However, the error of the output result is greater, and the
efficiency is lower. The direct prediction method outputs the predicted values at t time at
one time, with high efficiency and high precision. Therefore, the straightforward prediction
method is selected to model and predict the target sequence.

As shown in Figure 1 above, the target sequence, observed covariates, and future
control covariates before the current time are used as model inputs to obtain the prediction
output of the step. The mathematical model for the sequence prediction problem can be
described as:

ŷs(t, τ) = f (τ, yt−k:t, zi,t−k:t+τ , xi,t−k:t), (1)

where ŷs(t, τ) represents the supply air temperature prediction sequence (i.e., ŷs(t, τ) =
{ŷt, ŷt+1, . . . , ŷt+τ}), τ is the predicted step length, and t is when the prediction starts.
Input consists of observed time covariate series (i.e., xi,t−k:t = xt−k, . . . , xt) and future time
control covariate series (i.e., zi,t−k:t+τ = {zt−k, . . . , zt, . . . , zt+τ}).

2.2. Temporal Convolutional Neural Network

Temporal Convolutional Neural Network (TCN) is the causal convolutional network
that targets the convolutional structure of time series [22]. A sequence modeling network is
any function f : X → Y that produces the mapping. It is taken from supervised learning:

ŷt, . . . , ŷt+τ = f (Xt−k, . . . , Xt+τ) (2)

A given input sequence (i.e., {Xt−k, . . . , Xt+τ}) corresponding to a given output
sequence (i.e.,

{
ŷt, ŷt+1, . . . , ŷt+τ

}
) in ŷt can only be affected by the input variables before

time t, not by any future input variables; this constraint is a causal constraint. The network
produces an output of the same length as the input and the fact that there can be no leakage
from the future into the past.

To solve the causal constraints and increase the receptive field of the convolution kernel,
TCN introduces causal convolution with dilated convolution to ensure that future input
information will not be known. The dilated convolution operation for a one-dimensional
sequence x ∈ Rn of elements s can be described as:

F(i) =
k−1

∑
j=0

h(j)xi−dj (3)

where F(i) is the convolution result of the i element of the sequence s, k is the filter size
(convolution kernel size), d is the expansion factor, and ∗ is the convolution operator.
Figure 2 shows an example of a dilated causal convolution with dilation factors where
dilation factors d = 1, 2, 4 and kernel size k = 3. Using larger dilation enables an
output at the top level to represent a wider range of inputs, thus effectively expanding the
receptive field of a convolution. This gives us two ways to increase the receptive field of the
TCN: choosing larger filter sizes k and increasing the dilation factor k, where the effective
history of one such layer is (k − 1)d. As is common when using dilated convolutions,
receptive fields increase with the depth of the network. This ensures that some filter hits
each input within the effective history while allowing for an extremely effective history
using deep networks.
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Figure 2. Illustration of an expanded causal convolution with expansion factors.

A residual block contains a branch leading out to a series of transformations F , whose
outputs are added to the input x of the block:

output = Activation(x +F (x)) (4)

This effectively allows layers to learn modifications to the identity mapping rather
than the entire transformation, which has repeatedly been shown to benefit very deep
networks. TCN consists of a one-dimensional fully convolutional network and residual
blocks, and residual learning can fully train deep networks. The residual block used in this
paper is shown in Figure 3. The residual block is composed of dilated convolution and
nonlinear layers. A linear rectification function (ReLU) is used as the activation function.
Batch normalization is used for the convolution layer, and unexpected loss is at the end of
the convolution. After that, regularization is performed. Finally, the corresponding element-
wise summation is performed with the result of the additional 1× 1 convolutional layer.

Figure 3. Network structure of TCN.

