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Abstract: The index coding problem consists of a system with a server and multiple receivers with
different side information and demand sets, connected by a noiseless broadcast channel. The server
knows the side information available to the receivers. The objective is to design an encoding scheme
that enables all receivers to decode their demanded messages with a minimum number of transmis-
sions, referred to as an index code length. The problem of finding the minimum length index code that
enables all receivers to correct a specific number of errors has also been studied. This work establishes
a connection between index coding and error-correcting codes with multiple interpretations from the
tree construction of nested cyclic codes. The notion of multiple interpretations using nested codes
is as follows: different data packets are independently encoded, and then combined by addition
and transmitted as a single codeword, minimizing the number of channel uses and offering error
protection. The resulting packet can be decoded and interpreted in different ways, increasing the
error correction capability, depending on the amount of side information available at each receiver.
Motivating applications are network downlink transmissions, information retrieval from datacenters,
cache management, and sensor networks.

Keywords: index coding; pliable index coding; error correcting index coding

1. Introduction

In this work, we consider a source code variant, introduced by Birk and Kol [1],
originally called informed source coding-on-demand (ISCOD), and further developed by
Bar-Yossef et al. [2]. Motivating applications include satellite transmission of large files,
audio and video on demand (such as streaming networks), database data retrieval, cache
management for network applications and sensor networks. The model considered in [1]
involves a source that possesses n messages and m receivers. Each receiver knows a proper
subset of messages, which is referred to as the side information and demands a specific
message unknown to it. The source, aware of the messages possessed by each receiver, uses
this knowledge to develop a transmission scheme that satisfies the demands of all receivers
using as few transmissions as possible, referred to as the index code length.

Index coding can be viewed as special case of rate distortion with multiple receivers,
each with some side information about the source [3]. Index coding has received consider-
able attention recently, motivated by applications in multi-user broadcast scenarios, such as
audio and video on demand, streaming networks, satellite communications and by its con-
nection to network coding. In [4,5], the equivalence between network encoding and index
encoding has been established. This research topic has been extended in other directions,
such as pliable index coding [6], a variation of index coding in which we still consider a
server and m clients with side information, but where the receivers are flexible and satisfied
to receive any message that is not in their side information set; such flexibility can reduce
the amount of communication, sometimes significantly. This has applications in music
streaming services or internet searching, such as content distribution networks (CDNs) [7]; a
CDN manages servers in multiple geographically distributed locations, stores copies of the
web content (including documents, images, audio and others) in its servers and attempts
to direct each user request to a CDN location that will provide the best user experience.
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In this application, each receiver may be interested in receiving any message that it does
not already possess as side information. Suppose that we are searching for the latest news
and we already have some information. We are happy if we obtain any additional news
that we do not have, with minimum delay. Here, we do not specify the news. On a music
streaming service, users do not know which song will play next; they are usually only
guaranteed that it will be one of a certain group and that it will not be repeated. In online
advertising systems, customers do not require a specific advertisement to view; it is the
distributor who chooses which one will be placed on customers’ screens. The distributor
may wish to avoid repeating the same advertisement for the same customer, as this can
decrease customer satisfaction.

How much we can gain in terms of bandwidth and user satisfaction, if recommenda-
tion systems become bandwidth-aware and take into account not only the user preferences?
Song and Fragouli [8] formulated this as a new problem in the context of index coding,
where they relaxed the index coding requirements and considered the case where the
customer is satisfied to receive any message that they do not already have, with satisfaction
proportional to their preference for that message.

A promising research area that has recently emerged is in how to use index coding to
improve the communication efficiency in distributed computing systems, especially for
data shuffling in iterative computations [9,10]. Index coding has been proposed to increase
the efficiency of data shuffling, which can form a major communication bottleneck for big
data applications. In particular, pliable index coding can offer a more efficient framework
for data shuffling, as it can better leverage the many possible shuffling choices to reduce
the number of transmissions.

The index coding problem subject to transmission errors was initially considered by
Dau et al. [11]. In this work, we establish a connection between index coding and error-
correcting codes with multiple interpretations from the tree construction of nested cyclic
codes proposed in [12]. The notion of multiple interpretation using nested codes [13] is as
follows: multiple information packets are separately encoded via linear channel codes, and
then combined by addition and transmitted as a single codeword, minimizing the number
of channel uses and offering error protection. The resulting packet can be decoded and
interpreted in different ways, yielding an increase in error correction capability, depending
on the amount of side information available at each receiver.
Part of the content of this paper was presented in [14]. In the current version, evidence to
verify our claims has been added, as well as some examples. The results in this paper are
an extension of the results in [12,14].

The main contributions of this paper are as follows.

• We verify that, for cyclic codes, there will not always be an increase in error correction
capability between different levels of the code tree. For this reason, we initially restrict
the study to Reed–Solomon codes since they are maximum separable distance (MDS)
codes, and provide an increase in Hamming distance at each level. This means that,
under certain conditions, knowledge of side information can be interpreted as an
increase in error correction capability.

• We propose a new variant for the index coding problem, which we call “index coding
with multiple interpretations”. We assume that receivers demand all the messages
from the source and that the sender is unaware of the subset of messages already
known by the receivers. The sender performs encoding such that any side information
may be used by the decoder in order to increase its error correction capability. More-
over, if a receiver has no side information, the decoder considers the received word to
belong to the highest rate code, associated with the root node of the tree.

• We also propose a solution to relax some constraints on how side information should
occur at the receivers, using graph coloring associated with the pliable index
coding problem.
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2. Preliminaries
2.1. Notation and Definitions

For any positive integer n, we let [n] := {1, . . . , n}. We write Fq to denote the finite
field of size q, where q is a prime power, and use Fq

n×t to denote the vector space of all
n× t matrices over Fq.

2.2. Review of Linear and Cyclic Codes

We now introduce the notation and briefly review some of the relevant properties
of linear and cyclic codes based on [15,16]. The purpose of a code is to add extra check
symbols to the data symbols so that errors may be found and corrected at the receiver. That
is, a sequence of data symbols is represented by some longer sequence of symbols with
enough redundancy to protect the data. In general, to design coding schemes for receivers
with side information, we will consider collections of linear codes that are of length n
over Fq.

Structure of Linear Block Codes

Recall that under componentwise vector addition and componentwise scalar multipli-
cation, the set of n-tuples of elements from Fq is the vector space called Fn

q . For the vectors
u = (u1, . . . , un) ∈ Fn

q and v = (v1, . . . , vn) ∈ Fn
q , the Hamming distance between u and v is

defined to be the number of coordinates u and v that differ, i.e.,

d(u, v) = |{i ∈ [n] : ui 6= vi}|.

