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Abstract: Cortical neurons receive mixed information from the collective spiking activities of primary
sensory neurons in response to a sensory stimulus. A recent study demonstrated an abrupt increase
or decrease in stimulus intensity and the stimulus intensity itself can be respectively represented by
the synchronous and asynchronous spikes of S1 neurons in rats. This evidence capitalized on the
ability of an ensemble of homogeneous neurons to multiplex, a coding strategy that was referred
to as synchrony-division multiplexing (SDM). Although neural multiplexing can be conceived by
distinct functions of individual neurons in a heterogeneous neural ensemble, the extent to which
nearly identical neurons in a homogeneous neural ensemble encode multiple features of a mixed
stimulus remains unknown. Here, we present a computational framework to provide a system-
level understanding on how an ensemble of homogeneous neurons enable SDM. First, we simulate
SDM with an ensemble of homogeneous conductance-based model neurons receiving a mixed
stimulus comprising slow and fast features. Using feature-estimation techniques, we show that
both features of the stimulus can be inferred from the generated spikes. Second, we utilize linear
nonlinear (LNL) cascade models and calculate temporal filters and static nonlinearities of differentially
synchronized spikes. We demonstrate that these filters and nonlinearities are distinct for synchronous
and asynchronous spikes. Finally, we develop an augmented LNL cascade model as an encoding
model for the SDM by combining individual LNLs calculated for each type of spike. The augmented
LNL model reveals that a homogeneous neural ensemble model can perform two different functions,
namely, temporal- and rate-coding, simultaneously.

Keywords: neural coding; information representation; multiplexed coding; synchronous
and asynchronous spikes; general linear model

1. Introduction

Transmitting multiple signals over a single communication channel increases the chan-
nel bandwidth and enhances the coding efficiency [1,2]. Similar to digital communication
systems, the brain utilizes different forms of multiplexing—in different brain regions and
in regard to different stimuli—to represent multiple features of a stimulus with a neural
code [2]. For example, in the auditory sensory system, the frequency and intensity of a
periodic stimulus are encoded by the phase-locked spikes and the probability of spiking
per stimulus cycle, respectively [3]. Similarly, the frequency and intensity of vibrotactile
stimuli are represented by the timing and rate of spikes in the somatosensory cortex [4].
Recently, differentially synchronized spiking in neurons of the primary somatosensory
cortex was shown to enable multiplexed coding of low- and high-contrast features of tactile
stimuli [5].
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Despite various forms of neural multiplexing, a thorough understanding of how the
brain achieves multiplexing remains undiscovered. Specifically, the functional
characteristics—in the sense of linear or nonlinear filtering properties—of a neural en-
semble that multiplexes different features of a stimulus are yet to be uncovered.

Different features of stimuli, such as the intensity, frequency, onset and offset, etc.,
dictate which multiplexing strategies are the most appropriate [4]. In addition to the
properties of stimuli, heterogeneity of the neurons in a population code enables different
neurons to encode different stimulus features. The functional properties of a heterogeneous
neural ensemble, which includes neurons with different functions, e.g., integrators vs.
coincidence detectors, might be fully described by the dynamics of individual neurons. For
example, an ensemble of heterogeneous cochlear nuclei in the auditory cortex is composed
of two anatomically distinct sub-nuclei, namely, the magnocellular and the angular nucleus,
each of which selectively encodes a specific feature of the stimulus. The magnocellular
nucleus selectively encodes the stimulus frequency with a temporal code by implementing
a high-pass filter, whereas the angular nucleus selectively encodes the stimulus intensity
with a rate code by implementing a low-pass filter [6]. In contrast to heterogeneous
neural ensembles, the functional characteristics of an ensemble of homogenous neurons,
which includes neurons with nearly identical functions, cannot be identified based on
the properties of individual neurons solely [4,5]. For example, in synchrony-division
multiplexing (SDM) [5], information about slow and fast stimulus features were respectively
represented by asynchronous and synchronous spikes of the same neurons. Thus, this form
of multiplexing suggests that both slow and fast features of the stimulus can be encoded
by homogeneous (identical) neurons that operate in a hybrid mode [5], i.e., neither low-
pass nor high-pass filtering of the stimulus [7,8]. Thus, a challenging question is whether
multiplexing (such as SDM) in a homogeneous neural ensemble reveals system-level
functions beyond those performed by individual neurons [5].

In this paper, we utilize conductance-based and linear nonlinear (LNL) cascade mod-
els to establish a theoretical framework to address this question [9–12]. First, we use
conductance-based models and construct a homogeneous neural ensemble that multiplexes
the slow and fast features of a common stimulus using asynchronous and synchronous
spikes, respectively. Using LNL cascade models, we explore whether different linear filters
and static nonlinearities are associated with different types of spikes. We show that a
low-pass filter followed by a nonlinearity with a mild slope generates asynchronous spikes
whereas a high-pass filter followed by a nonlinearity with a steep slope detects fast features
of the stimulus by generating synchronous spikes. Then, we develop an augmented LNL
model for SDM by integrating the LNL models underlying each type of spike.