2.3. Interpretable Multi-Head Attention

The TFT employs a self-attention mechanism to learn long-term relationships across
different time steps and modify from multi-head attention in transformer-based architec-
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tures to enhance explainability. In general, attention mechanisms scale values V ∈ RN×dV

based on relationships between keys K ∈ RN×dattn and queries Q ∈ RN×dattn as below:

Attention (Q, K, V) = A(Q, K)V (5)

where N is the number of time steps inputted to the attention layer, and A( ) is a normaliza-
tion function. For attention values, the scaled dot-product is commonly given as follows:

A(Q, K) = Softmax
(

QKT
√

dattn

)
(6)

The multi-attention mechanism can learn multiple long-term dependencies at different
times. For the learning capacity of the attention mechanism, multi-head attention is adopted
to employ other heads for different representation subspaces:

Hh = Attention
(

QW(h)
Q , KW(h)

K , VW(h)
V

)
(7)

MultiHead (Q, K, V) = [H1, . . . , HmH ]WH (8)

where W(h)
Q ∈ Rdmodel ×dattn is the weight matrix acting on Q. W(h)

K ∈ Rdmodel×dattn is the

weight matrix acting on K, W(h)
V ∈ Rdmodel×dV is the weight matrix acting on V. h is the

number of attention heads. dmodel represents the feature dimension, dattn = dmodel /h.
WH ∈ R(h·dV)×dmodel is the weight matrix of multi-head attention.

Given that each head uses a different value, individual attention weights do not
represent the importance of a particular feature. Therefore, multi-head attention is modified
to share values in each head, and an additive aggregation of all heads is employed:

H̃ =
1
h

h

∑
1

Attention
(

QW(h)
Q , KW(h)

K , VWV

)
(9)

InterpretableMultiHead (Q, K, V) = H̃WH (10)

where WV ∈ Rdmodel×dV values weights shared across all heads, and WH ∈ Rdattn×dmodel is
used for final linear mapping.

2.4. Shape and Time Distortion Loss Function

Regarding training, most methods use the mean squared Error (MSE) or its variants
(MAE, etc.) as loss functions. However, relying on MSE in training tasks may not be
enough, as shown in Figure 4.

Dynamic Time Warping (DTW) is a method for calculating the similarity between two
time series. It dynamically aligns the two sequences by better measuring the two variables’
similarity. Distortion Loss, including Shape and Time(DILATE), is a new objective function
for training deep neural networks in multi-step and non-stationary time series forecasting.
DILATE explicitly disentangles the penalization related to the shape and the temporal
localization errors of change detection:

LDILATE (x, y) = α · Lshape (x, y) + (1− α) · Ltemporal (x, y) (11)

where Lshape (x, y) is the shape loss function, and Ltemporal (x, y) is the temporal loss
function; α ∈ [0, 1] is a hyperparameter that balances the two-loss functions, x (i.e.,
x =

{
x1, . . . , xn}) is the target sequence of length n, and y (i.e., y =

{
y1, . . . , yn}) is the

predicted sequence of length n.
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Figure 4. Limitation of the Euclidean (MSE) loss: when expecting a sudden change (target blue step
function), predictions (a–c) have comparable MSE but vastly differing forecasting abilities. In contrast,
the DILATE loss disentangles form and temporal decay factors, hence favoring predictions (b,c) over
prediction (a), which does not describe the abrupt shift in position.

• Shape loss:
Lshape (x, y) = dtwγ(x, y) (12)

dtwγ(x, y) = minγ{〈A, ∆(x, y)〉, A ∈ An,m}

= −γ log

(
∑

A∈An,m

e−〈A,∆(x,y)〉/γ

)
(13)

∆(x, y) =
[
δi,j
]

n×n ∈ Rn×n (14)

ri,j = δi,j + minγ
{

ri,j−1, ri−1,j, ri−1,j−1
}

(15)

minγ{a1 . . . an} =
{

mini≤n ai, γ = 0

−γ log ∑n
i=1 e−

ai
γ , γ > 0

(16)

rn,n = dtwγ(x, y) (17)

where An,m ⊂ {0, 1}n×n is the set of calibration matrices for two sequences of length
n, which represent the range from

(
x1, y1) to (xn, yn) all paths. A is a path in An,m.

∆(x, y) is the cost matrix composed of two sequences, and δi,j is the cost of the corre-
sponding position. Equations (15) and (16) are the “optimal” paths for solving the
two sequences, where γ is a hyperparameter, and when it is zero, the solution process
is non-differentiable.