Definition 1. A k-dimensional subspace C of Fn
q is called a linear (n, k, d)q code over Fq if the

minimum distance of C,
d(C) , min

u,v ∈ C, u 6=v
d(u, v)

is equal to d. Sometimes, we only use (n, k)q to refer to the code C, where n is the length of the

codewords and k is the dimension of the code. The code’s rate is the ratio
k
n

.

That is, a (n, k)q linear code C can be completely described by any set of k linearly
independent codewords v1, v2, . . . , vk; thus, any codeword is one of the qk linear combina-
tions ∑k

i1 αivi, αi ∈ Fq. If we arrange the codewords into a k× n matrix G, we say that G is
a generator matrix for C.

A special case of major importance is Fn
2 , which is the vector space of all binary code-

words of length n with two such vectors added by modulo-2 addition in each component.
A binary code of size M = 2k for an integer k is referred to as an (n, k) binary code.

We consider cyclic codes of length n over Fq with gcd(n, q) = 1. Label the coor-
dinates of c ∈ Fn

q with the elements of Zn = {0, 1 . . . , n − 1} and associate the vector
c = (c0, . . . , cn−1) with the polynomial c(x) = c0 + c1x + · · ·+ cn−1xn−1. With this corre-
spondence, a cyclic code C is an ideal of the ring Rn = Fq[x]/(xn − 1). We use g(x) to
denote the generator polynomial of C and write C = 〈g(x)〉 = {C(x) ∈ Fq[x]; g(x)|C(x)}
to describe a t-error correcting cyclic code.

2.3. Index Coding with Side Information

The system shown in Figure 1 illustrates the index coding problem. Receiver Ri is
requesting the message xi, i ∈ {1, 2, 3} and knows other messages as side information; R1
knows x3, R2 knows x1 and x3 and the receiver R3 knows x1 and x2.

The goal of index coding is to perform the joint encoding of the messages, in order
to simultaneously meet the demands of all receivers, while transmitting the resulting
messages at the highest possible rate.
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Server
x1, x2, x3

x1, x2 ⊕ x3

R1

R2

R3

x1 99K R1

(x2 ⊕ x3)⊕ x3 = x2 99K R2

(x2 ⊕ x3)⊕ x2 = x3 99K R3

Figure 1. Index coding problem with three receivers.

Assuming a noiseless broadcast channel, the server would communicate all messages
by sending one at a time, in three transmissions.

Alternatively, when transmitting the two coded messages x1 and x2 ⊕ x3, the receiver
R1 decodes x1, from (x2 ⊕ x3) ⊕ x3 = x2 and (x2 ⊕ x3) ⊕ x2 = x3, R2 and R3 recover
their demands.

The index coding problem is formulated as follows. Suppose that a server S wants
to send a vector x = (x1, x2, . . . , xn), where xi ∈ Fq ∀ i ∈ [n], to [n] receivers R1, R2, . . . , Rn.
Each receiver Ri has xSi = {xj ; j ∈ Si ⊆ [n]r {i}} as side information and is interested
in receiving the message xi. The codeword C(x) ∈ F`

q is sent and allows each receiver Ri
to retrieve xi. C is an index code scalar over Fq of length `. The purpose of S is to find an
index code that has the minimum length. The index code is called linear if C(x) is a linear
function.

Index Coding via Fitting Matrices

A directed graph G = (V , E) with n vertices specifies an instance of the index coding
problem. Each vertex of G corresponds to a receiver (and its demand) and there is a directed
edge i −→ j if and only if the receiver Ri knows xj as side information. Then, we write:

Si = { j : (i, j) is a edge of G }

Definition 2. Let G = (V , E) be a directed graph on n vertices without self-loops.

1. A 0-1 matrix M = (mij), whose rows and columns are labeled by the elements of V = [n], fits
G if, for all i and j,

(i) mii = 1;
(ii) For i 6= j,

mij =

{
∗ ∈ {0, 1} ; if (i, j) is an edge of G;
0 ; else.

Thus, M− I is the adjacency matrix of an edge-induced subgraph of G, where I denotes the
n× n identity matrix.

2. The minrank of G over the field F2 is defined as follows:

minrk2(G) , min{ rank2(M) : M fits G }

Remark 1. The term rank2(M) denotes the rank of such matrix M over F2, after “ ∗ ” has been
assigned a value of 0 or 1. As an example for the index coding problem instance described in Figure 1,
the matrix M would be given as follows:

M =

1 0 ∗
∗ 1 ∗
∗ ∗ 1


Example 1. Consider the side information graph G and a matrix M that fits G, as shown in
Figure 2. As minrank2(M) = 2, we can select two linearly independent rows in a matrix M,
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namely M′, and design an linear index code with the shortest possible length. The codeword sent
will be M′x.

M =

1 0 0
0 1 1
0 1 1

 ⇒ M′x =

[
1 0 0
0 1 1

]x1
x2
x3

 =

[
x1

x2 ⊕ x3

]

Figure 2. Graph and matrix related to the problem described in Figure 1

Theorem 1 ([2]). For any side information graph G, there exists a linear index code for G whose
length equals minrk2(G). This bound is optimal for all linear index codes G.

In [17], the index encoding problem was generalized. Suppose that a sender wants
to transmit n messages (X1, . . . , Xn), where Xi ∈ Fq

t ∀ i ∈ [n], to m receivers R1, . . . , Rm,
through a noiseless channel. The receiver Rj is interested in recovering a single block X f (j),
where f : [m] −→ [n], and knows XSj = {Xi ; i ∈ Sj ⊆ [n]r f (j)}. The goal is to satisfy
the demands of all receivers, exploiting their side information in a minimum number of
transmissions.

When m = n, f (j) = j, ∀ j ∈ [m] and t = 1, we have a scalar index code [2]. Otherwise,
we have a vector index code.

Let I = {Sj ; j ∈ [m]} be the set of side information of all receivers. An instance of an
index coding problem given by (m, n, I , f ) can be described by a directed hypergraph.

Definition 3. The side information hypergraph H(V , EH) = H(m, n, I , f ) is defined by the set
of vertices V = [n] and the (directed) hyperedges EH, where

EH = {ej = ( f (j),Sj) ; j ∈ [m]}

A hyperedge ej = ( f (j),Sj) represents the demand and side information of the receiver Rj.

Example 2. Consider an instance of an index coding problem in Figure 3. The hypergraph in
Figure 3b describes the problem, where n = 4 (messages) and m = 5 (receivers) requiring f (1) = 1,
f (2) = 3, f (3) = 4, f (4) = 4 and f (5) = 2, and with the following side information sets
S1 = {3, 4},S2 = {2, 4},S3 = {1}, S4 = {2} and S5 = {1, 3}, respectively.

