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Abstract: As a promising distributed learning paradigm, federated learning (FL) faces the challenge
of communication–computation bottlenecks in practical deployments. In this work, we mainly focus
on the pruning, quantization, and coding of FL. By adopting a layer-wise operation, we propose an
explicit and universal scheme: FedLP-Q (federated learning with layer-wise pruning-quantization).
Pruning strategies for homogeneity/heterogeneity scenarios, the stochastic quantization rule, and the
corresponding coding scheme were developed. Both theoretical and experimental evaluations suggest
that FedLP-Q improves the system efficiency of communication and computation with controllable
performance degradation. The key novelty of FedLP-Q is that it serves as a joint pruning-quantization
FL framework with layer-wise processing and can easily be applied in practical FL systems.

Keywords: federated learning; model pruning; parameter quantization; code design; layer-wise
aggregation; communication-computation efficiency

1. Introduction
1.1. Background and Motivation

With the advent of the big data era, data privacy and system efficiency have attracted
great attention, which also brings unprecedented challenges to the field of artificial intelli-
gence (AI). As the first attempt to solve the problem of data silos, federated learning (FL)
has now emerged as an important and promising branch of distributed machine learn-
ing [1]. Without sharing private data with other clients, FL requires only the interaction of
local model parameters for cooperative learning, which significantly improves the security
and efficiency of intelligent distributed systems.

The employment of AI in communication networks is already considered as a core
feature of 6G systems [2]. In particular, FL has shown its strong potential in combination
with deep neural networks [3,4]. As a matter of fact, FL not only naturally adapts to different
structures of multi-user networks with distributed data [5], but also enables intelligent
collaboration for multi-agent systems [6]. In addition, as a privacy-preserving mechanism
that permits unified model training on distributed data from multiple clients, FL can be
adopted in numerous fields, such as finance, healthcare, AIoT, smart cities, etc. [7].

The development of this distributed learning paradigm faces multiple challenges. In
FL scenarios, clients have greater control over distributed data and local devices. Thus,
there exists significant heterogeneity in terms of both data and devices. The former causes a
non-iid data distribution, which hinders the convergence and the performance of the global
model [8]. The heterogeneity of local devices and settings also leads to strict restrictions
on the local computation and transmission, resulting in the straggler effects, where the

Entropy 2023, 25, 1205. https://doi.org/10.3390/e25081205 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25081205
https://doi.org/10.3390/e25081205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8168-6870
https://orcid.org/0000-0002-0658-6079
https://doi.org/10.3390/e25081205
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081205?type=check_update&version=1


Entropy 2023, 25, 1205 2 of 15

systems have to wait for the slowest client [9]. In addition, in some mobile applications
with numerous clients, the bandwidth resources are more limited and the communication
costs for parameter sharing are much higher [10]. As a result, communication–computation
efficiency becomes one of the most significant challenges in the practical deployment of
FL systems [11]. An intuitive idea is to deploy models of different complexities on each
client, which is called model heterogeneity. However, model heterogeneity violates the
original assumption of FL, where the global model is supposed to be identical to all clients.
Therefore, the designs of efficient heterogeneous FL systems are still in the early stage.

1.2. Related Work

In order to handle these issues related to system efficiency, two basic solutions have
been considered: model pruning and parameter quantization. These were first introduced
in centralized machine learning, aiming to accelerate the training process and compress the
deep learning models [12]. These two techniques are broadly combined to slim the model
and compress the data volume of representation. Inspired by the above two concepts, simi-
lar mechanisms have been transferred into the context of FL, which are easy to implement
based on the existing FL frameworks. Specifically, pruning performed before local training
or uploading, and quantization conducted before model aggregation.

