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Abstract: Traffic volatility modeling has been highly valued in recent years because of its ad-

vantages in describing the uncertainty of traffic flow during the short-term forecasting process. A 

few generalized autoregressive conditional heteroscedastic (GARCH) models have been developed 

to capture and hence forecast the volatility of traffic flow. Although these models have been con-

firmed to be capable of producing more reliable forecasts than traditional point forecasting models, 

the more or less imposed restrictions on parameter estimations may make the asymmetric property 

of traffic volatility be not or insufficiently considered. Furthermore, the performance of the models 

has not been fully evaluated and compared in the traffic forecasting context, rendering the choice of 

the models dilemmatic for traffic volatility modeling. In this study, an omnibus traffic volatility 

forecasting framework is proposed, where various traffic volatility models with symmetric and 

asymmetric properties can be developed in a unifying way by fixing or flexibly estimating three key 

parameters, namely the Box-Cox transformation coefficient 𝜆, the shift factor 𝑏, and the rotation 

factor 𝑐. Extensive traffic speed datasets collected from urban roads of Kunshan city, China, and 

from freeway segments of the San Diego Region, USA, were used to evaluate the proposed frame-

work and develop traffic volatility forecasting models in a number of case studies. The models in-

clude the standard GARCH, the threshold GARCH (TGARCH), the nonlinear ARCH (NGARCH), 

the nonlinear-asymmetric GARCH (NAGARCH), the Glosten–Jagannathan–Runkle GARCH (GJR-

GARCH), and the family GARCH (FGARCH). The mean forecasting performance of the models 

was measured with mean absolute error (MAE) and mean absolute percentage error (MAPE), while 

the volatility forecasting performance of the models was measured with volatility mean absolute 

error (VMAE), directional accuracy (DA), kickoff percentage (KP), and average confidence length 

(ACL). Experimental results demonstrate the effectiveness and flexibility of the proposed frame-

work and provide insights into how to develop and select proper traffic volatility forecasting mod-

els in different situations. 

Keywords: traffic volatility; asymmetric property; omnibus family GARCH model; short-term  

traffic flow forecasting; traffic reliability 

 

1. Introduction 

Short-term travel flow forecasting serves as an essential tool to provide useful traffic 

flow information in the immediate future, and hence wide supports to intelligent trans-

portation systems (ITSs), especially advanced traveler information system, route guid-

ance system, and proactive traffic signal control system. For instance, with accurate real-

time traffic flow forecasts, a proactive signal control system is able to set up strategies to 

significantly reduce traffic delay, and a route guidance system is capable of providing 

travelers with the optimal route with a minimum travel cost. With this in mind, plenty of 
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methods have been proposed for short-term traffic flow forecasting, which can be gener-

ally divided into two categories: (1) traditional forecasting methods that concentrate on 

improving the accuracy of traffic mean forecasts; and (2) traffic volatility forecasting that 

focus on the unpredictable part to capture the time-dependent variances. 

During the last couple of decades, extensive traffic flow forecasting studies have been 

conducted using time series models [1–4], Kalman filtering [5,6], nonparametric regres-

sion [7,8], neural networks [9,10], Bayesian network [11,12], random forests [13,14], deep 

neural networks [15–17], and so on. The majority of the methods belong to point forecast-

ing methods, in which the second moment (i.e., variance) of the traffic variables was pre-

sumed as a constant. Therefore, traffic volatility was artificially omitted during the fore-

casting process. 

As the traffic reliability or uncertainty problem has been highly valued in recent 

years, many volatility models have been proposed for short-term traffic flow forecasting. 

Compared with the point forecasting models that presume a constant variance, the vola-

tility models can not only produce accurate mean forecasts but also give more reliable 

forecasting confidence intervals by capturing the temporal evolution of conditional vari-

ances. Among the volatility models, the GARCH-type models, such as the fractionally 

integrated asymmetric power ARCH (FIAPARCH) model [18], the exponential GARCH 

(EGARCH) model [19], and the GJR-GARCH model [20], have enjoyed much popularity 

in past years, for their outstanding ability to describe the asymmetric effect of positive and 

negative shocks on volatility. Even though these models have been confirmed to be able 

to produce more reliable forecasts than the traditional point forecasting models, the more 

or less imposed restrictions on parameter estimations may make the asymmetric property 

of traffic volatility be not or insufficiently considered. Furthermore, the performance of 

the models has not been fully evaluated and compared in the traffic forecasting context, 

rendering the choice of the models dilemmatic for traffic volatility modeling. Therefore, it 

is necessary to develop a flexible traffic volatility forecasting framework under which var-

ious volatility models can be easily implemented and fully tested to yield more reliable 

forecasts and enhance the forecasting models’ applicability. 

In this research, an omnibus traffic volatility forecasting framework based on the 

FGARCH model [21] is proposed to model traffic speed volatility on urban roads and 

freeways. The volatility models under the proposed framework are established by fixing 

or flexibly estimating three key parameters, namely the Box-Cox transformation coeffi-

cient 𝜆, the shift factor 𝑏, and the rotation factor 𝑐. Extensive case studies show that the 

proposed framework can be used to account for both shift and rotation asymmetric effects 

and allows for more flexible traffic volatility descriptions that are usually restricted in 

some classical volatility models. The achieved findings provide insights into how to de-

velop and select proper traffic volatility forecasting models in different situations and are 

helpful for building traffic flow forecasting models with high reliability and good applica-

bility. 

The main contributions of this research include two aspects. First, we present a com-

prehensive traffic volatility forecasting framework, which can be utilized to develop ef-

fective volatility models in a flexible manner, and are capable of properly capturing the 

evolution of conditional variance with symmetric or asymmetric properties. Second, we 

conduct extensive experimental studies to fully evaluate and compare the performance of 

the established volatility forecasting models, including the symmetric standard GARCH 

[22] and the asymmetric TGARCH [23], NGARCH [24], NAGARCH [25], GJR-GARCH 

[19], and FGARCH [21] and further summarize their applicability in various situations. 

The remainder of this paper is organized as follows: In Section 2, a comprehensive 

literature review regarding traffic volatility forecasting is provided. Then, the proposed 

framework based on the FGARCH model for traffic volatility forecasting is elaborated in 

Section 3. In Section 4, the performance of the developed traffic volatility forecasting mod-

els is fully evaluated and compared using real traffic speed datasets collected from urban 
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road links and freeway segments. Conclusions and future work are summed up in Section 

5. 

2. Literature Review 

During the past decades, a large number of volatility methods have been developed 

for short-term traffic flow forecasting. In general, these methods describe the traffic vola-

tility during the forecasting process by using the standard GARCH or its advanced exten-

sions. 

The GARCH-type models are firstly proposed in the fields of finance and economics. 

In order to deal with the problem that the volatility of financial time series changes over 

time, the autoregressive conditional heteroscedastic (ARCH) model was introduced by 

Engle [26], and then further promoted by Bollerslev [22] as the GARCH model. In a fol-

lowing study, Kamarianakis et al. [27] pointed out that the time-varying nature of traffic 

volatility can be recognized as the alternative large movement period that can be observed 

when the traffic condition changes. Therefore, a standard GARCH model was applied to 

study the volatility of relative speed. Given the strong ability to capture the traffic volatil-

ity with time-variant conditional variances, the GARCH model has been widely applied 

in many pieces of research for short-term traffic flow forecasting. Guo and Williams [28] 

proposed to use the autoregressive moving average (ARMA) model for traffic speed mean 

forecasting and the GARCH model for traffic speed volatility forecasting. At the stage of 

online processing, a layered adaptive Kalman filter approach was developed. Similarly, 

Chen et al. [29] proposed an integrated model which combines the autoregressive inte-

grated moving average (ARIMA) model and the GARCH model for traffic flow forecast-

ing and reached the conclusion that the time-variant confidence intervals achieved can 

provide more reliable information for travelers, compared with the standard ARIMA 

model. Ding et al. [30] modeled the dynamic volatility of the subway short-term ridership 

forecasting process by constructing four kinds of integrated ARIMA-GARCH models. 