(a) (b)

Figure 3. A single sender with multiple receivers having side information: (a) An instance of an index
coding problem with m = 5 (receivers) and n = 4 (messages). (b) The hypergraph that describes this
instance will have four vertices and five hyperedges: e1 = (1, {3, 4}), e2 = (3, {2, 4}), e3 = (4, {1}),
e4 = (4, {2}) and e5 = (2, {1, 3})

Definition 4. Given an instance of an index encoding problem described byH(m, n, I , f ),

C : Fq
n×t −→ Fq

`×t,
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is a Fq- index code with length `, for the instance described byH, if, for each receiver Rj, j ∈ [m],
there exists a decoding function

Dj : Fq
`×t × Fq

t|Sj | −→ Fq
t,

satisfying Dj(C(X), XSj) = X f (j), ∀ X ∈ Fq
n×t.

The transmission rate of the code is defined as
`

t
. If t = 1, then the index code is known

as a scalar index code; otherwise, it is known as a vector index code. A linear coding function
C is also called a linear index code. The goal of index coding is to find optimal index codes,
i.e., those with the minimum possible transmission rate. For scalar linear index codes,
we refer to the quantity r as the length of the code, and thus rate optimality translates to
minimal length codes.

Definition 5. C is a Fq-linear index code, C(X) = GX, ∀ X ∈ F`×n
q , where G ∈ F`×n

q . G is the
matrix that generates the linear index code C.

The following definition generalizes the minrank definition over Fq of the side infor-
mation graph G, which was defined in [2], to a hypergraphH(m, n, I , f ).

Definition 6. Let Supp(v) = { i ∈ [n] : vi 6= 0}, the support of a vector v ∈ Fn
q . The Hamming

weight of v will be denoted by ω(v) = |Supp(v)|, the number of nonzero coordinates of v.

Definition 7 ([11]). Suppose thatH(m, n, I , f ) corresponds to an instance of index coding with
side information (ICSI). Then, the minrank ofH over Fq is defined as

minrkq(H) , min{ rankq({vi + e f (i)}i∈[m]) : vi ∈ Fq Supp(vi) ⊆ Si}

This may be rewritten as follows.

Definition 8. Let a side information hypergraphH correspond to an instance of the ICSI problem.
A matrix M = (mij) ∈ Fm×n

q fitsH if

mij =

{
1 if j = f (i)
0 if j ∈/ Si

The minrank ofH over the field Fq is defined as follows:

minrkq(H) , min{ rankq(M) : M fitsH }

Theorem 2 ([2]). Given an instance of an index encoding problem described by the hypergraph
H(m, n, I , f ), the optimal length of an index code on the field Fq is minrkq(H).

In [2], it was proven that, in several cases, linear index codes were optimal. They
conjectured that for any side information graph G, the shortest-length index code would
always be linear and have length minrk2(G). The conjecture was refuted by Lubetzky and
Stav in [18]. In any case, as shown by Peeters [19], calculating the minrank of an arbitrary
graph is a difficult task. More specifically, Peeters showed that deciding whether a graph
has minrank three is an NP-complete problem.
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Example 3. Consider the instance of the index encoding problem given in Example 2. Then, we
find that the matrix M that fits the hypergraphH has the form:

M =


1 0 ∗ ∗
0 ∗ 1 ∗
∗ 0 0 1
0 ∗ 0 1
∗ 1 ∗ 0


The lines are associated with the receivers R1, . . . , R5 and the columns to the message indexes 1, 2, 3
and 4. The symbol “ ∗ ” can be replaced by an arbitrary element in the field Fq.

For an example, consider the field F2. A matrix that fits the hypergraphH has rank at
least 3. Thus, we select

M =


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 1
0 1 1 0


which achieves the minimum rank 3. Now, we consider three linearly independent lines of
M, and suppose that

G =

1 0 0 0
0 1 1 0
0 0 0 1

 ⇒ Gx =

1 0 0 0
0 1 1 0
0 0 0 1




x1
x2
x3
x4

 =

 x1
x2 ⊕ x3

x4


The decoding process goes as follows. Since R2 and R5 already know {x2, x4} and {x1, x3},
respectively, they obtain x3 and x2, respectively, from the first packet. Receiver R1 obtains
x1 and both R3 and R4 obtain x4.

Remark 2. We have made available at [20] an algorithm (m-files) in Matlab, which is designed
to solve small examples in this work, since, as we mentioned above, there is no polynomial-time
algorithm for an arbitrary graph.

2.4. Pliable Index Coding

The pliable index coding problem (PICOD), introduced by Brahma and Fragouli in [6],
is a variant of the index coding problem. In PICOD, users do not have predetermined
messages to decode, as in the case of classic index coding; instead, each user is satisfied to
decode any message that is not present in its side information set. Figure 4 illustrates this
system model.

Server

{xi : i ∈ S1}

R1

Request any

Has

d1 ∈ I1 = [n] \ S1

R2 Rm

{xi : i ∈ Sm}
Request any

Has

dm ∈ Im = [n] \ Sm

{xi ∈ X : i ∈ [n]}
Messages

Figure 4. Pliable index coding scheme.
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The problem is formalized as follows: a transmitter with n messages {xi : i ∈ [n]},
xi ∈ X is connected to m receivers R1, . . . , Rm, through a noiseless channel. Each receiver
Rj knows xSj = {xi : i ∈ Sj} as side information. We denote by Ij , [n]r Sj the index set
of the unavailable messages in xSj . Then, xIj = {xi : i ∈ Ij} denotes the set of requests of
Rj. Each receiver Rj is satisfied if it can successfully recover any message that is not present
in its side information set, i.e., any message xd ∈ xIj .

We can represent an instance of a pliable index coding problem using an undirected
bipartite graph, one side representing the message indexes and the other side representing
the receivers. We connect Rj to the indices belonging to Ij, as in Figure 5.

Remark 3. By having this freedom to choose the desired message for each user, PICOD can satisfy
all users with a significant reduction in the number of transmissions compared to the index encoding
problem with the same set of messages and the same sets of user side information.

Example 4. We will consider the case described in Example 2 as a pliable index coding problem.
Now, we have the bipartite graph in Figure 5 describing the problem. Note, for example, that
client 1 demands any of the messages indexed in I1 = {1, 2} and knows the indexed messages in
S1 = {3, 4}; client 3 will be satisfied to receive any of the messages x2, x3 or x4, since it only knows
x1.

Figure 5. Bipartite graph for PICOD.

Pliable Index Coding via Colorings of Hypergraphs

In [21], a graph coloring approach was presented for pliable index coding. The authors
have shown the existence of a coding scheme that has length O(log2 Γ), where Γ refers to a
hypergraph parameter that captures the maximum number of intersections between edges
of the PICOD hypergraph.

An instance of the pliable index encoding problem is described by (m, n, I)−PICOD,
onde I = {Ij ; j ∈ [m]}, and can be conveniently represented by a hypergraph.