• Temporal loss:

Ltemporal (x, y) = 〈A∗, Ω〉 =
〈

argmin
A∈An,n

〈A, ∆(x, y)〉, Ω

〉
(18)

Ω =
[
wi,j
]

n×n ∈ Rn×n (19)

wi,j =
1
n2 (i− j)2 (20)

where Ω is a square matrix of size n× n penalizing each element being associated
with an x, for i 6= j. A∗ is the “optimal” path obtained by computing dtwγ(x, y).
For Ltemporal (x, y), the purpose is to penalize the matching with excessive delay in
the DTW algorithm.

3. Improved Temporal Fusion Transformers Model

This study designs a TFT-based temperature prediction framework, as shown in
Figure 5a, that uses canonical components to efficiently build feature representations for
each input type (i.e., static, known, observed inputs) for high forecasting performance on
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long-term prediction problems. Two adaptive improvements have been made to the TFT
structure, as follows:

Figure 5. (a) Improved TFT architecture . Its inputs include static, time-varying, and time-varying a
priori has known future inputs; (b) double gating residual network(DGRN). It is a gated residual
network with two dimensions of space and time. (c) Double-dilated causal convolutional network
(DDN) has two causal convolutions with different dilation strides. This means that the receptive
fields in both shallow and deep layers can be more flexible.

• Double-dilated causal convolutional network (DDN): a double-convolutional residual
encoder structure based on dilated causal convolution, which has a flexible receptive
field; the double-convolutional structure enables shallow layers to capture local and
distant information; and its residual structure solves the problem of gradient explosion
in deep networks.

• Double gating residual network (DGRN): The spatio-temporal double-gated structure
based on Gated Linear Units aims to select items related to the target from the spatial
and temporal dimensions and eliminate the influence of noise in the data. The time-
gated structure is based on two TCN structures, and the space-gated structure is based
on the gated residual network in TFT.

This section first introduces two improved modules and finally introduces the entire
model structure.



Entropy 2022, 24, 1111 9 of 19

3.1. Double-Dilated Causal Convolutional Network

When dealing with long sequence data, having a more flexible receptive field and
capturing more distant information is vital for prediction accuracy. As shown in Figure 5c,
the structure of the DDN decoder is a double-dilated causal convolution [23]. One dilated
causal convolution raises the dilation factor as the number of layers increases, while the
other lowers it as the number of layers increases. The receptive field expands, and localized
information can also be perceived in the deep layer when processing time-series data in
parallel, convolutional encoder layers with stable gradients, and variable receptive fields
have more potential than recurrent neural networks.

For a sequence X (i.e., X = {x1, x2, . . . , xn},X ∈ Rn), the convolution output of
the xi-th element is Fl,k(i) (i.e., Fl,k =

{
Fl,k(1), Fl,k(2), . . . , Fl,k(n)

}
). The sequence is first

input to the convolution of two dilation factors of different sizes, then the results of the
two dilated causal convolutions are added and then activated by the ReLU activation
function, and finally a 1× 1 convolution layer is added to the input sequence. Each layer’s
mathematical description is as follows:

Fl,1(i) =
k−1

∑
j=0

h(j)xi−(L−l)j (21)

Fl,2(i) =
k−1

∑
j=0

h(j)xi−l j (22)

F̂l = ReLU([Fl,1 + Fl,2]) (23)

Fl = Fl−1 + W ∗ F̂l + b (24)

where k is the filter size (convolution kernel size), W ∈ Rn×n is the weight matrix of the
1× 1 convolutional layer, and b ∈ Rn is the bias of the 1× 1 convolutional layer.

3.2. Double Gating Residual Network

The precise relationship between exogenous inputs and targets is often unknown in
advance, making it difficult to anticipate which variables are relevant. However, these
effects are not only the unknown adverse effects of different feature variables in space
but also the unknown adverse effects of the same feature variables in time. Therefore,
a spatial-temporal dual-gated residual network structure is proposed under the original
architecture to remove the adverse effects of these features.