The pruning strategies of FL have been broadly studied in the literature. Caldas et al.
proposed the first federated pruning framework in [13], where the global model is com-
pressed into sub-models for local clients. Based on this scheme, the pruning settings and
the spectrum allocation for wireless FL were investigated in [14,15]. These methods use
random width-wise pruning and have to consider different pruning rules for the inner
layers with different structures. These schemes were also challenged in [16], where the
authors doubted the rationality of randomly dropping the inner layer parameters. Further-
more, several new pruning mechanisms were also developed. For example, Horvath et al.
pointed out that the order of the parameters matters in pruning aggregation and should
be taken into consideration [17]. Depth-wise schemes based on blocks and layers were
also discussed in [18,19], which showed that model compression in FL should affects the
functionality of different parts in local models. The FedLP schemes in [19] specifically
provided common pruning solutions for model heterogeneity cases, which extends the FL
scenarios. These recent studies suggested that the pruning mechanisms should be designed
specially due to the characteristic aggregation operation in FL.

As for quantization, it is commonly treated as an independent procedure from prun-
ing. QSGD, a classic quantization scheme proposed in [20], has been integrated into FL
systems [21,22]. Some extensions and variants for communication-efficient scenarios were
also developed in [23,24]. The theoretical analysis was studied in [25], and some universal
coding schemes were adopted in [26]. In addition, Prakash et al. investigated optimized FL
by combining pruning and quantization [27]. However, specific coding schemes that fit the
aforementioned pruning and quantization are essentially required. As combined technolo-
gies for model compression, pruning-quantization-coding can be jointly and compatibly
designed to improve the efficiency for practical FL systems.

1.3. Contribution and Organization

Inspired by the above studies, we mainly consider a compressed FL scheme with
joint layer-wise model pruning and parameter quantization in this work, which is an
extension of [19]. The main contributions of this work can be summarized as follows:

• We propose FedLP-Q (the codes in this work are available at https://github.com/
Zhuzzq/FedLP/tree/main/FedLP-Q ), a joint pruning-quantization FL framework
employing the layer-wise approach. FedLP-Q provides a simple but efficient paradigm
to mitigate the communication loads and computation complexity in FL systems;

• We develop two distinct FedLP-Q schemes for homogeneous and heterogeneous cases.
The corresponding pruning strategies, quantization rules, and the coding designs are

https://github.com/Zhuzzq/FedLP/tree/main/FedLP-Q
https://github.com/Zhuzzq/FedLP/tree/main/FedLP-Q
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presented in detail. The theoretical analysis also shows the strengths of the coding
scheme for FedLP-Q;

• We carry out several experiments to evaluate the performance of FedLP-Q. The out-
comes suggest that this layer-wise pruning-quantization mechanism significantly
improves the system efficiency with controllable performance loss.

The remainder of this article is organized as follows. In Section 2, we introduce the
preliminaries and the basic concept of layer-wise pruning-quantization. In Section 3, we
illustrate the specific design of the proposed approach and its theoretical analysis. The
detailed experimental results and more discussions are presented in Section 4. Finally, in
Section 5, we conclude and show several potential directions for this work.

2. Preliminaries and FedLP-Q Framework

In this section, we introduce some preliminaries and the framework of FedLP-Q.
Before that, for explicity, we list some basic notations in Table 1.

Table 1. Basic Notations.

Notations Description

N The number of distributed clients.
El Local training epoch.

{D1, · · · ,DN} Distributed local datasets.
Pt The set of participation clients at t-th global epoch.
K The number of participation clients.
θ̄ The global model.

{θ1, · · · , θN} Local models.
{ω1, · · · , ωN} Aggregation weights for each client.

gk,t The accumulated gradient of client k in t-th global epoch.

2.1. Basic FL

In a typical FL system with N distributed clients, each client k possesses its own dataset
Dk to train its local model θk. To preserve the privacy of personal data, FL conducts local
training and periodic model aggregation. Clients cooperate to update the global model
θ̄ via parameter sharing, which improves the communication efficiency. As a standard
rule, FedAvg [1] selects K clients as a temporary active group Pt and aggregates their local
gradients to update the global model. At each global round t, participator clients train their
local models for El epochs and upload the local gradients to the server. The global model is
updated by model aggregation as follows:

θ̄t+1 ← θ̄t − ∑
k∈Pt

ωk

∑
m∈Pt

ωm
· ηkgk,t, (1)

where gk,t is the accumulated gradients of client k after El epoch local training. ωk =
|Dk |

∑ |Dm |
is the aggregation weights and ηk is the learning rate of each client.