Definition 9. The hypergraphH(V , EH), with V = [n] vertices and EH = {ej = (Ij) ; j ∈ [m]}
hyperedges, completely describes the (m, n, I)−PICOD. The hyperedge ej = (Ij) represents the set
of requests for Rj (i.e., EH = I).

The problem illustrated in Example 5 can be represented by a hypergraph, as can be
seen in Figure 6.

Figure 6. Hypergraph.
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Let H = (V , EH) be a hypergraph and C : V → [L] be a coloring of V , where L is a
positive integer. We say that C is a conflict-free coloring for the hyperdges, if each EH of
H has at least one vertex with unique color. The smallest number of colors required for
such a coloring is called the conflict-free chromatic number ofH, denoted by χCF(H). This
parameter was first introduced by Even et al. [22].

Remark 4. In [21], pliable index coding was given a graph coloring approach. The authors have
shown the existence of a coding scheme that has length O(log2 Γ), where Γ refers to a hypergraph
parameter that captures the maximum number of “incidences” of other hyperedges in any given
hyperedge. This result improves the best known achievable results, in some parameter regimes.

Definition 10. A pliable index code (PIC) consists of a collection of an encoding function on the
server that encodes the n messages to an `−length codeword,

φ : X n −→ X `,

and decoding functions ψj : X ` ×X |Sj | −→ X , satisfying ψj(φ(x), xSj) = xd, for some d ∈ Ij.
The quantity `− is called the length of the pliable index code. We are interested in designing

pliable index codes that have small `−.

We will assume that X = Fk for some finite field F and integer k ≥ 1. If k > 1, we refer
to this code as a k−vector PIC, while the k = 1 case is also called a scalar PIC. We will concen-
trate on the linear PICs. In this case, the coding function φ is represented by a matrix `×mk
(denoted by G) such that φ(xi : i ∈ [n]) = GxT , where x = (x11, . . . , x1k, . . . , xm1, . . . , xmk).
The smallest ` for which there is a linear k−vector PIC for an instance of the pliable index
coding problem given by the hypergraphH will be denoted by `∗k (H).

Definition 11. Let C : V → [L] be a conflict-free coloring of the hypergraphH that represents a
PICOD. The indicator matrix associated with this coloring GC, L× n, is given by

Gc(c, i) =

{
1, if the vertex i received the color c;
0, otherwise.

Teorema 1 ([21]). The indicator matrix Gc generates the pliable index code for the problem described
by the hypergraphH.

Example 5. Consider the same PICOD represented in Figure 6. The coloring shown in Figure 7 is

a conflict-free coloring with two colors. Then, the matrix Gc =

[
1 0 0 1
0 1 1 0

]
.

Figure 7. Conflict-free coloring with two colors.

⇒
[

1 0 0 1
0 1 1 0

]
x1
x2
x3
x4

 =

[
x1 ⊕ x4
x2 ⊕ x3

]

From the messages x1 ⊕ x4 and x2 ⊕ x3, all receivers can successfully recover at least
one message from their request set.

Using the same parameters as in Example 2, we see that the length of the index code
for this instance is ` = 3, while, for the PICOD case, `∗k (H) = 2.
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2.5. Index Coding via MDS Codes

The index coding model defined in Section 2.3, via graph theory, is only one of
many approaches used to describe and solve an index encoding problem. One of the
most interesting index coding schemes using codes has the maximum distance separable
(MDS) property, which consists of transmitting κ(G) = n−mindeg(G), the parity symbols
of a systematic MDS code with parameters (n + κ, n), where mindeg(G) represents the
minimum amount of side information available at each receiver, i.e., for a general index
encoding problem with side information graph G,

mindeg(G) , mini∈[n]|{ j; (i, j) ∈ E(G)}| = mini∈[n]|Si|.

Then, every receiver has n code symbols (including its side information) and, by the MDS
property, it can successfully recover its desired message.

Proposition 1 ([1]). Consider an index coding problem with n messages and n receivers represented
by the side information graph G. Let Si, the side information set of the receiver Ri, i ∈ [n], and then

minrkq(G) ≤ κ(G) = n−mindeg(G) = n−mini∈[n]|Si|.

Corollary 1. If G is a complete graph, then mindeg(G) = n− 1 and the transmission of the parity
symbol x1 + · · ·+ xn of an (n + 1, n) MDS code over F2 achieves minrkq(G) = 1.

3. Results

The tree construction method proposed in [12] can be interpreted as a network coding
problem with multiple sources and multiple users. In the proposed model, both encoding
and decoding are performed by polynomial operations, without the need for side informa-
tion; however, if they exist, they may allow multiple interpretations at the receivers, based
on the side information available at each receiver. Figure 8 illustrates this system model.

Figure 8. Coding model with nested cyclic codes.

Given the connection between network and index coding problems, established in [4],
we can also interpret the coding with nested cyclic codes, at the stage where the packets are
XOR-ed together, as a case of MDS index coding according to Corollary 1, in the particular
case where each receiver is unaware of the message it is requesting, which may be a rare
occurrence. However, it is possible to take advantage of the method’s distinguishing
feature—the possibility of multiple interpretations at the receivers—and, by imposing
some extra conditions, design an index code model that has greater flexibility over the side
information sets.

In the next subsections, we present some results and algorithm implementations, and in
Section 4, we present in detail the proposed index encoding with multiple interpretations.
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3.1. Index Coding from Reed–Solomon Codes

We establish a connection between index coding and error-correcting codes based
on the tree construction method of nested cyclic codes proposed in [12]. We implement
a few algorithms to perform tree construction using the Matlab language, which allows
us to work over finite bodies in a practical and efficient way and helps to solve some
implementation problems encountered later in [12]. We prove that for cyclic codes, there
will not always be an increase in error correction capability between the levels of the tree,
as suggested in [12]. This is why we have initially limited this study to Reed–Solomon
codes, because they are MDS codes, which guarantees an increase in Hamming distance at
each level, meaning that, under certain conditions, the knowledge of side information will
be interpreted as an increase in the decoder’s ability to correct errors.

A Tree Construction with Nested Cyclic Codes

A nested code is characterized by a global code where each element is given by a sum
of codewords, each belonging to a different subcode. That is,

c = i1G1 ⊕ i2G2 ⊕ · · · ⊕ iNGN ,

where ⊕ represents an XOR operation. For an information vector i`, 1 ≤ ` ≤ N, the
codeword i`G` belongs to a subcode C` of code C and c ∈ C.