2. Results

In the present paper, we developed an augmented LNL cascade model as an encoding
model for the SDM [5]. Conductance-based neuron models were used to create an ensemble
of homogeneous neurons whose input (mixed stimulus)–output (spikes) relationship was
estimated with the augmented LNL model.

As shown in Figure 1A, we construct an ensemble of homogenous neurons with
30 Morris–Lecar (ML) neuron models (see Methods), all of which receive a common
mixed signal comprising slow and fast features as well as independent, physiologically
realistic conductance noise [5,13]. We divided the simulated data (20 s of data) into two
training (the first 50% of data) and test (the remaining 50%) sets. The parameters of the
ML model were selected in a way that all neurons operate in a hybrid mode [14]. Spikes
generated by an ensemble of ML neurons were used to fit the augmented LNL model
in which two separate LNL models were combined to represent the rate and temporal
codes simultaneously. This study shows that an ensemble of homogeneous neurons utilizes
different strategies to generate synchronous and asynchronous spikes, which enable the
simultaneous coding of fast and slow features of a mixed stimulus, respectively. Although
the biophysical mechanisms underlying implementation of SDM with an ensemble of
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homogeneous neurons is still unknown, the two-stream augmented LNL model provides a
system-level understanding of SDM function.
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Figure 1. Slow and fast features of a mixed signal can be inferred from responses of a homogeneous
ensemble of neurons using the iSTAC method. (A) Slow and fast signals comprising a mixed
signal. (Bottom) Sample raster plot of 30 model neurons receiving the common mixed signal (and
independent noise). Spikes evoked by the fast and slow signals cannot be distinguished visually.
(B) The iSTAC method was applied to spike-triggered mixed signal and eigenvalues and eigenvectors
were obtained (see Methods). (Left) The eigenvalues of the iSTAC matrix reveal two significant
components of the population code. (Right) The projection of spike-triggered mixed signal onto the
main eigenvectors of the iSTAC matrix. Two clusters can be visually distinguished. (C) The 1st and
2nd eigenvectors of the iSTAC matrix, V1 and V2, respectively, are shown against the spike-triggered
average (STA). V1 resembles the STA filter reflecting slowly-varying changes in the signal. Unlike V1,
V2 resembles a high-pass filter (differentiator) that reflects fast features of the mixed signal.

2.1. Different Temporal Filters Map Distinct Features of a Mixed Stimulus

To explore how the slow and fast features of the stimulus are encoded by spikes
of an ensemble of neurons, we used well-known feature space estimators such as the
spike-triggered average (STA) [15,16] or information-theoretic spike-triggered average
and covariance (iSTAC) to reveal the temporal characteristics of neurons in response to a
stimulus [17].

The STA filter is a precise and unbiased predictor for a neural population given
a stationary and single-dimension stimulus [16]. However, it fails to provide precise
predictions when the dimensionality of the stimulus is larger than one. For example, in
retinal ganglion cells the STA cannot predict the neural response of both ON and OFF cells
given a mixed input comprising more than one feature. To explore other possible subspace
features of the neural response, we used the iSTAC method and calculated the optimal
subspace features. The iSTAC quantifies the significance of subspaces based on the mutual
information between the stimulus and neural response [17]. In this method, we choose the
eigenvectors of the spike-triggered stimulus ensemble matrix more precisely by minimizing
the Kullback–Leibler (KL) divergence between the eigenvectors of the ensemble matrix and
the raw stimulus distributions (see Methods for more details). In fact, the iSTAC maximizes
information based on the first two moments of the spike-triggered stimulus ensemble and
provides a unifying information-theoretic framework that captures the ensemble neuron
activity in different subspaces. This provides an implicit model of the contribution of
the nonlinear function mapping the feature space to the neural response. As shown in
Figure 1B (left), the iSTAC matrix calculated for the mixed stimulus has two significant
eigenvalues whose underlying eigenvectors reveal two distinct temporal filters, namely,
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ν1 and ν2. The projection of the spike-triggered stimulus ensemble on ν1 and ν2, shown in
Figure 1B (right), reveals two distinct clusters.

In synchrony-division multiplexing, a mixed-input signal containing slow and fast
features drives an ensemble of neurons. The fast component of the stimulus whose neural
representation is synchronous and sparse does not appear in the STA, as STA averages out
the sparsely-occurring fast features of the stimulus [5]. However, unlike the fast signal, the
neural representation of the slow signal is asynchronous and dense; thus, the STA filter
mainly contains information of the slow components of the mixed signal [5]. Unlike the STA
filter, the most informative subspaces selected by the iSTAC method behave as multi-space
feature estimators and illustrate the slow and fast features of the mixed stimulus.