As shown in Figure 5b, the DGRN structure adds a time gate structure to the original
variable gate structure and selects variables in the time and space dimensions:

GRNω(a, c) = LayerNorm (a + GLUω1(η1)) (25)

η1 = [TCN1(η2), TCN2(η2)] (26)

η2 = GLUω2(η3) (27)

η3 = W1,ωη4 + b1,ω (28)

η4 = ELU(W2,ωa + W3,ωc + b2,ω) (29)

where ELU is the Exponential Linear Unit activation function [24], η1 ∈ R2m×n and
η2, η3, η4 ∈ Rm×n are intermediate layers, LayerNorm is standard layer normalization,
η1 is the result of concatenating TCN1(η2) and TCN2(η2), and ω is an index to denote
weight sharing.

When W2,ωa + W3,ωc + b2,ω � 0, the ELU activation would act as an identity func-
tion, and when W2,ωa + W3,ωc + b2,ω � 0, the ELU activation would generate a constant
output, resulting in linear layer behavior. TCN is calculated based on Equations (2)–(4),
which are calculated in the time dimension.
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The GLU is described as follows:

GLU(γ) = σ(W1γ + b1)� (W2γ + b2) (30)

where γ ∈ Rn is the input, σ(·) is the sigmoid activation function, b(·) ∈ Rn, and W(·) ∈
Rn×n are the biases and weights, n is the hidden state size, and � is the element-wise
Hadamard product. GLUω1 and GLUω2 are calculated in time and space dimensions,
respectively.

3.3. Improved TFT Model

Transformer-based models have been widely used in time series forecasting. The pre-
diction model designed in this study is based on the TFT model and can include a variety
of fusion inputs. Except for two improved structures, the main improved TFT structures
are as follows:

• Variable selection networks:
The variable selection network based on the GRN gated residual network can offer
insights into which variables are the most critical to the prediction problem.

• Static covariate encoders:
The static covariate encoder network integrates static feature variables into the net-
work, through the encoding of context vectors to condition temporal dynamics.

• Interpretable multi-head attention:
Interpretable multi-head attention is an interpretable multi-head attention mechanism
that learns long-term relationships between different time steps.

4. Loss Function

The prediction value of more time steps is usually required to predict supply air
temperature. For the temperature prediction of more actions, the error of the prediction
value of the farther time step position is more significant. This study uses the DILATE loss
function to include a temporal distance penalty term to boost learning of the long-distance
step feature.

Lloss (x, y) = α · L1(x, y) + (1− α) · Ltemporal (x, y) (31)

L1(x, y) = β · Llong (x, y) + (1− β) · Lshape (x, y) (32)

Llong (x, y) =

〈
argmin
A∈An,n

〈A, ∆(x, y)〉, Ω

〉
(33)

Ω =
[
Wi,j

]
n×n ∈ Rn×n (34)

wi,j =
i2 + j2

2n2 (35)

where the mathematical representation of Ltemporal is Equations (18)–(20), and the mathe-
matical representation of Lshape is Equations (12)–(17), where Ω is a square matrix of size
n× n that amplifies long-distance losses.

5. Experimental Results and Discussion

In the case of studies, sensors and operating data of the air-conditioning system
in a high-speed train carriage at a particular location in China from 11 to 20 June 2020
are applied to assess the forecasting performance of the proposed Improved TFT model.
This section presents the implementation of deep learning models by Python 3.7 with
TensorFlow 2.8.0, PyTorch-forecasting 0.9.2, PyTorch-lightning 1.5.10, and PyTorch 1.10.2.
The data are separated using the Python module “TimeSeriesDataSet”. The model is trained
on the GPU and employs an ADAM optimizer. Early Stopping is a technique for avoiding
overfitting. The computation is evaluated on an efficient computer with an Intel (R) Core
(TM) i7-10875H CPU, NVIDIA GeForce RTX 2060 GPU, and Windows 10 system.
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5.1. Data Descriptions and Pre-Processing

The high-speed train air conditioning data for ten days (from 11 to 20 June 2020)
are collected from a section of a high-speed railway in Shanghai, China. Shanghai is
the economic and financial center of China, and the high-speed rail in Shanghai is the
primary travel tool for business people and tourists. Improving air conditioning control
and predicting the air temperature of air conditioners in the future is vitally essential for
high-speed rail modern technology development and passenger thermal comfort.