Their experimental results show the performance of the hybrid models is better than the 

traditional models because of the improvement in the reliability of the forecasting point 

value with the associated coverage probability of the forecasting interval. Considering 

that the inherent relationships between different traffic variables could contribute to the 

improvement of traffic forecasting accuracy and reliability, Xia et al. [31] developed a mul-

tivariate GARCH model for traffic volume and speed volatility forecasting, in which a 

vector autoregressive model was used for jointly forecasting traffic volume and speed 

mean values. In addition, from the perspective of traffic flow decomposition, Chen et al. 

[32] proposed a time-series analysis and supervised-learning (TSA-SL) model for short-

term traffic flow prediction by decomposing the traffic flow series into two components, 

namely periodicity and volatility. 

Due to the standard GARCH process having a linear relationship between the con-

ditional variance and the shocks in the past, the GARCH model is limited in perfectly 

describing the temporal evolution of traffic volatility. Moreover, the squared term in the 

standard GARCH model does not allow the asymmetric effects of traffic volatility that 

might exist when traffic condition changes dramatically. Therefore, Tsekeris and Statho-

poulos [18] presented a fractionally integrated asymmetric power ARCH (FIAPARCH) 

model to relax the linear and symmetric restrictions of the standard GARCH model, and 

in return, to better represent the nonlinear and asymmetric properties of traffic volatility. 

In their research, the fractionally integrated component was introduced to describe the 

long memory of traffic volatility since the standard GARCH process can only capture the 

short memory of the volatility evolution that was restrained by the assumption of expo-

nentially decayed propagation of shocks. Evaluation results show that the FIAPARCH 

model outperforms the standard GARCH model in traffic volatility forecasting. Similarly, 

Zhang et al. [19] applied another two asymmetric volatility models, i.e., an EGARCH 

model and a GJR-GARCH model, for reliable short-term travel time forecasting. Com-

pared with the standard GARCH model, both the EGARCH and GJR-GARCH models 
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allow the conditional variance to respond differently to the past negative and positive 

shocks that release the symmetric restriction in the GARCH model. Performance evalua-

tion demonstrates that the GJR-GARCH is better than the standard GARCH model and 

the EGARCH model in terms of the forecasting bandwidth and coverage probability. 

Considering traffic volatility may be better modeled by removing underlying traffic 

patterns that can be decomposed from original traffic flow data series, Zhang et al. [20] 

proposed a hybrid traffic flow forecasting model that used spectral analysis to remove the 

periodic trend of traffic flows using an ARIMA process to model the deterministic com-

ponent of traffic flow, and using a GJR-GARCH process to model the traffic volatility. 

Experimental results show that the hybrid model is able to improve forecasting accuracy 

and reliability. Years later, Lin et al. [33] proposed a hybrid PSO-ELM model to quantify 

the uncertainty of border crossing traffic volume prediction and compared it with the 

adaptive Kalman filter method used by Guo et al. [28] and the GJR-GARCH method pro-

posed by Zhang et al. [20]. The results confirm that the proposed PSO-ELM model can 

always reach satisfactory forecasting reliability. As a nonlinear analytical model, the inte-

ger-valued GARCH (INGARCH) can be utilized to capture the characteristics of network 

traffic. Therefore, it was introduced in the modeling of network traffic forecasting by Kim 

[34] and turned out to be more competitive than the ARIMA, GARCH, and long short-

term memory neural network. In addition, Yao et al. [35] presented a nonlinear hybrid 

method for traffic flow forecasting, which uses the ARIMA-GARCH model to predict the 

similar and volatile parts, and applies the Markov model with state membership degree 

and wavelet neural network to predict the irregular part. Another hybrid model named 

ARIMA-GARCH-M developed by Lin and Huang [36] is able to predict short-term high-

speed traffic flow data with good accuracy and reliability. To extend the GARCH model 

to be used for spatial data, Sato and Matsuda [37] proposed a spatial GARCH (S-GARCH) 

model. Considering the effect of both space and time restrictions, Hølleland and Karlsen 

[38] introduced a stationary spatiotemporal GARCH. To deal with the time-varying char-

acteristic of traffic flow, a hybrid method that combines the ARIMA, maximum corren-

tropy criterion, conditional kernel density estimation, and GARCH model was put for-

ward by Zhao et al. [39], which outperforms the ARIMA model in terms of both accuracy 

and reliability. 

The aforementioned GARCH-type models describe the evolution of traffic volatility 

from linear to nonlinear, from symmetric effect to asymmetric effect. Though the dynam-

ics of traffic volatility has been modeled explicitly step-by-step, the ability of capturing 

traffic volatility may be subject to the restrictions of the appointed GARCH-type models. 

For instance, the asymmetric property of volatility can be captured by EGARCH, GJR-

GARCH, and asymmetric power ARCH models because of the introduced “rotation fac-

tor” in the ARCH term. However, another critical factor—“shift factor”—that can also be 

used to describe the asymmetric property is not considered in these models. According to 

Helbing et al. [40,41], the volatile behavior dynamics of drivers was found to be similar to 

the stockholders in a financial market. As both the rotation and shift effects have been 

recognized in the financial market [21], it is reasonable and necessary to develop a more 

flexible volatility model that permits both shift and rotation asymmetric properties for 

traffic volatility modeling. Moreover, according to Hentschel [21], multiple volatility mod-

els are able to be established within the same theoretical GARCH framework. However, 

the performance of these models on traffic volatility has not been comprehensively tested, 

making their feasibility in traffic reliability inexplicable for researchers and practitioners. 

3. Method 

To develop an effective traffic volatility model that can better capture the evolution 

of the conditional heteroskedasticity underlying traffic flow time series, an omnibus traffic 

volatility forecasting framework is presented, as depicted in Figure 1. 
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Step 1: Mean Forecasting Model Development

• Mean equation construction based on the ARIMA algorithm

• Stationarity test with the augmented Dickey-Fuller test

• Autocorrelation test with the Ljung-Box test

• Order determination with the Bayesian information criterion

• Parameter estimation with the maximum likelihood estimation

Step 2: ARCH Effects Test for Traffic Flow Residual Series

• ARCH effect test with the Lagrange multiplier test

Step 3: Traffic Volatility Forecasting Model Development

• Volatility equation construction based on the FGARCH algorithmic 

framework

• Determination of the Box-Cox transformation coefficient, shift 

factor, and rotation factor by manually setting or flexibly estimating

• Joint parameter estimation with the maximum likelihood estimation

Step 4: Traffic Volatility Forecasting Model Checking

• Mean equation and volatility equation validity checking according 

to the Ljung–Box statistics

• Distribution assumption validity checking based on the skewness, 

kurtosis, and quantile-to-quantile plot

 Traffic Volatility Forecasting Model 

 Traffic Flow 
Dataset

Calibration 
Dataset

Evaluation 
Dataset

Step 5: Traffic Volatility Forecasting Model Evaluation and Selection

• Mean forecasting performance evaluation with the MAE, MAPE, 

and two-sided DM test

• Volatility forecasting performance evaluation with the VMAE, DA, 

KP, ACL, and two-sided DM test.

• Model selection according to the evaluation results

Is model valid?

Yes

No

Exists ARCH Effects?

Yes

No
Exit

 

Figure 1. The proposed framework for traffic volatility forecasting. 

Generally, the framework can be systematically deconstructed into five steps. First, a 

mean forecasting model is built based on a calibration dataset and the ARIMA algorithm. 

To achieve satisfactory mean forecasts, the stationarity test and autocorrelation test are 

conducted using the augmented Dickey–Fuller (ADF) test [42] and the Ljung–Box test [43], 

respectively, and the orders of the ARIMA model are optimally identified with a step-

wise algorithm [44] based on the Bayesian information criterion (BIC) [45]. Second, con-

ditional heteroscedasticity, also known as the ARCH effect, is checked for the residual 

series obtained according to the mean equation. To achieve this purpose, the Lagrange 
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multiplier test [26] is carried out. Third, if the ARCH effects are statistically significant, 

multiple traffic volatility models based on the FGARCH algorithmic framework are es-

tablished to capture the symmetric or asymmetric effects in traffic volatility, while a joint 

estimation of the mean and volatility equations is performed to determine the model pa-

rameters using the maximum likelihood estimation (MLE) [46] method. Fourth, the de-

veloped models are checked to ensure the validity of the mean equation, volatility equa-

tion, as well as the distribution assumption. Finally, the traffic volatility forecasting mod-

els are evaluated in terms of performance measures of both mean forecasting and volatil-

ity forecasting, and the best model is selected for different application scenarios. In what 

follows, each step of the proposed framework is described in more details. 