Figure 1C shows that the STA filter calculated for the mixed stimulus mainly captures
the slow feature of the signal but cannot truly capture the dynamics of synchronous spikes.
Unlike the STA filter, ν1 and ν2 of the iSTAC method illustrate the slow and fast features of
the mixed stimulus, respectively. As can be observed in Figure 1C, ν1 is similar to the STA
filter and represents the slow component of the stimulus, and ν2 describes the fast features
of the stimulus (note that the STA filter was duplicated in Figure 1C (left and right) and
compared with both ν1 and ν2).

2.2. Low-Dimensional Feature Space of the Neural Response Can Be Characterized by the STAs of
Synchronous and Asynchronous Spikes

Recently, it has been shown that synchronous and asynchronous spikes encode in-
formation about the fast and slow features of a mixed stimulus (equivalent to that used
in the present study), respectively [13,18,19]. Using an information-theoretic approach,
it was shown that synchronous and asynchronous spikes carry information in different
time scales. By classifying the spikes of a population of neurons into synchronous and
asynchronous spikes, it was demonstrated that the STA filters underlying these spikes,
namely, µAsync and µSync, reflect the fast and slow features of the stimulus, respectively.
Figure 2A shows the classified synchronous (red) and asynchronous (blue) spikes in the
raster plot.
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Figure 2. Synchronous and asynchronous spikes represent slow and fast features of the mixed signal,
respectively. (A) Synchronous (red) and asynchronous (blue) spikes are distinguished by setting a
threshold on the instantaneous firing rate calculated by a narrow kernel (see Methods). Synchronous
spikes evoked by the fast signals can be distinguished visually. (B) The projection of spike-triggered
mixed signal onto the STASync and STAAsync. Two (visually) distinguishable clusters belong to
asynchronous spikes representing the slow feature of the signal (blue dots) and synchronous spikes
representing the fast features (red circles). (C) The spike-triggered average of synchronous (red) and
asynchronous (blue) spikes, namely, STASync and STAAsync, respectively, is shown against the STA of
all spikes (similar to Figure 1C).
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Here, we compared these filters with those obtained using the iSTAC method. First, we
tested if the projection of the spike-triggered stimulus ensemble on µAsync and µSync creates
two distinct clusters similar to that projected on ν1 and ν2. As shown in Figure 2B (left), two
distinct and separable clusters were generated by µAsync and µSync. More importantly, one
can distinguish between these clusters by projecting the synchronous- and asynchronous-
spike-triggered stimulus ensemble on µAsync and µSync. Figure 2B (right) reveals that these
stimulus ensembles are separable and mutually exclusive. Figure 2C shows the temporal
patterns of µAsync and µSync versus the STA filter. As expected, µAsync resembles the STA
filter, indicating the slow features of the stimulus, and µSync (similar to ν2) describes abrupt
changes in the stimulus.

Furthermore, to investigate the functional roles of the above filters, we tested how
they contribute to signal reconstruction. The reconstructed signal was obtained by the
convolution of spikes—either all spikes for STA (Figure 3A) or ν1 and ν2 (Figure 3B)
or asynchronous and synchronous spikes for µAsync and µSync, respectively (Figure 3C).
Figure 3 illustrates a 10 s sample of the reconstructed signal using these methods. As
is clear in Figure 3B, the signal reconstructed with ν1 and ν2 (iSTAC method) resembles
that generated with µAsync and µSync, and both of these signals better capture the fast
features than that obtained by the STA filter, indicating the functional relevance between
these filters.
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brown), (B) a weighted sum of the 1st and 2nd eigenvectors of the iSTAC method (green), and (C) a
weighted sum of filtered asynchronous spikes (by STAAsync) and filtered synchronous spikes (by
STASync) (purple). Original mixed signal (black) is overlaid with reconstructed signal (color) in the
plots. As can be seen in these figures, the reconstructed signal based on STASync and STAAsync—
similar to that obtained by eigenvectors of iSTAC method—can capture both slow and fast compo-
nents of the signal accurately. “*” indicates the spiking signals.
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2.3. Different Nonlinear Functions Are Associated with Synchronous and Asynchronous Spikes

Given different temporal filters underlying synchronous and asynchronous spikes, we
sought how these filters map the fast and slow features of the mixed stimulus to the firing
rate of an ensemble of conductance-based model neurons. Moreover, since the dynamics
of a neural ensemble is not fully linear, these linear filters are not sufficient to project the
stimulus to spikes. We utilized a well-known phenomenological model, namely, the LNL
cascade model, which uses a linear stimulus filter followed by a static nonlinear transforma-
tion, to estimate the firing rate of an ensemble of neurons. Figures 4 and 5 (panel A for both
figures) show the LNL diagram for asynchronous and synchronous spikes, respectively.
We tested if the linear filter and static nonlinearity are different for synchronous and asyn-
chronous spikes given a common mixed signal. We obtained static nonlinearity functions
for synchronous and asynchronous spikes by applying µSync and µAsync filters to the mixed
stimulus (s) and mapping their outputs (through the nonlinearity) to the peri-stimulus time
histogram (PSTHs) of the synchronous and asynchronous spikes, respectively:

PSTHAsync = fAsync
(
µAsync ∗ s

)
(1a)

PSTHSync = fSync
(
µSync ∗ s

)
(1b)

where fAsync(x) and fSync(x) are the nonlinearities associated with the asynchronous and
synchronous spikes, respectively.