In this study, the air-conditioning system includes two identical air-conditioning units
installed on the top of the high-speed rail passenger compartment, a ventilation system,
and a supporting control system. The dual-compressor parallel inverter air conditioning
unit investigated in this work consists of two compressors, two condensers, two electronic
expansion valves, two evaporators, two gas–liquid separators, one evaporating fan, and one
condensing fan. An air-conditioning unit consists of a refrigerant circuit and an air circuit
to form a dynamic flow system, as shown in Figure 6.

Figure 6. Air conditioning system structure. It includes refrigerant and air circuits. The air cooling
process takes place in the evaporator. The gaseous refrigerant becomes a high-pressure gas state after
being compressed by the compressor. It is sent to the condenser for heat dissipation to become an
average temperature and high-pressure liquid refrigerant. The electronic expansion valve adjusts the
refrigerant flow sent to the evaporator, and the pressure of the liquid refrigerant decreases due to the
space increase. It vaporizes and dissipates heat to complete the cooling of the air.

This study collected the operation data of the high-speed rail air-conditioning system
for ten days (from 8:00 a.m. to 6:00 p.m. every day), with a sampling frequency of 1 s and a
total of 360,000 pieces of data. The specific data information is shown in Table 1. In order to
improve the generalization ability of the model, the operating data of the air-conditioning
system for ten days are divided into days, and 80% of each day is taken as the training
set, 10% is the validation set, and 10% is the test set. As shown in Figure 7, the supply air
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temperature data on June 14 was divided into a training, validation, and test set. The three
groups are adopted to build models, select hyperparameters, and verify the final model
in sequence.

Table 1. Covariate correlation coefficients table (Part).

Covariates
Unit 1 Supply Air Temperature Unit 2 Supply Air Temperature

Pearson Spearman Pearson Spearman

Unit 1

Condensing Inlet Air Temperature −0.466 −0.478 −0.493 −0.518
Outdoor fan frequency −0.527 −0.568 −0.329 −0.369

Compressor 1 inverter frequency −0.438 −0.420 −0.282 −0.267
Compressor 2 inverter frequency −0.427 −0.395 −0.297 −0.294

Electronic expansion valve 1 −0.337 −0.333 −0.265 −0.225
Electronic expansion valve 2 −0.392 −0.411 −0.335 −0.341

Suction temperature 1 0.523 0.538 0.458 0.457
Suction temperature 2 0.466 0.504 0.432 0.475

Unit 2

Condensing Inlet Air Temperature −0.463 −0.490 −0.470 −0.510
Outdoor fan frequency −0.426 −0.452 −0.566 −0.593

Compressor 1 inverter frequency −0.317 −0.295 −0.454 −0.417
Compressor 2 inverter frequency −0.344 −0.331 −0.444 −0.408

Electronic expansion valve 1 −0.186 −0.099 −0.221 −0.197
Electronic expansion valve 2 −0.316 −0.294 −0.366 −0.363

Suction temperature 1 0.389 0.383 0.507 0.559
Suction temperature 2 0.451 0.447 0.548 0.569

Figure 7. Supply air temperature of unit 1 and unit 2.

Table 1 presents the Pearson and Spearman Correlation Coefficient between covariates
data and supply air temperature. The Pearson and Spearman test results show that, in the
data sets, supply air temperature and suction temperature have a positive correlation, other
data have a negative correlation with supply air temperature, and the two units have a
robust linear correlation. The outdoor fan frequency has the strongest negative correlation
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with supply air temperature. In contrast, the suction temperature has the strongest positive
correlation, and its correlation to this unit is more significant than that of another unit.

5.2. Parameter Setting

The improved model in this study uses an Adam optimizer for optimization training;
in addition, the dataset is divided into three parts—a training set for learning, a validation
set for hyperparameter tuning, and a test set for performance evaluation. In this study,
early stopping was also implemented, and the validation set was utilized to choose the
optimum model for training during model training.