3.1. Mean Forecasting Model Development 

The purpose of developing the mean forecasting model is to remove the sample mean 

from the traffic flow data and obtain the residual series for further traffic volatility mod-

eling. One of the most widely used mean forecasting models, namely ARIMA 

[19,20,27,31], can be applied to fit the mean values of the traffic flow time series. Note that 

if the modeling traffic flow data contains the seasonal components, the seasonal ARIMA 

(SARIMA) [3,4] model can be constructed to ensure good mean forecasting performance. 

In this study, we only use one day’s data to calibrate the model, where the seasonality is 

not a typical characteristic of the traffic flow time series. As a result, the ARIMA model is 

established, which is mathematically expressed as 

𝜙𝑝(𝐵)(1− 𝐵)
𝑑𝑥𝑡 = 𝜃𝑞(𝐵)𝜀𝑡, (1) 

where 𝑥𝑡 is the traffic variable at time 𝑡, 𝐵 is the backshift operator, 𝑑 is the differenc-

ing order, 𝑝 is the autoregressive polynomial order, 𝑞 is the moving average polyno-

mial order, 𝜙 and 𝜃 are the autoregressive and moving average parameters, and 𝜀𝑡 is 

the error term. After the specification of the mean equation, four further subprocedures 

need to be carried out to establish the qualified mean forecasting model. 

First, the stationarity of the traffic flow time series needs to be checked, which is an 

important assumption in modeling the ARIMA model. The ADF test [42] is a unit root 

test, which can be utilized to check the stationarity of a time series. The presence of a unit 

root implies the analyzed time series is non-stationary and the number of unit roots cor-

responds to the number of differencing operations required to make the series stationary. 

For the traffic flow time series {𝑥𝑡}, to verify the existence of a unit root in an AR (𝑝), we 

can perform the test 𝐻0: 𝛽 = 1 versus 𝐻1: 𝛽 < 1 with an ADF regression 

𝑥𝑡 = 𝑐𝑡 + 𝛽𝑥𝑡−1 + ∅1∆𝑥𝑡−1 +⋯+ ∅𝑝−1∆𝑥𝑡−(𝑝−1) + 𝜀𝑡, (2) 

where 𝑐𝑡 is a deterministic function of the time index 𝑡, and can be a constant or a linear 

function of 𝑡, ∅1, …∅𝑝−1 are the autoregressive coefficients, ∆𝑥𝑡 = 𝑥𝑗 − 𝑥𝑗−1 is the differ-

enced series of 𝑥𝑡, 𝛽 is the coefficient of 𝑥𝑡. Equation (2) can also be rewritten as 

∆𝑥𝑡 = 𝑐𝑡 + 𝛽𝑐𝑥𝑡−1 + ∅1∆𝑥𝑡−1 +⋯+ ∅𝑝−1∆𝑥𝑡−(𝑝−1) + 𝜀𝑡, (3) 

where 𝛽𝑡 = 𝛽 − 1 and the equivalent hypothesis can be replaced as 𝐻0: 𝛽𝑐 = 0 versus 

𝐻1: 𝛽𝑐 < 0. If we accept 𝐻0 means the traffic flow series needs to be differenced to make it 

stationary, otherwise the stationary condition is satisfied. 

Second, the autocorrelation of the traffic flow time series is tested with the Ljung–Box 

test [43]. As a linear time series model, ARIMA is characterized by its autocorrelation 

function (ACF), and its modeling process makes use of the sample ACF to specify the 

forecasting model that can capture the dynamic dependence of the data. In view of this, it 

is necessary to check whether several autocorrelations of the series {𝑥𝑡} are 0. The Ljung-

Box test is a popular statistical means to achieve the above goal. The test statistic is given 

as 
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𝑄(𝑚) = 𝑛(𝑛 + 2)∑
�̂�𝑖
2

𝑛−𝑖

𝑚
𝑖=1 , (4) 

where 𝑚 is the autoregressive lag order of the series {𝑥𝑡} and can be commonly set as 

𝑙𝑛(𝑛), 𝑛 is the sample size, �̂�𝑖 is the sample ACF of {𝑥𝑡} and a biased estimate of 𝜌𝑡 that 

is the lag-𝑖 autocorrelation of {𝑥𝑡}. The null hypothesis is 𝐻0: 𝜌1 = ⋯ = 𝜌𝑚 = 0 and the 

alternative hypothesis is 𝐻1: 𝜌𝑖 ≠ 0  for 𝑖 ∈ {1, … ,𝑚} . If 𝑄(𝑚) > 𝜒𝑡
2(𝛼) , 𝐻0  will be re-

jected, where 𝜒𝑡
2(𝛼) denotes the 100(1− 𝛼)th percentile of a chi-squared distribution 

with 𝑚 degrees of freedom. 

Third, a step-wise algorithm proposed by Hyndman and Khandakar [44] is intro-

duced to determine the autoregressive order 𝑝 and moving average order 𝑞. One of the 

advantages of the algorithm is that it is able to automatically identify the appropriate or-

ders of the mean equation and guarantee a valid model. This advantage is significant since 

the order 𝑝 and order 𝑞 are often application-dependent, implying the modeling process 

may be labor-intensive or time-consuming if we determine the orders manually with site-

to-site traffic flow data. In this study, the BIC [45] is adopted to measure the quality of 

each candidate model during the step-wise searching procedure and is defined as 

𝐵𝐼𝐶(𝜏) = 𝑙𝑛(�̃�𝑡
2) +

𝜏𝑙𝑛(𝑛)

𝑛
, (5) 

where �̃�𝑡
2 is the maximum likelihood estimate of 𝜎𝑡

2 that is the variance of {𝜀𝑡}, 𝑙𝑛(𝑛) is 

the penalty of each parameter. The selection rule is to compute 𝐵𝐼𝐶(𝜏) for 𝜏 = 0, . . . , 𝜌, 

where 𝜌 is a prespecified positive integer, and select the value of 𝜏 as the order 𝑝 or 𝑞 

that has the minimum BIC value. 

Once the orders of the ARIMA are optimally determined, the last subprocedure of 

building the mean forecasting model is to estimate the parameters 𝜙 and 𝜃 with the 

MLE method. Note that this subprocedure is optional since we can estimate the parame-

ters of the mean equation and volatility equation jointly. In this study, we conduct this 

subprocedure because we will test whether the joint estimation procedure can indeed im-

prove the point forecasting accuracy. Interested readers can refer to [47] for more details. 

3.2. ARCH Effects Test for Traffic Flow Residual Series 

Once the mean forecasting model is established, the residual series can be computed 

according to the observations and mean forecasts. The conditional heteroscedasticity of 

the residual series, also known ARCH effects, needs to be carefully checked to model the 

traffic volatility. In view of this, the Lagrange multiplier test [26] is introduced to check 

whether there are ARCH effects in the traffic flow residual series. The Lagrange multiplier 

test is to conduct testing in the following regression: 

𝜀𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 +⋯+ 𝛼𝑚𝜀𝑡−𝑚
2 + 𝑒𝑡 ,   𝑡 = 𝑚 + 1, … , 𝑛, (6) 

where 𝜀𝑡 is the residual of the mean equation at time 𝑡, 𝑒𝑡 denotes the regression error 

term. More specifically, we define the null hypothesis as 𝐻0: 𝛼1 = ⋯ = 𝛼𝑚 = 0 against the 

alternative hypothesis as 𝐻1: 𝛼𝑖 ≠ 0  for some 𝑖  between 1  and 𝑚 . Denote 𝑆𝑆𝑅0 =

∑ (𝜀𝑡
2 − �̅�)2𝑛

𝑡=𝑚+1 , where 𝜔 =
1

𝑛
∑ 𝜀𝑡

2𝑛
𝑡=1  is the sample mean of 𝜀𝑡

2, and 𝑆𝑆𝑅1 = ∑ �̂�𝑡
2𝑛

𝑡=𝑚+1 , 

where �̂�𝑡 is the least squares residual of the prior linear regression. Then we have 

𝐹 =
(𝑆𝑆𝑅0−𝑆𝑆𝑅1)/𝑚

𝑆𝑆𝑅1/(𝑛−2𝑚−1)
, (7) 

which follows an 𝐹 distribution with degrees of freedom 𝑚 and 𝑛 − 2𝑚− 1 under 𝐻0. 