Figures 4B and 5B show, respectively, the raw nonlinearities for asynchronous and
synchronous spikes that correspond to the mapping of every single point of the output of the
linear filters (x-axis) to the values of the PSTHs (y-axis). For the nonlinearities underlying
the asynchronous and synchronous spikes, we fitted ReLU nonlinearity and sigmoid
functions, respectively [20]. The nonlinearity associated with the asynchronous spikes,
fAsync(x), has a shallow slope and broad dynamic range, enabling rate-modulated coding.
In contrast, the nonlinearity underlying the synchronous spikes, fSync(x)), has a steep slope
and narrow dynamic range, enabling detection of events (i.e., abrupt changes). Although
more sophisticated nonlinear functions could provide better fits, we chose simple and well-
established nonlinear functions to highlight the difference in the shapes of the nonlinearities
underlying rate versus temporal codes in the context of SDM. The instantaneous firing
rates of each type of spike can be constructed by passing the output of the temporal filter
through the fitted nonlinearities. These firing rates were estimated and drawn against the
PSTHs of the asynchronous and synchronous spikes for the test data in Figure 4C,D and
Figure 5C,D, respectively. As shown in these figures, the nonlinear functions and estimated
PSTHs underlying the temporal filters obtained using the iSTAC (V1 and V2) and classified
spikes (µAsync and µSync) are nearly identical.
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Figure 4. Static nonlinearities underlying asynchronous spikes. (A) Block diagram of LNL model
for asynchronous spikes. (B) Static nonlinearity calculated for asynchronous spikes is obtained by
mapping the output of filtered stimulus to the instantaneous rate of asynchronous spikes (calculated
with a wide kernel, σ = 25 msec). Static nonlinearity calculated based on 1st eigenvectors of the
iSTAC method, v1, (Left) and STAAsync (Right). The solid black shows fitted rectifiers. (C) The PSTHs
constructed using the fitted nonlinearities based on v1 were drawn against the PSTH of asynchronous
spikes. (D) The PSTHs constructed using the fitted nonlinearities based on STAAsync were drawn
against the PSTH of asynchronous spikes.
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Figure 5. Static nonlinearities underlying synchronous spikes. (A) Block diagram of LNL model
for synchronous spikes. (B) Static nonlinearity calculated for the synchronous spikes is obtained by
mapping the output of filtered stimulus to the instantaneous synchronous events (calculated with a
narrow kernel, σ = 1 msec). Static nonlinearity calculated based on 2nd eigenvectors of the iSTAC
method, v2, (Left) and STASync (Right). The solid black shows fitted sigmoid functions. (C) The
PSTHs constructed using the fitted nonlinearities based on v2 were drawn against the PSTH of
synchronous spikes. (D) The PSTHs constructed using the fitted nonlinearities based on STASync

were drawn against the PSTH of synchronous spikes.
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2.4. An Augmented LNL Cascade Model for Synchrony-Division Multiplexing

The LNL cascade models were utilized to encode specific features of a mixed stimulus
with synchronous or asynchronous spikes. As shown in the previous sections, temporal
filters and nonlinear transformations of either type of spike was distinct and estimated
using separate LNL cascade models. Here, we sought whether a combination of these
cascade models, i.e., an augmented LNL model, could accurately encode different features
of a mixed stimulus through different types of spikes. We developed a two-stream LNL
cascade model that combines the PSTHs of the synchronous and asynchronous spikes to
reconstruct the mixed PSTH of both types of spikes, as:

PSTHtotal = ∑i∈{Sync, Async} ωi × Gi ∗ fi(µi ∗ s) (2)

where ωis are the combination weights for each stream of reconstructed PSTHs. To reduce
the model complexity and promote smoothness in the output, we applied parameterized
Gaussian kernels, GAsync = Gaussian

(
0, σAsync

)
and GSync = Gaussian

(
0, σSync

)
, to the

reconstructed PSTHs in each stream [21,22]. Figures 4B and 5B show, respectively, the
raw nonlinearities for the asynchronous ( f _Async) and synchronous ( f _Sync) spikes that
correspond to the mapping. The augmented LNL model simultaneously encodes the slow
and fast features of the stimulus using asynchronous and synchronous spikes, respectively.
Figure 6A shows the block diagram of the augmented LNL model. This model implies
that the low-pass filter and shallow non-linearity underlying the asynchronous spikes are
required to produce the rate code. In contrast, the high-pass filter and sigmoid nonlinearity
for synchronous spikes are necessary to preserve the reliable spike times underlying fast
features of the stimulus. Taken together, the augmented LNL model allows rate and
temporal to coexist and represent distinct features of the mixed signal. the coexistence
of the rate and temporal codes happen to encode multiple features of a mixed stimulus.
To capitalize on the significance of temporal filters and nonlinearity transformations of
each type of spike in estimating the total firing rate of a neural ensemble, we compared
the performance of the augmented LNL model with that of a conventional one-stream
LNL. Figure 6B–D shows the firing rate estimated by the three methods, namely, Poisson
GLM and augmented LNL models (Figure 6C,D) (see Section 2.3), against the PSTH of
ensemble of neurons for the test data. We also quantitatively measured the performance
of the augmented LNL and Poisson models in Table 1. As can be observed, the firing rate
estimated using the augmented LNL model can better capture both the rate of asynchronous
spikes and the timing of synchronous events compared to those estimated using the one-
stream Poisson GLM.