Nested cyclic codes, whose subcodes are generated by generator polynomials, were
originally proposed by Heegard [23], and were originally called partitioned linear block
codes. They can be defined as follows:

Definition 12. Let C = {C(x) ∈ Fq[x]; g(x)|C(x)} be a t-error-correcting cyclic code having
g(x) as the generator polynomial. Note that C = 〈g(x)〉 is an ideal of the ring Rn = Fq[x]/(xn −
1), but is also a vector subspace of Fn

q , such that

C(x) = p1(x)g1(x) + p2(x)g2(x) + · · ·+ pN(x)gN(x),

where C`(x) = p`(x)g`(x), 1 ≤ ` ≤ N is an encoded packet belonging to the t`-error-correcting
subcode

C` = {C`(x) ∈ Fq[x]; g`(x)|C`(x)},

generated by g`(x) and satisfying the following conditions:

1. g`(x)|g`+1(x);
2. deg[C`(x)] < deg[g`+1(x)].

The tree-based algebraic construction of nested cyclic codes, proposed in [12], aims to

1. Encode, independently, different data packets, providing protection against channel
errors;

2. Encode different data packets producing codewords that are added, resulting in the
packet C0;

3. Correct the errors on C0 and, finally, recover the data in the receiver by polynomial
operations.

Consider a tree in which the root node is associated with the vector subspace of
an encompassing error correcting code. Thus, the root node is defined as the code Ci0,
such that

Ci0 = 〈gi0(x)〉 = {Ci0(x) ∈ Fq[x]; gi0(x)|Ci0(x)}.

This subspace corresponds to a t0-error-correcting cyclic code Ci0(n, ki0), generated by the
polynomial gi0(x).

Definition 13. A tree of nested cyclic codes is a finite tree such that

1. Each inner node (including the root node) can be subdivided into another inner node and a
terminal node;
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2. The jth th inner node is associated with a linear subspace Cij ⊂ Fn
q of dimension kij, and can

be subdivided into the subspaces

Cij = Ci(j+1) + Ct(j+1) com Ci(j+1) ∩ Ct(j+1) = {0} e kij = ki(j+1) + kt(j+1)

3. The subspace Cij, associated with the jth inner node, must be a cyclic linear block code generated
by gij(x);

4. If Cij = 〈gij(x)〉 e Ci(j+1) = 〈gi(j+1)(x)〉, then gij(x)|gi(j+1)(x); furthermore, gij(x)|xn− 1
for any gij(x);

5. To conclude, the last inner node will have no ramifications.

Remark 5. Figure 9 illustrates the model described above.

gi0(x)

gi1(x)

gi2(x)

Ci2(7, ki2 = 1)

Ci1(7, ki1 = 3)

Ci0(7, ki2 = 5)

Ct2(7− 1, ki2 = 3− 1)

Ct1(7− 3, ki2 = 5− 3)

Figure 9. Tree construction. The sum of the dimensions associated with the last node and the terminal
nodes is equal to the dimension of the root node.

Let pj(x) be the data packet associated with the terminal node, for 1 ≤ j ≤ T. The
encoding is given by

Cj(x) = pj(x)gi(j−1)(x).

Then, the encoded packets are summed up and the resulting codeword is sent out by the
transmitter

C0(x) = C1(x) + C2(x) + · · ·+ CT(x).

After the error correction phase, the jth packet pj(x) is decoded by the operations:

pj(x) =

{
[C0(x) mod gij(x)]/gi(j−1)(x) if 1 ≤ j ≤ T,
C0(x)/gi(T−1)(x) if j = T.

(1)

The information will be contained in the remainder of the division of C0(x) by gij(x),
since the modulo operation eliminates the influence of all messages related to polynomials
of degree equal to or greater than the degree of gij. Thus, the quotient of the final division
operation provides the desired information, since all other messages have degree less than
the degree of the divisor polynomial. Therefore, in the case of the last package, only the
division operation is required. We suggest consulting [12] for more details on the encoding
process using the tree construction method.

3.2. Tree Construction: Algorithm and Considerations

We describe a few algorithms in Matlab and considerations for fitting to the model
of tree construction, which can be found at [20], allowing us to perform the calculations
on finite fields by making the appropriate transformations from integer representation to
powers of α. Below, we exemplify the main idea of the algorithm.

Example 6. For T = 3 let Ci0(7, 5) be a Reed–Solomon code in GF(8) and kt1 = kt2 = 2 the
dimensions of subspaces Ct1, Ct2, respectively. They are associated with the terminal nodes of the
tree; the last node of the tree, which is an inner node without ramification, is associated with Ci2 of
dimension ki2 = 1.
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The packets p1(x) = x + α2, p2(x) = α3x + α, both associated with the the terminal
nodes, have length 2; p3(x) = α5 has length equal to 1 and is associated with the last node.
Let α be the primitive element of GF(8), and the generator polynomials are

1. deg(gi0(x)) = n− ki0 = 2⇒ gi0(x) =
2

∏
j=1

(x− αj) = x2 + α4x + α3;

2. deg(gi1(x)) = n− ki1 = 4⇒ gi1(x) =
4

∏
j=1

(x− αj) = x4 + α3x3 + x2 + αx + α3;

3. deg(gi2(x)) = n− ki2 = 6⇒ gi2(x) =
6

∏
j=1

(x− αj) = x6 + x5 + x4 + x3 + x2 + x + 1.

Then, the encoded packets are

C1(x) = p1(x)gi0(x)
= x3 + αx2 + α4x + α5;

C2(x) = p2(x)gi1(x)
= α3x5 + α5x4 + α6x3 + α2x2 + x + α4;

C3(x) = p3(x)gi2(x)
= α5x6 + α5x5 + α5x4 + α5x3 + α5x2 + α5x + α5.

The transmitted codeword C0(x) is given by

C0(x) = C1(x) + C2(x) + C3(x)
= α5x6 + α2x5 + 0x4 + α3x3 + 1x2 + 0x + α4.

Remark 6. Each terminal node is a shortened version of the code associated with the inner node
from which the terminal node emanates. It is implicit that the codewords of shortened codes are
prefixed with zeros to achieve length n and, therefore, that these codes are not cyclic.

3.2.1. Decoding—Error Correction

Considering tree construction based on Reed–Solomon codes and assuming that the
receiver has side information available, when will there be an increase in error correction
capability?

Proposition 2. Due to the nesting structure, the variable error correctability characteristic can
only be observed if there is a sequential removal of the packets associated with the nodes from the
root to the top of the tree.

Proof. Supposing that C`(x), 1 ≤ ` ≤ T is the first coded packet known at the receiver,
then

C0(x) = p1(x)gi0(x) + · · ·+ p(`−1)(x)gi(`−2)(x) + p(`+1)(x)gi`(x) + · · ·+ pT(x)gi(T−1)(x)

= [p1(x) + · · ·+ p(`−1)(x)q(`−1)(x) + p(`+1)(x)q(`+1)(x) + · · ·+ pT(x)qT(x)]gi0(x),

therefore, C0(x) ∈ Ci0(n, kio), whose error correction capability is t0. Note that even though
the receiver knows about other packages Cj(x), ` < j ≤ T, the result does not change. On
the other hand, if all packages Cj(x); 1 ≤ j < ` are known to the receiver, we can write

C0(x) = p(`+1)(x)gi`(x) + · · ·+ pT(x)gi(T−1)(x)

= [p(`+1)(x)q(`+1)(x) + · · ·+ pT(x)qT(x)]gi`(x),

thus, C0(x) ∈ Ci`(n, ki`), whose error correction capability is t` > t0, and equality occurs
only when

dmin(C`)− dmin(C0) < 2.
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Example 7. Consider the same tree as in Example 6.