The search range of the improved TFT parameters is as follows: prediction time step
because the actual demand is 30 steps; DDN Encoder layer, [1, 16]; Number of batch sizes,
[16, 512]; State size, [32, 256]; Learning rates, [0.0001 ,0.1]; Number of attention heads,
[1, 8]; Dropout rate, [0, 0.4]; Loss Function α, [0.1–0.9]; Loss Function β, [0.0001, 0.5]; Loss
Function γ, [0.1, 0.5]. The final parameters of the improved TFT of the two units are shown
in Table 2.

Table 2. Parameters of the Improved-TFT in the high-speed rail air conditioning dataset.

Parameter Unit 1 Unit 2

Number of time steps 30 30
Number of DDN encoder

layers 4 4

Number of batch sizes 64 256
State size 64 64

Learning rates 0.01 0.01
Number of attention heads 4 4

Dropout rate 0.2 0.2
Loss Function α 0.8 0.9
Loss Function β 0.01 0.01
Loss Function γ 0.1 0.05

5.3. Evaluation Metrics

Three scale-dependent errors and two percentage errors, namely, MAE, MSE, RMSE,
MAPE, and SMAPE, are utilized to evaluate forecasting performance. MAE (Mean Absolute
Error) is the average value of the absolute error, which can better reflect the actual situation
of the predicted value error. RMSE (Root Mean Square Error) measures the deviation
between the observed and actual values. MSE (Mean Square Error) is the square of the
difference between the actual value and the predicted value and then summed and aver-
aged. MAPE (Mean Absolute Percentage Error), range [0,+∞), 0% means a perfect model,
and 100% means an inferior model. SMAPE (Symmetric Mean Absolute Percentage Error)
is a correction index for the problem of MAPE, which can better avoid the problem that the
calculation result of MAPE is too large because the real value is small. Equations (36)–(40)
give the calculation of the five evaluation metrics:

MAE =
1
τ

τ

∑
t=1
|(ŷt − yt)| (36)

MSE =
1
τ

τ

∑
t=1

(ŷt − yt)
2 (37)

RMSE =

√
∑τ

t=1(ŷt − yt)
2

τ
(38)

MAPE =
∑τ

t=1|ŷt − yt|/yt

τ
× 100% (39)
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SMAPE =
1
τ

τ

∑
t=1

|ŷt − yt|
(|ŷt|+ |yt|)/2

(40)

τ is the size of output samples, yt is the actual value, and ŷt is the forecasting value.
The improvement rate (IR) is introduced to compare the forecasting performance of two
different models. The five improved percentage metrics are calculated as follows:

IRMAE =
MAEA −MAEB

MAEB
× 100% (41)

IRMSE =
MSEA −MSEB

MSEB
× 100% (42)

IRRMSE =
RMSEA − RMSEB

RMSEB
× 100% (43)

IRMAPE =
MAPEA −MAPEB

MAPEB
× 100% (44)

IRSMAPE =
SMAPEA − SMAPEB

SMAPEB
× 100% (45)

where IRMAE, IRMSE, IRRMSE, IRMAPE, and IRSMAPE represent the IRs of model A com-
pared with model B in terms of MAE, MSE, RMSE, MAPE, and SMAPE, respectively.

5.4. Ablation Analysis

To validate and quantify the benefits of the two improvements proposed in this study,
an extensive ablation analysis was performed removing each component from the network
as shown below and quantifying its training results using IRMAE, IRMSE, IRRMSE, IRMAPE,
and IRSMAPE:

1. DDN encoder layer: This study ablates by replacing the LSTM Encoder with the DDN
Encoder designed for this study. The DDN Encoder (Equations (21)–(24)) has a flexible
receptive field, which can consider both local and long-distance information.

2. DGRN layer: The spatiotemporal double-gated (Equations (25)–(30)) structure filters
the signal or noise that harms the target in two dimensions, adding only a time-gated
unit to the original GRN.

The ablation network is trained on the dataset using the same hyperparameters.
Figure 8 shows that the effects of losses on unit 1 and unit 2 are similar, and all improve-
ments are beneficial to the overall performance.