Table 1. Mean absolute error (MAE) and root mean squared error (RMSE) performance measure
comparison between Poisson GLM and augmented LNL model on test data.

(MAE) RMSE

Sync Async Mixed Sync Async Mixed

Poisson GLM 0.245 0.223 0.228 0.338 0.313 0.326

Augmented LNL
(STAV1, STAV2 ) 0.101 0.104 0.102 0.137 0.134 0.135

Augmented LNL
(STAASync , STASync) 0.103 0.107 0.106 0.140 0.151 0.149
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Figure 6. Two-stream LNL model, referred to as augmented LNL model, enables co-existence of
temporal and rate codes. (A) Block diagram of the augmented LNL model for combining rate of
asynchronous and synchronous spike events. (B) The PSTHs estimated using a conventional Poisson
GLM (red) are shown against the original PSTH (calculated with a 1 msec Gaussian kernel). (C) The
PSTHs estimated using the segmented LNL using temporal filters of iSTAC method. (D) The PSTHs
estimated using LNL using the segmented LNL using STAAsync and STASync.
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3. Discussion

The ability of an ensemble of homogeneous cortical neurons to multiplex multiple
features of a mixed stimulus was studied in [5]. The specific mechanism by which these
neurons encode different features remains to be determined. In this paper, we presented
a computational framework to provide a system-level understanding of the encoding
mechanism underlying SDM. We used conductance-based neuron models to construct a
homogenous neural ensemble that encodes the slow and fast features of a mixed stimulus
through asynchronous and synchronous spikes, respectively. To elucidate the contribution
of slow and fast features of the mixed stimulus to the spikes generated by the model
neurons, we calculated the most significant subspaces (eigenvectors) of the spike-triggered
stimulus matrix using the iSTAC method. We demonstrated that the calculated first and
second eigenvectors resemble the slow and fast features of the stimulus, respectively.
Furthermore, the projection of the spike-triggered stimulus matrix on these eigenvectors
created two distinct clusters. We tested whether these clusters can be characterized by
synchronous and asynchronous spikes. By computing the spike-triggered average (STA)
filters of the synchronous and asynchronous spikes and projecting this matrix on these
filters, we clearly separated those clusters. Furthermore, we fitted an LNL model to each
type of spike. Similar to distinct temporal filters for synchronous and asynchronous spikes,
their static nonlinearities are different. We found that the nonlinearity associated with
the asynchronous spikes is very shallow and can be approximated with a linear function.
On the other hand, the nonlinearity associated with synchronous spikes has a very large
slope and can be approximated using highly nonlinear functions such as the sigmoid
function. Finally, we developed an augmented LNL model both to capture the dynamical
characteristics of the synchronous and asynchronous spikes and to reconstruct the PSTH of
all spikes.

3.1. Subspace Feature Extractors: iSTAC vs. STC

To explore more than one subspace feature for stimulation-evoked neural responses,
we compared the performance of the STC and iSTAC methods. One can find the most
informative subspaces that maximize the mutual information between stimulus and re-
sponse [23,24]. Nevertheless, an accurate estimation of mutual information requires a
large amount of data, although no guarantee for optimal estimation can be necessarily
expected [24]. A conventional way to find these subspaces is to calculate those related to
the most significant eigenvectors of the spike-triggered covariance (STC) matrix [16]. The
eigenvectors of the STC matrix provide analytic expressions for filter estimation using the
moments of the stimulus and spike-triggered stimulus distribution [16,17]. However, this
method does not incorporate joint information between the mean and the variance, and
there is also no specific measurement for selecting the most significant subspaces based
on that information. We calculated the most important eigenvectors of the STC matrix
underlying the mixed stimulus and neural response (see Figure 1). As one can expect,
the first eigenvector of the STC matrix resembled that obtained using the iSTAC method
and was similar to the STA of the asynchronous spikes. Unlike the first eigenvector of the
STC matrix, the second eigenvector comprised both slow and fast features of the stimulus.
Therefore, the 2D projection of the spike-triggered stimulus matrix on the eigenvectors of
the STC matrix cannot be clearly separated into two distinct clusters.