• If all packages are unknown⇒ the decoding is performed by Ci0(7, 5) ∴ t0 = 1;
• If C1(x) is known⇒ the decoding is performed by Ci1(7, 3) ∴ t1 = 2;
• If C2(x) is known C1(x)⇒ the decoding is performed by Ci2(7, 1) ∴ t2 = 3.

However, if C2(x) is known but C1(x) is not, then the resulting codeword still belongs to
C0(x) ∈ Ci0(7, 5), and there is no improvement in error correction capability, since

C0(x) = p1(x)gi0(x) + p3(x)gi0(x)q(x)

= [p1(x) + p3(x)q(x)]gi0(x).

Another advantage of Reed–Solomon codes is that they are easily decoded using an
algebraic method known as syndrome decoding.

Syndrome Decoding

Syndrome decoding is an algebraic method based on the Berlekamp–Massey algorithm,
which became a prototype for the decoding of many other linear codes.

If the coded package C1(x) is known and an error e(x) occurs, then the message
received will be

r(x) = C0(x) + C1(x) + e(x)

Suppose that the error is given by e(x) = 0x6 + 0x5 + α2x4 + α5x3 + 0x2 + 0x + 0, and then

r(x) = α5x6 + α2x5 + α2x4 + α6x3 + α3x2 + α4x + 1.

Remark 7. Notice that we need to find the error locations and their values, which is the main
difference with binary codes, since, for binary codes, it is enough to determine the error locations.

The decoding process can be divided into three stages.

1. Syndrome calculation

The syndrome calculation stage consists of checking the roots of the generating poly-
nomial as inputs of r(x). If the result is null, the sequence belongs to the set of codewords
and, therefore, there are no errors. Any nonzero value indicates the presence of an error.

If the encoded packet C1(x) is known, then the error correction algorithm is executed
by Ci1, which is a RS(7, 3) code, generated by gi1(x) = (x − α)(x − α2)(x − α3)(x − α4).
Then,

r(x) = m(x)gi1(x) + e(x),

Therefore, evaluating the roots of g(x) at r(x), the result will only be null when there are
no errors in the transmission.

∴ Si = r(x)
∣∣∣
x=αi

= e(αi), ∀ i = 1, . . . , n− k = 2t.

S1 = r(α) = α5;

S2 = r(α2) = α6;

S3 = r(α3) = 0;

S4 = r(α4) = α6.

2. Error Localization

Let µ be the number of errors 0 ≤ µ ≤ t, which occur at locations `1, · · · , `µ, and the
error polynomial can be written as

e(x) = e`1 x`1 + · · ·+ e`µ
x`µ .
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To correct r(x), we must find the values and locations of the errors, which are denoted,
respectively, by e`1 , . . . , e`µ

and x`1 , . . . , x`µ . Substituting αj, 1 ≤ j ≤ 2t, into the error
polynomial e(x), we obtain

S1 = e(α) = e`1 α`1 + e`2 α`2 + · · ·+ e`µ
α`µ

S2 = e(α2) = e`1(α
`1)2 + e`2(α

`2)2 + · · ·+ e`µ
(α`µ)2

...
S2t = e(α2t) = e`1(α

`1)2t + e`2(α
`2)2t + · · ·+ e`µ

(α`µ)2t

.

Obtain Xi = α`i and Yi = e`i
for 1 ≤ i ≤ µ, where Xi and Yi will represent, respectively, the

locations and values of the errors. Note that we will have 2t equations and 2t unknowns, t
being error values and t being locations.

S1 = Y1X1 + Y2X2 + · · ·+ YµXµ

S2 = Y1X1
2 + Y2X2

2 + · · ·+ YµX2
µ

...
S2t = Y1X1

2t + Y2X2
2t + · · ·+ YµX2t

µ

.

It can be shown that this nonlinear system has a unique solution if 0 ≤ µ ≤ t [15]. The
techniques that solve this system of equations include defining the error locator polynomial
(ELP) σ(z) [24].

Definition 14. Define the error locator polynomial sigma(z), as

σ(z) = (1− X1z)(1− X2z) · · · (1− Xµz)

= σµzµ + · · ·+ σ2z2 + σ1z + 1.

The inverse of the square root of σ(z), 1/X1, . . . , 1/Xµ, indicates the locations of errors.

To find error locations Xi, 1 ≤ i ≤ µ, note that σ1, σ2, . . . , σµ and calculate the zeros of
σ(z); to find them, we use a syndrome matrix, as we see below:

S1 S2 · · · Sµ

S2 S3 · · · Sµ+1
...

...
. . .

...
Sµ Sµ+1 · · · S2µ−1




σµ

σµ−1
...

σ1

 =


−Sµ+1
−Sµ+2

...
−S2µ


Returning to Code RS(7,3), where the error correction capability is t = 2, we must find σ1 e
σ2: [

S1 S2
S2 S3

][
σ2
σ1

]
=

[
S3
S4

]
[

α5 α6

α5 0

][
σ2
σ1

]
=

[
0
α6

]
⇒ σ2 = 1 e σ1 = α6

Thus, σ(z) = z2 + α6z + 1 with roots α3 and α4, so there is an error at the locations α−3 = α4

and α−4 = α3. Then,
e(x) = e3x3 + e4x4.

3. Determining the error values
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Calculating e(x) = e3x3 + e4x4 at the points α and α2, we can use the syndromes
already obtained, S1 and S2, to determine the values of the errors, solving the following
system: {

S1 = e(α) = e3α3 + e4α4

S2 = e(α2) = e3α6 + e4α8

Therefore, the error polynomial is given by e(x) = α5x3 + α2x4. Now, correcting the received
word r(x), we have

C0(x) = r(x) + c1(x) + e(x)

= α5x6 + α2x5 + 0x4 + α3x3 + 1x2 + 0x + α4.