When 𝑛 is sufficiently large, 𝑚𝐹 can be used as the test statistic, which is asymptotically 

a chi-squared distribution with 𝑚 degrees of freedom under the null hypothesis. Let 

𝜒𝑚
2 (𝛼) be the upper 100(1− 𝛼)th percentile of 𝜒𝑚

2 . If 𝑚𝐹 > 𝜒𝑡
2(𝛼), we reject the null hy-

pothesis and the residual series is heteroscedastic; otherwise, it does not have any ARCH 

effect. In this study, if the 𝑃 -values computed from the 𝐹  statistic are less than the 
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significant level 𝛼 = 0.05, a proper volatility model needs to be established to describe the 

evolution of the traffic flow volatility. 

3.3. Traffic Volatility Forecasting Model Development 

When the significant ARCH effects are checked, the subsequent step is to capture the 

effects with a proper volatility model. The ARCH model proposed by Engle [26] provides 

the first systematic framework for volatility modeling. Although owning some ad-

vantages for volatility modeling, the ARCH model also has some weaknesses. For exam-

ple, the ARCH model is rather restrictive and often imposes complicated constraints with 

the increase of the orders, resulting in the limited applicability of the model. The GARCH 

model, first introduced by Bollerslev [22], is a useful extension of the ARCH model and 

can provide a simpler parametric function to describe the volatility evolution. It should 

be indicated that both models respond equally to the positive and negative shocks [47], 

and hence cannot be utilized to describe the asymmetric property of the volatility, a com-

mon phenomenon in a vast number of application areas. 

To deal with the above issue, various GARCH-type models have been presented. 

Among the GARCH-type models for short-term traffic flow forecasting, the GARCH (1,1) 

model has been verified as the most adequate and simple representation of traffic volatil-

ity [11,18,31]. Therefore, the omnibus FGARCH (1,1) based volatility equation is con-

structed in this study for short-term traffic volatility forecasting, which is mathematically 

expressed as 

{
 

 
𝜀𝑡 = 𝑧𝑡𝜎𝑡
𝑧𝑡~𝐼𝐼𝑁(0,1)

𝜎𝑡
𝜆 = 𝜉 + 𝛿𝜎𝑡−1

𝜆 𝑓(𝜀𝑡)
𝜆 + 𝜂𝜎𝑡−1

𝜆

𝑓(𝜀𝑡) = |𝜀𝑡 − 𝑏| − 𝑐(𝜀𝑡 − 𝑏)

, (8) 

where 𝜀𝑡 is the error term of the mean equation, 𝜎𝑡 is the time-variant conditional stand-

ard deviation to reflect the traffic volatility, random variable 𝑧𝑡 is a strong white noise 

process, 𝜉, 𝛿, and 𝜂 are the parameters that need to be estimated, 𝜆 is the Box-Cox trans-

formation coefficient, 𝑓(𝜀𝑡) = |𝜀𝑡 − 𝑏| − 𝑐(𝜀𝑡 − 𝑏)  is the shifted and rotated absolute 

value function, in which the parameter 𝑏 controls the shift effect and the parameter 𝑐 

governs the rotation effect. 

The parameter 𝜆 can be obtained from Box-Cox transformation for the conditional 

standard deviation. Therefore, the relationship between the conditional variances and all 

shocks in the past may be more flexible than the linear relationship. As indicated by Ding 

et al. [48], a better estimate of the power transformation coefficient 𝜆 can help maintain 

the long memory property of the volatility. In the standard GARCH model, 𝜆 is fixed as 

2, which only describes the short memory property of volatility. The shift factor 𝑏 and 

the rotation factor 𝑐 are introduced to model the asymmetric impact upon volatility ex-

erted by positive and negative shocks—called the leverage effect in the financial markets. 

Small shocks are dominated by the shift effect, while the rotation is more important for 

large shocks [21]. As Helbing et al. [40] demonstrated, there are intrinsic similarities be-

tween market players and traffic network users, implying that the shift and rotation ef-

fects of the asymmetric property that have been recognized in financial volatility may also 

exist in traffic volatility. 

The above volatility equation has a flexible form for modeling volatility by control-

ling the parameters 𝜆, 𝑏, and 𝑐. For instance, we can derive the standard GARCH model 

by restricting the parameters 𝜆 = 2 and 𝑏 = 𝑐 = 0. That is, the standard GARCH model 

imposes restrictive nonnegative constraints on the parameters and also restricts a linear 

relationship between conditional variances and all shocks in the past. Moreover, the re-

striction 𝑏 = 𝑐 = 0 makes the standard GARCH model a symmetric model, in which both 

the shift and rotation effects are not allowed to describe the asymmetric property of vola-

tility evolution. Similar restrictions can be seen in other GARCH-type models such as 𝜆 =

0, 𝑏 = 0 in the EGARCH model, and 𝑏 = 0 and |𝑐| ≤ 1 in the APARCH and TGARCH 
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models. By manually setting up or freely estimating part or all of the three parameters, 

we can further obtain multiple models that can capture different traffic flow volatility 

characteristics. Interested readers can refer to Hentschel [21] for the detailed restrictions 

of the three parameters in the FGARCH algorithmic framework. Overall, by constructing 

the FGARCH-based volatility equation, we can implement multiple traffic volatility fore-

casting models within a unifying framework, and are herein, able to provide a more ap-

propriate and flexible form for explicitly describing the evolution of volatility and to fully 

investigate the feasibility of the models in different situations. The parameters of the de-

veloped traffic volatility forecasting models are finally determined by using the MLE 

method [46]. 

3.4. Traffic Volatility Forecasting Model Checking 

The adequacy of the fitted models needs to be examined carefully before traffic vol-

atility forecasting. More specifically, we need to check the validity of the established mean 

equation and volatility equation. The validity of the mean equation can be examined by 

applying the Ljung–Box test to the standardized residual series {𝜀𝑡/𝜎𝑡} and the validity 

of the volatility equation can be checked by applying the Ljung–Box test to the squared 

standardized residual series{(𝜀𝑡/𝜎𝑡)
2}. When the above 𝑃-values of the Ljung–Box statis-

tic are smaller than 𝜒𝑚
2 (𝛼), the traffic volatility forecasting model can reduce the hetero-

scedasticity in the residual series and capture the statistical characteristics of traffic vola-

tility well. Moreover, the skewness, kurtosis, and quantile-to-quantile plot of the stand-

ardized residual series can be applied to examine the validity of the distribution assump-

tion [47]. 

3.5. Traffic Volatility Forecasting Model Evaluation and Selection 

The last step of the framework is to evaluate the performance of the developed mod-

els and select the most effective one for further traffic volatility forecasting according to 

the evaluation results. 

For traffic flow mean forecasting performance evaluation, two typical measures, i.e., 

the mean absolute error (MAE) and the mean absolute percentage error (MAPE), are se-

lected, which are defined as follows. 

MAE =
1

𝑛
∑|𝑥𝑡 − �̂�𝑡|

𝑛

𝑡=1

 (9) 

MAPE =
1

𝑛
∑|

𝑥𝑡 − �̂�𝑡
𝑥𝑡

|

𝑛

𝑡=1

 (10) 

In the above equations, 𝑥𝑡 is the observed value of the traffic variable at time 𝑡, �̂�𝑡 is the 

forecast value of the traffic variable at time 𝑡, and 𝑛 is the number of the tested data sam-

ples. To check the difference of the MAE measures of the two competing models, the two-

sided DM test statistic [49] is adopted. 