To avoid this problem, we used the iSTAC method, which allows us to choose the
eigenvectors of the spike-triggered stimulus ensemble matrix more precisely by minimizing
the Kullback–Leibler (KL) divergence between the eigenvectors of this matrix and that
obtained using raw stimulus distributions [17]. It is to be noted that the whitening trans-
formation is usually used before finding subspaces of the spike response. One can use the
whitening transformation to calculate the uncorrelated and normalized subspaces (for both
STC and iSTAC methods), which represent an unbiased estimate of the neurons’ temporal
features. However, due to the type of mixed stimulus (i.e., structured and not a random
process), we found that eliminating this transformation results in more representative sub-
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space features, as shown in Figure 1, but it should be noted that these subspace features are
biased to the choice of input stimuli. We compared the 2D projection of the spike-triggered
stimulus matrix on the eigenvectors of the iSTAC method with and without whitening. It
can be clearly observed that the iSTAC without whitening can better separate the 2D space.

3.2. Choice of Static Nonlinearity in the LNL Model

The static nonlinearities obtained in the augmented LNL model explains why the
synchronous and asynchronous spikes are associated with different functions. For example,
the smoothness and linear behavior of fAsync(x), for x > 0, generates a smooth PSTH for the
asynchronous spikes, which linearly encodes to the intensity of the stimulus. In contrast, the
sigmoid-like nonlinearity of the synchronous spikes, fSync(x), maintains the sparse PSTH
of synchronous spikes because thanks to the steep nonlinearity. It is worth mentioning
that more flexible nonlinear functions could provide better fits for representing the PSTH
of the synchronous and asynchronous spikes. Of note, one can use deep neural networks
(DNNs) to give more flexibility to the models. A DNN is simply a high-dimensional
non-linear function estimator that gives a multilayer nonlinear function in the form of a
neural network [25,26]. However, the main challenge with DNNs is their large parameter
set, which demands a relatively larger dataset compared to what we used here to optimize
the model parameters. Not only that, but also due to the large degree of freedom given by
a DNN, we lose the interpretability of the modeling mechanism. In cases where these two
points are concerned, one can replace our augmented LNL with a DNN to carry out the
multiplexed encoding.

3.3. Generalized Linear Model (GLM) for Augmented LNL

The proposed augmented LNL can also be interpreted in the GLM framework. From
this point of view, synchronous and asynchronous PSTHs are modeled with two separated
GLMs with different random processes that eventually combine their PSTHs linearly. The
first GLM filters the mixed stimulus with the first eigenvector of iSTAC and then, by passing
it through a nonlinearity and then a Gaussian random process (with a linear nonlinearity
as its link function), it models the PSTH related to the asynchronous spikes. Likewise, the
second GLM filters the mixed stimulus with the second eigenvector of iSTAC and then,
by passing it through a nonlinearity and then a Bernoulli random process (with a sigmoid
nonlinearity as its link function), it models the PSTH related to the synchronous spikes
(see Methods for more details about GLMs). Alternatively, we could simply interpret the
augmented LNL as a single Poisson GLM with two input filters (the first two eigenvectors
of iSTAC) and a Poisson random process at the end (see Appendix A for more details).

To reach the optimal parameter set for the model and avoid computational complexity,
we use simple parametric models for the static nonlinearities [9]. We also can make the
model more flexible by considering a flexible link function. We expect this to lead to a better
fit for our model when using more complex models of neurons and eventually to lead to a
better performance in encoding the fast and slow signals. For example, we can use a more
flexible parametric function (with parameter set θ) such as the ex-quadratic function fθ(x)
as the static nonlinearities. To use the ex-quadratic function as nonlinearities we eventually
need to optimize a convex cost function, which gives the optimum parameter set θ for the
nonlinearity and can be optimized using a maximum-likelihood (ML) algorithm (details in
Appendix B) [9]. The downside of this modeling is its computational complexity and the
harder interpretation of the resulting model due to more parameters used in comparison
with what we showed in this research.

4. Materials and Methods
4.1. Stimulated Mixed Input

According to the feasibility of neural systems to multiplexed coding, we simulated
the activity of a homogeneous neural ensemble in response to a mixed stimulus to explore
how much information can be encoded by different patterns of spikes. Each neuron
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received a mixed signal (Imixed) that consists of a fast signal (I f ast) and a slow signal (Islow).
I f ast stands for the timing of the fast events or abrupt changes in the stimulus and was
generated by convolving a randomly (Poisson) distributed Dirac-delta function with a
synaptic waveform (normalized to the peak amplitude), τrise = 0.5 ms and τf all = 3 ms.
The fast events occurred at a rate of ∼ 1 Hz and were scaled by a f ast = 85 pA.

Islow was generated using an Ornstein-Uhlenbeck process as follows.

dIslow
dt

= − Islow(t)− µ

τ
+ σ

√
2

τ
ξ(t), ξ ∼ (0, 1) (3)

where ξ is a random number drawn from a Gaussian distribution and τ = 100 ms is
the time constant of the slow signal that produces a slow-varying random walk with an
average of µ = 15 pA and a standard deviation of σ = 60 pA. The mixed signal (Imixed)
was obtained by adding I f ast and Islow, which were generated independently.