Figure 8. Results of ablation analysis. Improve1 is to add a DDN encoder layer to replace the LSTM
encoder layer on the TFT model; improve2 is to add a DGRN layer to the TFT model to replace the
GRN layer. IR is the boost ratio compared to the TFT model, Equations (41)–(45).
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The TCN structure is generally more effective than the RNN structure in dealing
with long-term series prediction problems. The experimental results (MAPE) also show
that the DDN Encoder layer with the TCN structure performs better, which is 19.93%
and 6.70% higher than the original method in the temperature prediction of unit 1 and
unit 2, respectively.

Furthermore, there are not many parameters to tune for the training of the im-
proved network.

The DDN Encoder structure, which has a more flexible receptive field and is better at
capturing long-distance features, is more suitable for supply air temperature prediction
tasks than the LSTM Encoder structure. The ablation experiment results of the DGRN struc-
ture show that the temperature prediction results (MAPE) of unit 1 and unit 2 are improved
by 14.68% and 3.64%, respectively, compared with the original model. The ablation experi-
ments’ results show that enhancing the gating structure improves the model efficiency and
successfully filters the values that negatively affect future temperature predictions in the
time dimension.

In addition, through the analysis of Figure 9, when improvements one and two
are used in the prediction model simultaneously, they will play a mutually reinforcing
role. Moreover, when different improvements have significant differences in prediction
performance at the exact location, the improvement with better performance will dominate
the prediction at this location.

When the last two improvements are applied to the prediction model simultaneously,
there is no conflicting problem, and all five evaluation indicators are improved. In particular,
the prediction of the supply air temperature of unit 1 is significantly enhanced (the MAPE
loss is increased by 21.70%), indicating that it is more effective in noisy data.

5.5. Results and Discussion

The prediction results of Improved-TFT on the high-speed rail Air Conditioning dataset
compare with those of other methods regarding MAE, MSE, RMSE, MAPE, and SMAPE.
Table 3 presents the forecasting performance of each model. The results are analysed in
detail below.

Table 3. Forecasting results of different models in the high-speed air conditioning supply air temper-
ature data set.

Model
Unit 1 Unit 2

MAE MSE RMSE MAPE SMAPE MAE MSE RMSE MAPE SMAPE

RF 1.54 5.42 2.33 8.64% 8.18% 1.51 5.73 2.39 8.71% 8.07%
LSTM 2.33 11.48 3.39 13.00% 12.31% 2.66 15.34 3.92 15.06% 13.87%
GRU 2.38 11.52 3.39 13.10% 12.89% 2.68 15.29 3.91 15.03% 14.21%
TCN 0.59 1.32 1.15 3.19% 3.18% 0.62 1.50 1.23 3.34% 3.31%

Transformer 0.36 0.84 0.91 1.91% 1.93% 0.48 1.42 1.19 2.53% 2.57%
N-BEATS 0.39 0.93 0.97 2.09% 2.10% 0.45 1.35 1.16 2.33% 2.35%
N-HITS 0.39 0.96 0.98 2.11% 2.12% 0.43 1.36 1.17 2.35% 2.33%
OURS 0.23 0.37 0.60 1.20% 1.21% 0.24 0.48 0.69 1.31% 1.30%

This study selected seven algorithms for comparison experiments: random forest
prediction (RF), LSTM, GRU [25], TCN, Transfomer [26], N-BEATS [27], and N-HITS [28].
These methods represent typical machine learning, RNN networks, CNN networks, Trans-
formers, and several state-of-the-art multivariate long-term prediction methods. These
models represent the most popular forecasting methods, with random forests being the
first of the seven to be proposed and widely used over a while.
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Figure 9. Ablation experiment correlation plot.

Table 3 and Figure 10 show that the improved TFT model significantly outperforms the
tests of all comparison methods. The MAPE values of the Unit 1 prediction model: random
forest prediction, LSTM, GRU, TCN, Transfomer, N-BEATS, N-HITS, and improved TFT
are 8.64%, 13.00%, 13.10%, 3.19%, 1.93%, 2.10%, 2.12%, and 1.20%, respectively. The MAPE
values of the Unit 1 prediction model: random forest prediction, LSTM, GRU, TCN, Trans-
fomer, N-BEATS, N-HITS, and improved TFT are 8.71%, 15.06%, 15.03%, 3.34%, 2.53%,
2.33%, 2.35%, and 1.30%, respectively. Compared with the sub-optimal model, the im-
proved TFT model significantly improves the air-conditioning temperature prediction task.
The MAPE of unit 1 is reduced by 0.71%, and the MAPE of unit 2 is reduced by 1.02%.
The results reveal that the improved TFT model is the best individual prediction model.