3.2.2. Decoding—Data Recovery

Example 8. For the cases in the previous examples, where T = 3, the original data can be recovered
as follows:

• p1(x) =
C0(x) mod gi1(x)

gi0(x)
=

p1gi0 mod gi1
gi0(x)

=
p1(x)gi0(x)

gi0(x)
;

• p2(x) =
C0(x) mod gi2(x)

gi1(x)
=

p1gi0 mod gi2 + p2gi1 mod gi2
gi1(x)

;

• p3(x) =
C0(x)
gi2(x)

=
p1(x)gi0(x)

gi2(x)
+

p2(x)gi1(x)
gi2(x)

+
p3(x)gi2(x)

gi2(x)
;

In summary, the module operation removes the branches above the node of interest
and the division operation removes the branches below. Therefore, no side information is
needed at the receiver in order to recover the data packets.

Will there always be an increase in error correction capability?

We analyze two cases of tree construction of nested cyclic codes, with the same
parameters at each level. In one of them, we observe no increase in the error correction
capability from the second to last internal node of the tree. This is due to the variety of
possibilities of generating polynomials for a cyclic code of parameters (n, k). As a result,
we demonstrate in Proposition 3 that, for Reed–Solomon codes, this feature of increasing
capacity will be guaranteed provided that: kij − ki(j+1) ≥ 2, ∀ j = 0, . . . , T − 1.

Example 9. Let Ci0(15, 10) be a cyclic code in GF(2) and kt1 = 4, kt2 = 2 be the dimensions of
the subspaces Ct1, Ct2, respectively. The last node is associated with Ci2 with dimension ki2 = 4.
The construction is depicted in Figure 10.

gi0(x)

gi1(x)

gi2(x)

Ci2(15, ki2 = 4)

Ci1(15, ki1 = 6)

Ci0(15, ki2 = 10)

Ct2(15− 4, ki2 = 6− 4)

Ct1(15− 6, ki2 = 10− 6)

Figure 10. Tree construction.

We consider the factorization:

x15 − 1 = (1 + x)(1 + x3 + x4)(1 + x + x2 + x3 + x4)(1 + x + x2)(1 + x + x4)
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Case 1.

• gi0(x) = (1 + x)(1 + x3 + x4) ⇒ t0 = 1;
• gi1(x) = gi0(x)(1 + x + x2 + x3 + x4) ⇒ t1 = 2;
• gi2(x) = gi1(x)(1 + x + x2) ⇒ t2 = 3.

Case 2.

• gi0(x) = (1 + x)(1 + x + x4) ⇒ t0 = 1;
• gi1(x) = gi0(x)(1 + x3 + x4) ⇒ t1 = 2;
• gi2(x) = gi1(x)(1 + x + x2) ⇒ t2 = 2.

Remark 8. We have provided an m-file algorithm at [20], which can be run through Matlab and
performs the operations described in Examples 8 and 9.

Proposition 3. Given a (n, k) Reed–Solomon code, which has minimum distance d = n− k + 1,
one can guarantee an increase in error correction capability at each level of the tree provided that
kij − ki(j+1) ≥ 2, ∀ j = 0, . . . , T − 1.

Proof. We must prove that ti(j+1) ≥ tij + 1, ∀ j = 0, . . . , T − 1. For simplicity but without
loss of generality, set j = 0. If ki0 − ki1 ≥ 2, then we can write:

(−di0 + n + 1) + di1 − n− 1 ≥ 2

di1 − 1 ≥ di0 − 1 + 2[di1 − 1
2

]
≥
[di0 − 1

2

]
+ 1

ti1 ≥ ti0 + 1.

This completes the proof.

The verification that, for cyclic codes, there will not always be an increase in the error
correction capacity between the levels of the tree, as considered in [12], leads us to search
for answers on how to properly choose the generating polynomials for a code of parameters
(n, k) and its subcodes, in order to guarantee subcodes with larger Hamming distance, with
the purpose of observing an increase in the error correction capacity between the levels of
the tree. An approach to constructing chains of some linear block codes while keeping the
minimum distances (of the generated subcodes) as large as possible is presented in [25]
and may be the solution to this problem.

3.3. An Example with a BCH Code

According to Luo and Vinck [25], to construct a chain of BCH subcodes with the
characteristic of maintaining the minimum distance as large as possible, the task becomes
more difficult because their subcodes may not be BCH and cyclic codes, and therefore the
minimum distance of these subcodes might not be found easily. However, for primitive
BCH codes, the minimum distance coincides with the weight of the generator polynomial,
which makes it feasible to use it for the construction of the nested subcode chain that we
seek. For non-primitive BCH codes, this statement is not always valid. For an extensive
description of the minimum distance for BCH codes, we recommend consulting [26].

In Table 1, we present the parameters for binary primitive BCH codes of length
n = 2m − 1; it will guide the tree construction.
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Table 1. Parameters for values of m ≤ 6.

m = 3 m = 4 m = 5 m = 6

n
k
t

7
4
1

15
11 7 5
1 2 3

31
26 21 16 11 6
1 2 3 5 7

63
57 51 45 39 36 30 24 18 16 10 7
1 2 3 4 5 6 7 10 11 13 15

Note that there will always be an increase in error correction capability for a fixed n and varying k.

Example 10. Consider the root node associated with the BCH code Ci0(15, 11). Suppose that we
want to encode the packets p1(x) = x3 + x2 + x, p2(x) = x and p3(x) = x4 + x2 + 1 associated
with nodes whose dimensions are kt1 = 4, kt2 = 2 and ki2 = 5, respectively. The polynomials
gi0(x) = x4 + x + 1, gi1(x) = x8 + x7 + x6 + x4 + 1) and gi2(x) = x10 + x8 + x5 + x4 + x2 +
x + 1 generate the codes associated with the internal nodes, Ci0(15, 11), Ci1(15, 7) e Ci2(15, 5),
respectively, as shown in Figure 11.

gi0(x)

gi1(x)

gi2(x)

Ci2(15, ki2 = 5)

Ci1(15, ki1 = 7)

Ci0(15, ki2 = 11)

Ct2(15− 5, ki2 = 7− 5)

Ct1(15− 7, ki2 = 11− 7)

Figure 11. Tree construction of a BCH code tree.

Encoding the packets, we have:

C1(x) = p1(x)gi0(x)
= x7 + x6 + x5 + x4 + x;

C2(x) = p2(x)gi1(x)
= x9 + x8 + x7 + x5 + x;

C3(x) = p3(x)gi2(x)
= α5x6 + α5x5 + α5x4 + α5x3 + α5x2 + α5x + α5.

The transmitted codeword C0(x) is given by:

C0(x) = C1(x) + C2(x) + C3(x)
= x14 + x8 + x7 + x6 + x3 + x + 1

Alternatively, it is possible to represent the codeword in vector form:

C0(x) = (1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1)

After the error correction process, which will be performed on the sum of the coded
packets, taking into account the side information available at each receiver, data recovery
will occur as follows:

• p1(x) =
(x14 + x8 + x7 + x6 + x3 + x + 1) mod (x8 + x7 + x6 + x4 + 1)

(x4 + x + 1)
;

• p2(x) =
(x14 + x8 + x7 + x6 + x3 + x + 1) mod (x10 + x8 + x5 + x4 + x2 + x + 1)

(x8 + x7 + x6 + x4 + 1)
;

• p3(x) =
(x14 + x8 + x7 + x6 + x3 + x + 1)
(x10 + x8 + x5 + x4 + x2 + x + 1)

.