An independent noise (equivalent to the background synaptic activity) was added
to each neuron; thus, each neuron receives a mixed signal plus noise. Similarly, the noise
(Inoise) was generated using an Ornstein-Uhlenbeck process of τ = 5 ms, µ = 0 pA, and
σ = 10 pA.

4.2. Simulated Neural Ensemble and Its Response to the Mixed Input

The neural ensemble consists of 30 neurons, each of which was modeled with Morris–
Lecar equations [13,27]. The equations of a single model neuron receiving a mixed signal
plus noise can be written as follows.

C dV
dt = Imixed(t) +Inoise(t)− gNam∞(V)(V − ENa)− gKw(V − EK)− gL(V − EL)

−gAHPz(V − EK)− gexc(V − Eexc)− ginh(V − Einh)
(4)

where
dw
dt

= φ
w(V)− w

τW(V)
(5)

dz
dt

=

1
1+e(βz−V)/γ − z

τz
(6)

m∞(V) = 0.5
[

1 + tanh
(

V − βm

γm

) ]
(7)

w∞(V) = 0.5
[

1 + tanh
(

V − βw

γw

) ]
(8)

τw(V) =
1

cosh
(

V−βw
2βw

) (9)

where {gNA = 20, gk = 20, gL = 20, gAHP = 25, gexc = 1.2, ginh = 1.9} mS
cm2 ,

βm = −1.2 mV, γm = 18 mV, βw = −19 mV, γw = 10 mV, βz = 0 mV, γz = 2 mV,
τa = 20 ms, φ = 0.15, and C = 2 µF

cm2 . These parameters were set to ensure that a neuron
operates in a hybrid mode [28], i.e., an operating mode between integration and coincidence
detection [5,29]. The surface area of the neuron was set to 200 µm2 so that Imixed is reported
in pA, rather than as a density [30,31]. Figure 1A shows the mixed stimulus and the spiking
activities of the ensemble of neurons in response to this stimulus.

4.3. Generalized Linear Model (GLM) Details

A GLM is a generalization of traditional linear models that gives the neural encoding
models more flexibility to capture the nonlinear dynamics of neural activity. GLMs contain
three stages. The first stage is a linear mapping that consists of a set of d linear filters. Let
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us assume K = [k1, . . . , kD], which maps a high-dimensional sensory stimulus s ∈ RM onto
a low-dimensional stimulus feature map x ∈ RD:

x = KTs (10)

The second stage is a pointwise nonlinearity, f : RD → R , which maps the linear
features of d dimensions into a nonnegative spike rate:

λ = f (x) (11)

In the final stage, the number of spikes is generated by a random process:

Pθ(Y = r|s) (12)

where Y is a random variable related to spike occurrence, r is the instantaneous firing rate,
and θ is the parameter set of the random process

In simple words, by using a GLM we approximate the instantaneous firing rate by
considering features from D dimensions instead of M dimensions:

P(Y
∣∣∣s) ∼ P(Y

∣∣∣KTs) (13)

Thus, there are two sets of parameters, the estimators (K) and the pointwise nonlinear-
ity ( f ), which can be optimized to reach the desired model.

4.4. STA and STC Estimators

If we assume that p(s) has zero mean, then the STA can be defined as the average of
the stimulus given the instantaneous firing rate:

µ =
1

nsp
∑{si |spike} si, nsp = ∑N

t=1 rt (14)

where N is the total number of time points. The STA is an unbiased, consistent estimation
that gives the direction in the stimulus space along which the means of P(s|spike) and P(s)
differ the most. The problem is the STA gives a single direction in stimulus space and leads
to a single estimator, which is not sufficient to capture all the information in the stimulus
space (as previously discussed, we have a mixed stimulus in this research). To consider
other possible directions with maximal differences in the variances between P(s|spike)
and P(s) we can use the eigenvectors of the STC matrix, defined as:

Λ =
1

nsp
∑{si |spike}(si − µ)(si − µ)T (15)

The STA and eigenvectors of the STC matrix can provide a basis, K, for a reduced-
dimensional model of the neural response.

4.5. iSTAC Estimator

There are major problems with STA/STC. The measure we use to select the eigenvec-
tors of STC is based on eigenvalues, which do not truly represent the most informative
directions. As we mentioned before, the objective in iSTAC is to reduce the KL divergence
between the Gaussian approximations to the spike-triggered and raw stimulus distribu-
tions. Therefore, we define Q as a Gaussian approximation of P(s|spike) based on the
information contained only in the mean and covariance of P as:

Q(s) =
1

(2π)
n
2 |Λ|

1
2

e−
1
2 (s−µ)TΛ−1(s−µ) (16)
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where n is the dimensionality of the stimulus space. Now we drive KL the divergence
between Q and P as:

D(Q, P) =
∫

Q(s) log
(

Q(s)
P(s)

)
ds (17)

By considering that the mean of P and P ◦Q is zero and have identity covariance (if
not, we can use a “whitening” technique) we can rewrite D in a simpler form as:

D(Q, P) =
1
2

(
Tr(Λ)− log|Λ|+ µTµ− n

)
(18)

where Tr(.) and |.| indicate the trace and determinant, respectively.
Based on the fact that we are interested in d subspaces we can approximate the D with:

D[K](P, Q) =
1
2

(
Tr
[
KT
(

Λ + µTµ
)

K − loglog
∣∣∣KTΛ K

∣∣∣− d
]
) (19)

where d is the dimension of the interested subspaces.
Thus, in terms of finding the d most informative subspaces decomposed by STA and

the eigenvectors of STC, we need to find D[K](P, Q) for all subspaces and select the first
d ones.