An improved TFT model with multiple variables can gain more information in pre-
diction problems, and its future known inputs contain a lot of information that positively
affects the prediction results. The attention mechanism shows excellent performance in
the experiments, and the performance becomes even better after the improved TFT model
aligns these inputs. Moreover, the experimental results also show that the prediction model
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of the CNN structure is far worse than the prediction model of the TCN structure in the
supply air temperature prediction, which confirms that it is unsuitable for a long-time
prediction task discussed.

Figure 10. Experimental results of air-conditioning supply air temperature prediction for differ-
ent models.

5.6. Interpretability Analysis

This section clarifies the interpretability of the improved TFT model, analyzing its
relationship with time. As shown in Figure 11, in the past time information of unit 1,
the data close to the predicted time shows a strong correlation because the more immediate
information has a more significant impact on the prediction of the supply air temperature.
The farther position data may be subject to substantial environmental changes due to the
high-speed rail.

Figure 11. Interpretability experimental results for improved TFT.

Through the attention analysis of unit 1 and unit 2, the attention weight of the past time
shows an overall upward trend with the positive sequence of time; the attention weight
of the future time has different degrees of hysteresis, and the overall is first decreased,
then slowly increased, and finally has a further downward trend. Experts researching and
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developing air conditioners agree with such a hysteresis result. Attentional weight patterns
can elucidate the model’s most important past time steps based on its decisions. Compared
to traditional and machine learning time series methods, which rely on model-based norms
for lag analysis, the improved TFT can learn this pattern from raw training data.

In the future information of unit 1, the data close to the prediction time shows a
weak correlation because the prediction model has a certain lag. As shown in Figure 11,
the overall importance of the past information in unit 2 is similar to that in unit 1. However,
its volume fluctuates to a certain extent at positions farther from the predicted point.
The difference in the importance of future information for unit 2 and unit 1 is that it has
increased in recent times. The interpretability experiments of unit 1 and unit 2 show that
the temporal dynamic trends of the two units are roughly the same, but there are also
some differences. A possible explanation is that this difference occurs because the control
algorithm of the high-speed rail air conditioner controls the two units. In the operation
process of the two units, only one is often running.

6. Conclusions

Air conditioning control mainly changes the supply air temperature. However, various
factors such as the ambient temperature, the speed of the high-speed rail, and the high
and low pressure of the air conditioning system will also affect its changes. With the
popularity of high-speed rail in China, passengers who choose to travel by high-speed rail
are more and more concerned about the ride’s comfort. Different from the environment of
ordinary air conditioners, the environment of high-speed rail changes very fast, and the
air temperature of air conditioners fluctuates wildly, which not only leads to a decrease in
thermal comfort but also increases the energy consumption of air conditioners. Accurate
prediction is a meaningful job.

This study introduces a unique interpretable predictive model, TFT, with specific
improvements. Extensive experiments have proved that the TCN structure is suitable for
time series processing, so this study selects TCN to improve the TFT model. The results
of ablation experiments demonstrate that the improvements discussed in this study are
practical. Experiments show that, compared with seven popular models, the improved TFT
model has the best performance in predicting supply air temperature, among which the
experimental results of unit 1 have the best experimental results compared with the seven
models in MAE, MSE, RMSE, MAPE, and SMAPE improved by 0.13, 0.47, 0.31, 0.71%, and
0.72%. Finally, in terms of the interpretability of the model, only the interpretable analysis
of the time dimension is done, and the interpretability of the entire prediction problem is
the main work to be done in the future. For the air conditioner temperature prediction
task, the attention weight of this study has been recognized by experts, and an objective
fact has been learned through the training of the model, that is, the change of the external
environment or the rise and fall of the compressor frequency cannot immediately change
the air conditioner temperature. The study of interpretability is critical if engineering
applications want to earn the trust of human experts in the future.
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