Remark 9. We have made available at [20] an m-file Matlab algorithm that performs the tree
construction operations and the data recovery for the BCH code.
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4. Index Coding with Multiple Interpretations

In the problem of index coding with multiple interpretations, we assume that receivers
demand all the messages from the source and that the sender is unaware of the subset
of messages already known in the receivers—performing an encoding so that any side
information may be used by the decoder, in order to increase its error correction capability.
Otherwise, if a receiver has no side information, the decoder considers the received word
to belong to the highest rate code associated with the root node of the tree.

The proposed encoding process is shown in Figure 12 and can be performed in four
main steps:

1. Encoding of the different data packets with nested cyclic codes, which consists of
subdividing the vector space of a linear block code into vector subspaces, using each
of them for encoding a different user;

2. Implementation of index coding at the relay node; the basic idea is that the differ-
ent data packets, encoded by polynomial multiplications with linearly independent
generators, are added and then forwarded to the receivers;

3. Multiple interpretations at the receivers that occur at the error correction stage, where
each receiver can decode the received message at different rates depending on the
known side information;

4. The data recovery stage, i.e., the process of decoding C1(x), . . . , CT(x) through poly-
nomial operations (1), as described in Section 3.1.

Encoded data packets
before being sent

Where index coding
will be performed

Error-correcting
stage

Data recovery
stage

(Relay)
Encoder

Figure 12. Scheme for index coding with multiple interpretations.

The notion of multiple interpretations was introduced in [13], indicating that the error
correction capability in decoding gradually improves as the amount of side information
available at the receiver increases. However, as we prove in Proposition 2, because of the
nested structure of the tree, this characteristic of variable error correction capability can
only be observed if there is a sequential removal of packets associated with the nodes, i.e.,
the side information should occur sequentially from the root to the top of the tree. However,
in practice, this is not always the case. Thus, if we want to ensure that any information
can be used efficiently in the decoder, it will be necessary to assume knowledge of the side
information by the relay node or even the demand set, if we have a PICOD problem.

The following is a proposal for pliable index coding with multiple interpretations.

Pliable Index Coding with Multiple Interpretations

As in the pliable index coding problem [6], we will assume that the transmitter knows
the demand set of each receiver and that all receivers are satisfied by receiving any message
contained in their demand set. For example, if we are searching on the internet for a red
flower image and we already have some previously downloaded pictures on our computer,
if we find any other image that we do not have yet, we will be satisfied.

The goal of the server is to find an encoding scheme that satisfies all receivers, using as
few transmissions as possible and ensuring that all side information associated with nodes



Entropy 2022, 24, 1149 20 of 22

located below the node where the packet to be recovered is located may be interpreted as a
gain in error correction capability, even when they do not appear in such a sequence.

The idea behind this proposal is to apply conflict-free coloring to the hypergraph
that represents the demands of all receivers, and instead of sending the encoded word
C0(x) = C1(x) + C2(x) + · · ·+ CT(x), we select the packets in a way that maximizes the
possibility of a gain in error correction capability, since, as mentioned above, packages will
only be removed if they occur sequentially.

Example 11. Consider an instance of an pliable index coding with multiple interpretations in
Figure 13a, where the encoded packets C1(x) = gi0(x)p1(x), C2(x) = gi1(x)p2(x), C3(x) =
gi2(x)p3(x) and C4(x) = gi3(x)p4(x) will be sent to receivers R1, R2 and R3, which have demand
sets I1 = {1, 2}, I2 = {3}, I1 = {2, 4}, respectively, as we see in Figure 13b.

gi0(x)

gi1(x)

gi2(x)

gi3(x)

p1(x)

p2(x)

p3(x)p4(x)

(a) (b)

Figure 13. Pliable index coding with multiple interpretations: (a) The construction representation of
an instance of a pliable index coding problem with m = 3 (receivers) and n = 4 (messages). (b) Shows
the hypergraph that describes this instance.

Figure 14 shows conflict-free coloring with two colors and Gc =

[
1 0 1 1
0 1 0 0

]
, which

represents the pliable index code.

Figure 14. Conflict-free coloring with two colors.

⇒
[

1 0 1 1
0 1 0 0

]
C1
C2
C3
C4

 =

[
C1 ⊕ C3 ⊕ C4

C2

]

Note that if we send only the message C0 = C1 ⊕ C3 ⊕ C4, all receivers recover one
and only one message from their request set, as we can see in Table 2.

Table 2. Receivers with their side information sets.

Receivers Side Information Sets Decodes from Transmission

R1 S1 = {3, 4} C1 ⊕ C3 ⊕ C4 ⊕ C3 ⊕ C4 = C1
R2 S2 = {1, 2, 4} C1 ⊕ C3 ⊕ C4 ⊕ C1 ⊕ C4 = C3
R3 S3 = {1, 3} C1 ⊕ C3 ⊕ C4 ⊕ C1 ⊕ C3 = C4

Each receiver Rj is satisfied if it can successfully recover any new message that is not present in its side information
set, i.e., any message xd ∈ xIj , where Ij , [n]r Sj.

Depending on the problem, this would be an ideal solution, since the transmitter may
want each receiver to decode only one message, in which case we would have a PICOD(1);
no client can receive more than one message from its request set. The case of PICOD(1) is
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dealt with in detail in [27], and the following example, which aptly illustrates its use, is
provided.

Consider a media service provider whom we pay for movies. The provider has a set
of movies and customers pay for a certain number of movies, e.g., one movie. Suppose that
the service is being sold in such a way that customers will be happy to receive any movie
that they have not watched yet. There is a restriction on the service provider’s side, since
customers who have paid for only one movie should not receive more than one. Therefore,
it can only supply one film for each client.

5. Conclusions

The verification that, for cyclic codes, there will not always be an increase in the error
correction capacity between the levels of the tree leads us to search for ways to correctly
choose the generating polynomials for a code and its subcodes, in order to guarantee
subcodes with larger Hamming distance and an increase in error correction capability
in consecutive levels of the tree. A method for the construction of chains of some linear
block codes that maintains the minimum distances (of the generated subcodes) as large as
possible is presented in Vinck and may be useful in addressing this issue.

Our work deals with the construction of index coding. We treat index coding as
a network coding problem and we show how it is possible to construct pliable index
codes with multiple interpretations by exploiting the conflict-free coloring of a hypergraph.
Studying conflict-free coloring of a hypergraph in the context of the general index coding
problem seems to be an interesting direction for future studies.
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