An important advantage of the iSTAC approach over traditional STA/STC analysis is
that it makes statistically efficient use of changes in both the mean and covariance of the
response spaces.
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Appendix A

We assume the number of spikes in time are discrete events. By dividing the time
horizon of the experiment, (0, T], into K (K is a large number) subintervals (tk−1, tk]

K
k=1 and

considering Nk as the number of events in the time interval (tk−1, tk], we can model the
spike observation process with a point process by inhomogeneous Poisson distribution and
parameter λk as:

P(Nk|sk) =
1

Nk!
(∆λk)

Nk e−∆λk (A1)

where ∆ is the width of the time bins. By assuming that the number of spikes is conditionally
independent in time, we can write the whole observation process as

P(N1:K|s1:K) = ∏K
k=1

1
Nk!

(∆λk)
Nk e−∆λk (A2)

https://github.com/MrRezaeiUofT/Synchrony-Division-Neural-Multiplexing.git
https://github.com/MrRezaeiUofT/Synchrony-Division-Neural-Multiplexing.git


Entropy 2023, 25, 589 16 of 18

On the other hand, we can model λk in a way that captures the effects of two features
of the stimulus as a linear combination of their effects in λk (discussed in the Results
section), as

λk = ∑D
i=1 ωi fi(µi ∗ sk) (A3)

where θ = {ω1, . . . , ωD} is our parameter set and D is the dimension of the feature map.
Finally, using maximum-likelihood estimation, we can tune the model parameters

θ̂ = arglog P(N1:K|s1:K)→

log P(N1:K|s1:K) =
K
∑

k=1
log 1

Nk! +
K
∑

k=1
Nklog ∆ + Nk

(
D
∑

i=1
ωi fi(µi ∗ s1:k)

)
−∆ ∑D

i=1 ωi fi(µi ∗ s1:k)

(A4)

Based on Jensen’s inequality and considering that loglog x is a concave function,
we have:

log P(N1:K|s1:K) ≥ C +
K
∑

k=1
Nk

(
D
∑

i=1
(ωi fi(µi ∗ s1:k))− ∆ωi fi(µi ∗ s1:k)

)
= Q,

C =
K
∑

k=1
log 1

Nk! +
K
∑

k=1
Nklog ∆ + Nk

(A5)

where Q is a lower bound for the log-likelihood. Therefore, we can find the θ s by
maximizing the Q over them as

ˆθML = ∂log P(N1:K |s1:K)
∂θ = 0→

∂log P(N1:K |s1:K)
∂θ = 0 +

K
∑

k=1

(
Nk
ωi
− ∆ fi(µi ∗ s1:k)

)
=

∑K
k=1 Nk − 1

ωi
∑K

k=1 ∆ fi(µi ∗ s1:k) = 0→ ω̂i =
∑K

k=1 Nk

∑K
k=1 ∆ fi(µi∗s1:K)

(A6)

By estimating the model parameters, we reach a model for encoding the firing rate of
the multiplexed spikes.

Appendix B

The estimators perform a dimensionality-reduction task and map a high-dimensional
sensory stimulus to a lower-dimensional linear feature map = KTs, where K is the basis
of the feature map space. Based on the definition of GLM mentioned above, we still need
to find the optimum model for f (x), f : Rd → R . By considering the motivation in [4], a
reasonable way is using an exponential general quadratic function:

f = exp
(

1
2

xTCx + bTx + a
)

(A7)

where C is a symmetric matrix, b is a vector, and a is a scalar. Thus, now we can use
maximum likelihood to optimize the parameter set, {C, b, a}. To do that we need to
maximize the log-likelihood of observing a spike given all spikes and the parameters set
( L = loglog P(r1:N |s1:N , C, b, a) ). By assuming that the spikes firing in time are indepen-
dent, we can rewrite it as:

L =
1

nsp
∑i log P(ri|si, C, b, a) (A8)

where nsp is total number of spikes, so our objective is to maximize L by finding the best
parameter set: {

Ĉ, b̂, â
}
= argmax{C,b,a} L (A9)
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By following the optimization steps in [5] and assuming that the stimulus is drawn
from x ∼ N (0, Φ); the maximum-likelihood estimation of the parameters is:

Ĉ = Φ−1 −Λ−1, b̂ = Λ−1µ (A10a)

â = log
(

nsp
N

∣∣∣ΦΛ−1
∣∣∣0.5

)
− 1

2
µTΦ−1Λ−1µ (A10b)
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