With regard to traffic volatility forecasting performance evaluation, four classical 

measures, including the kickoff percentage (KP), the average confidence length (ACL), the 

volatility MAE (VMAE), and the directional accuracy, are employed. For short-term traffic 

flow forecasting, the KP measure indicates the probability that future observations do not 

lie in the forecasted confidence intervals when given the evaluation sample size. Theoret-

ically, the better the performance is, the closer the KP is at a given significant level 𝛼 (𝛼 =

0.05 in this study) [19]. The ACL measure quantifies the average length of the forecasted 

confidence interval. To reduce forecasting uncertainties, the forecasted confidence inter-

val should be reasonably as narrow as possible. According to Chen et al. [50], VMAE 

measures the average magnitude of volatility forecasting error, and DA measures the cor-

rectness of the turning point forecasts that gives a rough indication of the average direc-

tion of the forecast volatility. The four measures are defined as follows. 
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KP =
1

𝑛
∑𝐾𝑡

𝑛

𝑡=1

× 100% (11) 

ACL =
1

𝑛
∑ 𝐶𝐿𝑡
𝑛
𝑡=1   

=
1

𝑛
∑ (�̂�(𝑥𝑡) − �̂�(𝑥𝑡))
𝑛
𝑡=1   

(12) 

VMAE =
1

𝑛
∑|𝑢𝑡

2 − �̂�𝑡
2|

𝑛

𝑡=1

 (13) 

DA =
1

𝑛 − 1
∑𝑎𝑡

𝑛

𝑡=2

 (14) 

𝑎𝑡 = {
1 (𝑢𝑡

2 − 𝑢𝑡−1
2 )(�̂�𝑡

2 − �̂�𝑡−1
2 ) ≥ 0

0 otherwise
 (15) 

In the above equations, 𝐾𝑡 is a two-valued variable, 𝐾𝑡 = 0 if 𝑥𝑡 ∈ [�̂�(𝑥𝑡), �̂�(𝑥𝑡)]; other-

wise, 𝐾𝑡 = 1. �̂�(𝑥𝑡) and �̂�(𝑥𝑡) are the lower and upper bounds of the forecasted confi-

dence interval at time 𝑡. 𝐶𝐿𝑡 is the forecasted confidence length at time 𝑡. 𝑢𝑡 and �̂�𝑡 

represent the observed volatility and forecasted volatility, respectively. As the observed 

volatility is unknown in reality, 𝑢𝑡
2 = (𝑥𝑡 − �̅�𝑡)

2 can be used as the surrogate [50], where 

�̅� is the mean value of the tested data samples. The forecasted volatility is quantified as 

�̂�𝑡
2 = (𝑥𝑡 − �̂�𝑡)

2. 

4. Experimental Analysis 

4.1. Data Description 

The proposed traffic volatility forecasting framework and developed models were 

tested using real traffic speed data collected from urban roads of Kunshan city, China and 

freeway segments of the San Diego Region, USA [51]. To investigate the performance of 

the models under different traffic conditions, two kinds of datasets were constructed. One 

consists of the datasets collected under normal traffic conditions, while the other includes 

the datasets collected under incident conditions. The former datasets were collected at 35 

stations on 5 types of roads, namely major arterials, minor arterials, branches, expressway, 

and freeway. For each station, we collected data in four days. Two of them are the week-

days, and the other two are weekends. For the latter, the traffic flow data was acquired 

from the freeway monitoring stations associated with 12 incidents occurred in different 

days. The traffic speed data of each station was aggregated at 5-min intervals and divided 

into a calibration dataset and an evaluation dataset. The calibration dataset was used to 

build the traffic volatility model, while the evaluation dataset was utilized to test the per-

formance of the calibrated model. More detailed information on the used data is described 

in Appendix A Tables A1 and A2. It is noted that the missing, erroneous, and suspicious 

data is less than 3% for each monitoring station during the data collection periods, ensur-

ing that the selected traffic datasets are suitable for model calibration and evaluation. 

4.2. Performance Evaluation of Mean Forecasting Models 

To evaluate the mean forecasting performance of the developed models, the MAE 

and its two-sided DM test statistics were computed and compared. In this study, the pa-

rameters of the mean forecasting model can be estimated in two ways—namely separate 

estimation and joint estimation. The former is implemented based on a separate ARIMA 

modeling process, while the latter is achieved by estimating the parameters of the mean 

equation and volatility equation jointly. The two ways may lead to different mean fore-

casting performance. Therefore, it is necessary to investigate the performance difference 

between the two ways. 
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Table 1 shows the performance comparisons between the separate estimation and 

joint estimation on the evaluation datasets. The first column of the table indicates the traf-

fic flow patterns considered in this research, including normal traffic patterns on week-

days, normal traffic patterns on weekends, and incident traffic patterns. The second col-

umn depicts the comparison results. The label “Win” means the joint estimation way out-

performs the separate estimation way. The label “Lose” means the joint estimation way is 

worse than the separate estimation way. The label “Tie” means the two ways have iden-

tical or similar performance. The digital number in the table cell represents the number of 

stations associated with the label in the corresponding row. The percentage in the paren-

theses indicates the proportion of the associated label. 

As can be seen from the table, under normal traffic conditions, the two estimation 

ways show very similar performance, especially on weekends. However, under incident 

traffic conditions, there were significant differences between the performance of the two 

estimation ways on nearly half of the evaluation stations. More specifically, the separate 

estimation way achieved better performance than the joint estimation way. This implies 

that it is better to first estimate the parameters of the mean equation and further use the 

residual time series to estimate the parameters of the volatility equation when modeling 

traffic volatility under incident traffic conditions. 

Table 1. Mean forecasting performance comparisons of separate estimation and joint estimation. 

Pattern Result 
Joint Estimation vs. Separate Estimation 

S T N NA GJR F 

Normal 

(Weekday) 

Win 
3 

(8.57%) 

4 

(11.43%) 

4 

(11.43%) 

3 

(8.57%) 

3 

(8.57%) 

5 

(14.29%) 

Lose 
3 

(8.57%) 

7 

(20.00%) 

5 

(14.29%) 

3 

(8.57%) 

7 

(20.00%) 

4 

(11.43%) 

Tie 
29 

(82.86%) 

24 

(68.57%) 

26 

(74.29%) 

29 

(82.86%) 

25 

(71.43%) 

26 

(74.29%) 

Total 35 35 35 35 35 35 

Normal 

(Weekend) 

Win 
3 

(8.57%) 

3 

(8.57%) 

2 

(5.71%) 

2 

(5.71%) 

2 

(5.71%) 

4 

(11.43%) 

Lose 
3 

(8.57%) 

1 

(2.86%) 

1 

(2.86%) 

3 

(8.57%) 

1 

(2.86%) 

1 

(2.86%) 

Tie 
29 

(82.86%) 

31 

(88.57%) 

32 

(91.43%) 

30 

(85.71%) 

32 

(91.43%) 

30 

(85.71%) 

Total 35 35 35 35 35 35 

Incident 

Win 
2 

(16.67%) 

3 

(25.00%) 

3 

(25.00%) 

2 

(16.67%) 

2 

(16.67%) 

2 

(16.67%) 

Lose 
5 

(41.67%) 

3 

(25.00%) 

3 

(25.00%) 

3 

(25.00%) 

5 

(41.67%) 

5 

(41.67%) 

Tie 
5 

(41.67%) 

6 

(50.00%) 

6 

(50.00%) 

7 

(58.33%) 

5 

(41.67%) 

5 

(41.67%) 

Total 12 12 12 12 12 12 

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

Traffic on different types of roads exhibits distinct fluctuation patterns. To properly 

evaluate the performance of the established models under different volatility levels, we 

grouped the stations with different road types according to the calculated VMAE meas-

ure, as illustrated in Table 2. As seen, for normal conditions on weekdays, the traffic on 

minor arterial and branch show significant fluctuations and had a high volatility level. 

The major arterial and freeway possess medium volatility level, while the expressway has 

the lowest volatility. Different from the normal conditions on weekdays, the daily traffic 

on weekends passed through the freeway appears to have very low fluctuations and was 
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hence put into the low volatility level group. The traffic flow on freeway segments shows 

medium-level volatility. 

Table 2. Volatility level of the traffic speeds collected from different types of roads. 

Road Type 
Volatility under Normal 

Conditions (Weekday) 

Volatility under Normal 

Conditions (Weekend) 

Volatility under 

Incident Conditions 

Major Arterial 126.529 (Medium) 96.567 (Medium)  

Minor Arterial 158.048 (High) 164.377 (High)  

Branch 135.374 (High) 129.801 (High)  

Expressway 6.014 (Low) 5.232 (Low)  

Freeway 129.723 (Medium) 5.691 (Low) 54.772 (Medium) 

Table 3 provides the average MAE value and its DM test rank of the developed mod-

els on the evaluation datasets. As mentioned above, the stations were categorized into 

three groups (H-high volatility level; M-medium volatility level; L-low volatility level) 

according to the volatility level. The average MAE value was calculated as the mean value 

of all stations in the same group. The DM test rank was computed based on the following 

procedure: First, for each station in the same volatility level group, we compare the per-

formance of two models according to the DM statistic and 𝑝 value. If the 𝑝 value is less 

than the significant level (0.05 in this study), it means one of the two comparative models 

is significantly better or worse than the other model. By repeating the above comparison 

process, we can obtain the rank of each model. Next, the ranks of each model are averaged 

for all stations in the same volatility level group. The smaller the rank is, the better perfor-

mance the model possesses. 

The best rank is labeled with the red color, while the worst rank is labeled with the 

blue color. Note that when the DM test ranks of two models are same, the best model is 

further determined by the average MAE values. As indicated by the average MAE values, 

the developed six models show very similar mean forecasting performance. By further 

going through the DM test ranks, we find that the NGARCH has better performance when 

the volatility levels are high and medium. Comparatively, the TGARCH shows worse per-

formance in the same situations. It is a bit surprising that the TGARCH model shows ad-

vantages over other models under incident conditions. We can also see that the freely es-

timated FGARCH model takes the most advantage at the high volatility level on week-

days. 

Table 3. Average MAE value and its DM test rank of the developed models on evaluation datasets. 

MAE 
GARCH 

Type 

Normal (Weekday) Normal (Weekend) Incident 

H M L H M L  

Value 

S 4.241 2.867 0.980 4.249 3.422 0.757  1.222  

T 4.251 3.461 0.998 4.244 3.426 0.771  1.149  

N 4.246 2.705 0.982 4.244 3.422 0.760  1.165  

NA 4.241 2.868 1.010 4.250 3.424 0.760  1.208  

GJR 4.238 2.877 1.003 4.247 3.426 0.856  1.222  

F 4.322 2.728 0.987 4.257 3.427 0.856  1.169  

Rank 

S 1.643 1.400 1.000 1.714 1.000 2.417  2.917  

T 2.143 1.733 1.500 1.786 1.556 2.417  2.417  

N 1.643 1.067 1.833 1.286 1.000 2.250  2.833  

NA 1.786 1.467 2.500 1.857 1.000 1.750  2.667  

GJR 1.714 1.733 1.667 1.286 1.000 2.500  3.250  

F 1.429 1.267 2.167 1.714 1.000 1.833  3.083  

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 
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Table 4 gives the average MAPE value and its rank for each developed model. The 

computing procedure is similar with that of the MAE measure. From the evaluation re-

sults, we can obtain a similar observation, further confirming the conclusions achieved 

above. 

Table 4. Average MAPE value and its rank of the developed models on evaluation datasets. 

MAPE 
GARCH 

Type 

Normal (Weekday) Normal (Weekend) Incident 

H M L H M L  

Value 

S 14.865 9.231 1.392 14.456 8.316 1.095 2.464 

T 14.924 10.133 1.425 14.478 8.324 1.114 2.383 

N 14.881 8.988 1.397 14.429 8.313 1.099 2.383 

NA 14.884 9.220 1.440 14.504 8.316 1.097 2.431 

GJR 14.819 9.271 1.430 14.441 8.318 1.234 2.458 

F 15.121 9.039 1.405 14.528 8.314 1.235 2.384 

Rank 

S 2.929 2.667 1.333 3.214 2.111 2.750 2.500 

T 3.143 3.267 1.667 2.786 2.889 2.167 2.417 

N 2.714 2.933 2.000 2.500 1.444 2.500 2.333 

NA 2.429 1.933 3.000 3.357 1.778 1.500 2.417 

GJR 2.357 2.600 2.000 2.714 2.333 2.167 3.083 

F 2.286 3.067 2.667 3.000 2.222 2.083 3.000 

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

4.3. Performance Evaluation of Volatility Forecasting Models 

To effectively evaluate the volatility forecasting performance of the developed mod-

els, the VMAE, DA, KP, and ACL measures were calculated. The four measures quantified 

the model performance from different perspectives. The VMAE measures the accuracy of 

traffic volatility forecasting. The DA gives the volatility direction accuracy of the forecast-

ing models. KP and ACL ensure the forecasts fall into the predicted confidence interval as 

much as possible when the interval length is short enough. Considering the inconsistency 

of the measures in some cases, we also computed the ranks of the models for each measure 

to make a fair comparison. 

Table 5 lists the average VMAE value and its corresponding DM test rank of the de-

veloped models. As can be seen, the volatility forecasting performance is quite similar for 

the six models. However, their ranks indicate that different models usually show distinct 

advantages compared to different traffic speed datasets. As indicated by Hentschel [21], 

the GARCH-type models developed in this study show similar forecasting results on the 

Daily U.S. stock dataset due to the fact that they are derived from the same modeling 

framework. Our experimental results also point to a similar conclusion, although the mod-

els indeed show distinct forecasting behaviors on several datasets. For instance, Table 6 

and Figure 2 depict the distinct performance of the models on the incident dataset 

I818_1118078. 

As seen in Table 3, the estimated parameters of the mean equation of the models 

appear to be very similar because the orders of the equation are the same. For the volatility 

equation, it is obvious that the estimated values of the parameter 𝜆 exhibit distinct diver-

sity among different models. The different values of the parameter 𝜆 implies that the de-

veloped models may capture the conditional variance and respond differently to the past 

shocks when modeling the same traffic flow series. In addition, both of the freely esti-

mated parameters 𝑏 and 𝑐 are different from 0, indicating the existence of asymmetric 

property of traffic speed volatility controlled by the shift and rotation effects at the same 

time. Moreover, for the FGARCH model, the estimated parameter 𝑏 is positive and pa-

rameter 𝑐 is negative, implying that the asymmetric property of traffic speed volatility at 

this station may be dominated by the combination of rightward shift effect and 
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anticlockwise rotation effect, which is consistent with the “news impact curve” introduced 

by Pagan and Schwert [52]. 

Table 5. Average VMAE value and its DM test rank of the developed models on evaluation datasets. 

VMAE 
GARCH 

Type 

Normal (Weekday) Normal (Weekend) Incident 

H M L H M L  

Value 

S 152.915 127.988 6.061 154.412 96.573 5.462 58.940 

T 152.703 264.279 6.006 154.398 96.561 5.459 56.690 

N 152.912 111.636 6.061 154.493 96.574 5.457 56.560 

NA 152.909 128.103 6.013 154.168 96.551 5.450 59.080 

GJR 153.084 127.614 6.015 154.407 96.512 5.652 58.970 

F 153.489 111.735 6.051 154.226 96.623 5.754 56.560 

Rank 

S 2.071 1.667 1.000 1.786 1.556 1.667 1.250 

T 1.500 2.067 1.000 1.929 1.333 1.667 2.170 

N 2.214 1.867 1.000 2.000 1.556 1.583 1.330 

NA 2.071 2.200 1.000 1.429 1.444 1.917 1.670 

GJR 2.214 1.867 1.000 1.929 1.222 1.917 1.670 

F 2.286 2.133 1.000 1.357 1.556 2.750 1.830 

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

Table 6. Joint parameter estimation of the mean equation and volatility equation for six developed 

models with the traffic speed dataset collected at station I818_1118078 on 10 August 2010. 

Mean Equation Volatility Equation 

ARIMA 

(2,1,1) 

∅1 = 0.454 

∅2 = 0.001 

𝜃1 = −0.903 

GARCH 

(1,1) 

𝜉 = 0.024 

𝛿 = 0.057 

𝜂 = 0.904 

𝜆 = 2.00 

𝑏 = 0.00 

𝑐 = 0.00 

∅1 = 0.458 

∅2 = −0.006 

𝜃1 = −0.890 

TGARCH 

(1,1) 

𝜉 = 0.022 

𝛿 = 0.073 

𝜂 = 0.916 

𝜆 = 1.00 

𝑏 = 0.00 

𝑐 = 0.32 

∅1 = 0.457 

∅2 = −0.008 

𝜃1 = −0.905 

NGARCH 

(1,1) 

𝜉 = 0.003 

𝛿 = 0.000 

𝜂 = 0.983 

𝜆 = 4.00 

𝑏 = 0.00 

𝑐 = 0.00 

∅1 = 0.451 

∅2 = −0.008 

𝜃1 = −0.896 

NAGARCH 

(1,1) 

𝜉 = 0.016 

𝛿 = 0.057 

𝜂 = 0.905 

𝜆 = 2.00 

𝑏 = 0.49 

𝑐 = 0.00 

∅1 = 0.452 

∅2 = 0.001 

𝜃1 = −0.902 

GJR-GARCH 

(1,1) 

𝜉 = 0.018 

𝛿 = 0.055 

𝜂 = 0.914 

𝜆 = 2.00 

𝑏 = 0.00 

𝑐 = 0.19 

∅1 = 0.435 

∅2 = 0.006 

𝜃1 = −0.891 

FGARCH 

(1,1) 

𝜉 = 0.104 

𝛿 = 0.072 

𝜂 = 0.825 

𝜆 = 0.04 

𝑏 = 0.87 

𝑐 = −0.58 

Figure 2 depicts the fore = −0.8𝜃9 =2 −0.90361 = −0.008 = 0.001∅casted speed standard 

deviation curves of the developed models. As seen from the figure, these models respond 

differently to the fluctuations induced by the incident. The NGARCH model decreases the 

standard deviation forecasts gradually with the time evolution, while the other five mod-

els are all able to capture the incident volatility but respond with different magnitudes. 

To further check the effectiveness of the models, the observation, mean forecasts, as well 

as the forecast confidence intervals are given in Appendix A Figure A1. It can easily be 

seen that the FGARCH exhibits the best volatility forecasting performance among the six 

models because it can not only correctly capture the volatility characteristics caused by 

the incident but also provide more reliable and narrower confidence interval than the oth-

ers. 
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Figure 2. Comparison of forecasted traffic speed standard deviations of six developed models. 

The DA measure describes the forecasting directional accuracy of the given model. 

In view of this, we calculated the average DA value and its rank of the six models, as 

shown in Table 7. From the table, it is obvious that under normal traffic conditions, the 

standard GARCH model has the best performance on weekdays and the NAGARCH 

model shows more advantages over other models. Interestingly, the FGARCH has the best 

performance under incident conditions while not performing well under normal traffic 

conditions. 

Table 7. Average DA value and its rank of the developed models on evaluation datasets. 

DA 
GARCH 

Type 

Normal (Weekday) Normal (Weekend) Incident 

H M L H M L  

Value 

S 0.681 0.632 0.853 0.687 0.685 0.711 0.600 

T 0.682 0.625 0.845 0.691 0.687 0.709 0.604 

N 0.679 0.634 0.853 0.685 0.689 0.712 0.602 

NA 0.680 0.634 0.839 0.694 0.688 0.718 0.602 

GJR 0.679 0.636 0.845 0.684 0.688 0.716 0.599 

F 0.669 0.638 0.844 0.688 0.686 0.710 0.604 

Rank 

S 2.000 2.133 1.333 2.786 2.778 3.167 2.667 

T 2.071 3.333 2.667 2.714 2.556 3.333 2.750 

N 3.500 2.533 1.333 3.000 1.889 3.583 2.500 

NA 2.643 2.867 4.833 2.000 1.778 2.333 2.333 

GJR 2.143 2.667 2.667 3.643 1.889 2.250 2.583 

F 3.643 3.067 2.833 2.714 3.667 3.250 2.333 

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

The absolute deviation of KP from the significance level of 0.05 was calculated to 

check the validity of the models at each traffic station. The calculation results include the 

average value and its rank on all stations of the same volatility level group, which are 

illustrated in Table 8. From the table, we can see that the standard GARCH model and the 

GJR-GARCH model show better performance than the other four models in terms of KPD, 

which means the two models exhibit the smallest absolute deviation of KP from the given 

significant level (𝛼 = 0.05) and tried to make the confidence interval contain forecasted 

data samples as much as possible. In contrast, the FGARCH exhibits unsatisfactory per-

formance in most cases. 

The average ACL value and the rank of each developed model are presented in Table 

9. As can be seen from the table, the overall ACL values of the models show similarities 

in different situations. Relatively, the standard GARCH model, GJR-GARCH model, and 
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FGARCH model tend to enlarge the forecasted confidence interval. In contrast, the 

TGARCH model attempts to give a narrower confidence interval in most cases. It needs 

to be indicated that it is commonly difficult for a volatility model to achieve the lowest KP 

and ACL at the same time because the two measures are counterbalanced in describing 

volatility characteristics. 

Table 8. Average KPD value and its rank of six developed models on evaluation datasets. 

KPD 
GARCH 

Type 

Normal (Weekday) Normal (Weekend) Incident 

H M L H M L  

Value 

S 0.010 0.007 0.012 0.011 0.011 0.009 0.008 

T 0.013 0.008 0.018 0.012 0.013 0.011 0.034 

N 0.012 0.007 0.168 0.011 0.014 0.011 0.110 

NA 0.014 0.009 0.016 0.015 0.011 0.011 0.028 

GJR 0.010 0.006 0.014 0.012 0.009 0.012 0.010 

F 0.089 0.077 0.014 0.022 0.019 0.017 0.031 

Rank 

S 2.286 2.600 2.500 2.429 2.333 2.583 1.583 

T 3.286 3.867 4.000 2.571 3.000 2.750 3.417 

N 2.500 2.800 3.000 2.429 3.000 3.250 4.750 

NA 3.857 2.600 3.333 3.214 2.778 3.417 2.250 

GJR 2.500 2.200 2.833 2.286 1.889 2.917 2.083 

F 3.500 4.200 3.500 4.929 5.000 3.917 3.583 

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

Table 9. Average ACL value and its rank of six developed models on evaluation datasets. 

ACL 
GARCH 

Type 

Normal (Weekday) Normal (Weekend) Incident 

H M L H M L  

Value 

S 21.789 13.995 5.193 21.354 16.974 3.897 6.833 

T 22.423 15.343 5.113 21.137 16.864 3.952 4.867 

N 21.992 13.447 4.245 21.303 17.044 3.846 5.772 

NA 21.749 13.954 5.122 21.576 16.949 3.870 6.324 

GJR 22.024 14.017 5.072 21.388 16.931 4.163 6.783 

F 21.554 13.389 5.313 22.021 16.794 4.113 7.856 

Rank 

S 3.429 4.067 3.833 3.214 3.222 3.833 3.833 

T 3.571 4.333 2.667 2.500 3.222 2.917 2.250 

N 3.214 2.600 3.500 3.714 4.000 3.250 3.250 

NA 2.786 3.333 3.500 3.500 3.333 2.833 3.583 

GJR 3.857 3.533 2.833 3.786 3.889 3.500 3.750 

F 4.071 2.733 4.167 4.143 2.444 3.667 3.417 

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

4.4. Impact of Identifying Orders of ARIMA on Forecasting Performance 

There are commonly two strategies for identifying the orders of the mean equation 

of the proposed framework. The first is an automtic identification strategy, which uses the 

step-wise searching algorithm [44] with an information criteria (e.g., AIC or BIC). The 

other is a manual identification strategy that finds the optimal orders by manually 

inspecting the ACF and PACF plots. Each strategy has its own advantages. For example, 

the automatic identification strategy is more computationally efficient and can be utilized 

to handle extensive datasets in an automated manner and hence realize significant cost 

savings, while the manual identification strategy is capable of providing more reliable 

forecasts in some cases. 

To investigate the impact of the two order identification strategies on the forecasting 

performance of the developed models, we recorded the forecasting results using the two 
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strategies. After careful inspection and calibration, we found that the two strategies lead 

to similar forecasting performance in most stations. However, for several specific 

monitoring stations, they show significant differences. Appendix A Tables A3 and A4 

show the comparison results on such kinds of stations. From the tables, we can see that 

the models established based on the automatic strategy can result in a significantly poor 

mean forecasting performance and volatility forecasting performance. The MAE and DA 

deteriorate dramatically for all of the developed models. This observation can be further 

obtained with Figure 3. The mean forecasts and volatility forecasts biase the true 

observations significantly, while they are improved evidently after using the manual 

order identification strategy. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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Figure 3. Comparison of the volatility forecasting performance of six developed models with differ-

ent order identification strategies; (a) GARCH (automatic order identification); (b) GARCH (manual 

order identification); (c) TGARCH (automatic order identification); (d) TGARCH (manual order 

identification); (e) NGARCH (automatic order identification); (f) NGARCH (manual order identifi-

cation); (g) NAGARCH (automatic order identification); (h) NAGARCH (manual order identifica-

tion); (i) GJR-GARCH (automatic order identification); (j) GJR-GARCH (manual order identifica-

tion); (k) FGARCH (automatic order identification); (l) FGARCH (manual order identification). 

5. Conclusions 

Traffic volatility forecasting plays a key role in traffic reliability or uncertainty anal-

ysis. Many GARCH-type models have been developed to capture volatility in the fields 

of finance and economics. However, the ability of these models to capture traffic volatility 

has not been fully investigated. In this study, a systematic traffic volatility forecasting 

framework based on an omnibus family GARCH model is proposed. Under this frame-

work, six volatility models were developed by manually setting up or freely estimating 
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three key parameters. The performance of the models was comprehensively evaluated 

and compared by using 47 traffic speed data collected from five kinds of roads under 

normal traffic conditions and incident conditions. A number of key findings were 

achieved based on the experimental results, which can provide insights into traffic vola-

tility modeling for researchers and practitioners. 

The experimental results in this research reveal the potential of explicitly modeling 

volatility evolution properties in improving traffic volatility forecasting performance. In 

the future, more traffic flow datasets could be used to evaluate the effectiveness of the 

proposed framework. The physical explanations about how the asymmetric property of 

traffic volatility is associated with various traffic phenomena are also worth exploring. 

Author Contributions: Conceptualization, J.O., Q.N. and Y.Z.; methodology, J.O., Y.Z. and Q.N.; 

software, J.O., X.H. and Z.Z.; validation, J.O., X.H., Y.Z., Z.Z. and Q.N.; writing—original draft prep-

aration, J.O., X.H. and Q.N.; funding acquisition, J.O. and Q.N. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This research was partially funded by the Humanity and Social Science Youth Foundation 

of Ministry of Education of China (No. 22YJC630109), the Yangzhou Natural Science Foundation 

(No. YZ2019079), and the Natural Science Foundation of the Jiangsu Higher Education Institutions 

of China (No. 20KJB580012). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Traffic flow datasets collected under normal traffic conditions. 

Station ID Road Type 

Calibration Dataset Evaluation Dataset 

Period 
Sample 

Size 
Period 

Sample 

Size 

MA_1004015 

Major Arterial 
4 September 2018 

8 September 2018 

288 

288 

5 September 2018 

9 September 2018 

288 

288 

MA_1004027 

MA_1004028 

MA_1012021 

MA_1014005 

MA_1014009 

MA_1014014 

MA_1014018 

MA_1016012 

MI_1003001 

Minor Arterial 
4 September 2018 

8 September 2018 

288 

288 

5 September 2018 

9 September 2018 

288 

288 

MI_1004019 

MI_1005012 

MI_1005013 

MI_1005015 

MI_1005016 

MI_1005018 

MI_1006019 

MI_1006020 

B_1004017 

Branch 
4 September 2018 

8 September 2018 

288 

288 

5 September 2018 

9 September 2018 

288 

288 
B_1013001 

B_1013003 
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B_1015003 

B_1015005 

E_10131301 

Expressway 
4 September 2018 

8 September 2018 

288 

288 

5 September 2018 

9 September 2018 

288 

288 

E_10131501 

E_10132601 

E_10141101 

E_10141201 

E_10141401 

F_1108452 

Freeway 
2 March 2010 

6 March 2010 

288 

288 

3 March 2010 

7 March 2010 

288 

288 

F_1108498 

F_1114254 

F_1114735 

F_1114806 

F_1117755 

Table A2. Traffic flow datasets collected under incident conditions. 

Station ID Road Type 

Calibration Dataset Evaluation Dataset 

Period 
Sample 

Size 
Period 

Sample 

Size 

I190_1117774 Freeway 25 July 2010 288 26 July 2010 288 

I224_1117755 Freeway 25 July 2010 288 26 July 2010 288 

I275_1117835 Freeway 8 April 2010 288 9 April 2010 288 

I371_1114806 Freeway 24 September 2010 288 25 September 2010 288 

I373_1108711 Freeway 8 October 2010 288 9 October 2010 288 

I383_1115355 Freeway 4 April 2010 288 5 April 2010 288 

I393_1108615 Freeway 19 June 2010 288 20 June 2010 288 

I689_1118537 Freeway 15 July 2010 288 16 July 2010 288 

I772_1117835 Freeway 31 July 2010 288 1 August 2010 288 

I818_1118078 Freeway 10 August 2010 288 11 August 2010 288 

I914_1117809 Freeway 2 September 2010 288 3 September 2010 288 

I1039_1118078 Freeway 6 October 2010 288 7 October 2010 288 

Table A3. Comparison of the MAE measure of the developed models with different order identifi-

cation strategies. 

Station Test Period Strategy (𝒑, 𝒅, 𝒒) 
MAE (veh/5 min) 

S T N NA GJR F 

MA_1014014 9 Septenber 2018 
Automatic (2,1,3) 1297.99  1298.40  962.04  554.66  582.07  522.14  

Manual (0,1,2) 5.02  5.03  5.02  5.02  5.02  5.04  

MI_1005012 9 Septenber 2018 
Automatic (3,1,3) 173.48  3.20  13.22  386.48  9.60  33.73  

Manual (0,1,2) 3.19  3.20  3.18  3.18  3.19  3.18  

E_10141201 5 Septenber 2018 
Automatic (2,0,2) 4.62  8.16  1.91  4.31  4.25  1.96  

Manual (0,1,1) 1.05  1.18  1.05  1.21  1.20  1.06  

I818_1118078 11 August 2010 
Automatic (2,0,1) 2.23  6.25  1.45  2.24  2.25  125.03  

Manual (0,1,1) 0.76  0.76  0.75  0.76  0.76  0.76  

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 
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Table A4. Comparison of the DA measure of the developed models with different order identifica-

tion strategies. 

Station Test Period Strategy (𝒑, 𝒅, 𝒒) 
DA 

S T N NA GJR F 

MA_1014014 9 Septenber 2018 
Automatic (2,1,3) 0.5505  0.5679  0.5784  0.5505  0.5540  0.5505  

Manual (0,1,2) 0.7666  0.7561  0.7700  0.7666  0.7666  0.7491  

MI_1005012 9 Septenber 2018 
Automatic (3,1,3) 0.4913  0.5923  0.5366  0.4948  0.5575  0.5331  

Manual (0,1,2) 0.5854  0.5854  0.5958  0.5854  0.5889  0.5854  

E_10141201 5 Septenber 2018 
Automatic (2,0,2) 0.7944  0.7561  0.8118  0.8014  0.7944  0.7979  

Manual (0,1,1) 0.8328  0.8014  0.8328  0.7979  0.8014  0.8328  

I818_1118078 11 August 2010 
Automatic (2,0,1) 0.6028  0.6411  0.5923  0.6063  0.6028  0.5819  

Manual (0,1,1) 0.7387  0.7387  0.7422  0.7352  0.7387  0.7282  

S (Standard GARCH), T (TGARCH), N (NGARCH), NA (NAGARCH), GJR (GJR-GARCH), F 

(FGARCH). 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure A1. Volatility forecasting results of the developed models with the traffic speed dataset col-

lected at station I818_1118078 on 10 August 2010; (a) GARCH; (b) TGARCH; (c) NGARCH; (d) NA-

GARCH; (e) GJR-GARCH; (f) FGARCH. 
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