2.2. An Overview of the FedLP-Q Framework

As discussed above, the aggregation mechanism of FL makes it possible to con-
duct layer-wise processes for local models. Furthermore, FL with layer-wise pruning has
shown its strengths in several aspects including stability, convergence, and communication–
computation efficiency [19]. We generalize such schemes by adding the quantization for
layer-wise pruning and formulate the FL framework with layer-wise pruning-quantization,
abbreviated as FedLP-Q.

Consider a full model with L layers, θ :=
[
θ1, θ2, · · · , θL

]
. After a round of local

training on client k, its accumulated gradients can be represented by:

g̃k =
[

gl
k

]
, l ∈ Lk, (2)
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where Lk is the index set of the preserved layers and is determined by the specific layer-wise
pruning strategies. The pruned accumulated gradients of each layer are further quantized
into Q(gl

k), where Q(·) denotes the layer-wise quantization function. Hence, the layer-wise
aggregation rule shall be modified as:

θ̄
l
t+1 ← θ̄

l
t − ∑

k∈Pt

1
l
k ·ωkηk

∑m∈Pt 1
l
m ·ωm

Q
(

gl
k,t

)
, (3)

where 1l
k is the probabilistic indicator function with value {0, 1} to represent whether the

l-th layer is preserved for the local model on client k. The examples of the indicators will be
presented in the following section.

Figure 1 shows the basic frameworks of FedLP-Q for homogeneous and heterogeneous
local model scenarios. In the homogeneity scheme, all clients possess the same full layers of
the global model. In the heterogeneity scheme, clients initialize their local pruned models
with different sequential layers. During the aggregation rounds, clients prune their local
models according to layer-wise pruning. Then, the sub-models are quantized into lower bit
rates and encoded for model uploading. The parameter server decodes and aggregates the
quantized gradients. Similarly, the updated global model will be encoded and transmitted
to each local client. In FedLP-Q, since each layer of the model is the basic unit, the pruning
and quantization processes can be explicit and model-agnostic. For the above reasons,
layer-wise pruning-quantization schemes require no previous knowledge of the model and
can easily be deployed in FL systems.

Global

Model

...

Upload

Parameter Server

Quantization & Coding

Homogeneous

Local Models

Layer-wise Pruning

Global

Model

...
Heterogeneous

(Pruned)

Local Models

Parameter Server

Layer-wise

Quantization & Coding

Upload

(a)

Global

Model

...

Upload

Parameter Server

Quantization & Coding

Homogeneous

Local Models

Layer-wise Pruning

Global

Model

...
Heterogeneous

(Pruned)

Local Models

Parameter Server

Layer-wise

Quantization & Coding

Upload

(b)

Figure 1. Two typical FedLP-Q schemes for different local model settings. The inactive layers (in gray)
are removed from the sub-models for uploading. (a) Homogeneity scheme. (b) Heterogeneity scheme.

3. FedLP-Q: Quantization-Coding Scheme for Layer-Wise Pruning

In this section, we will introduce the proposed layer-wise pruning-quantization ap-
proach and the coding scheme in detail. The convergence and the coding performance of
FedLP-Q will also be analyzed.

3.1. Pruning Phase

To develop layer-wise pruning for FL, we shall consider the homogeneous and het-
erogeneous local models. Similar to [19], we adopt the probabilistic layer-wise pruning
strategy for homogeneity cases. For heterogeneity cases, we assign the pruned sub-models
with different sequential layers to the clients.

3.1.1. Homogeneity Case

As shown in Figure 1a, all clients possess the same full model. While finishing the local
training, clients carry out layer-wise pruning for the accumulated gradients. Probabilistic
layer-wise pruning proceeds as follows: before uploading the accumulated gradients for
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aggregation, each client k preserves the gradients of the l-th layer with probability pl
k,

termed as the layer-preserving rate (LPR). In other words, the indicators in (3) satisfies:

1
l
k =

{
1 with probability pl

k,

0 with probability 1− pl
k.

(4)

The pruned accumulated gradients g̃k in (2) for homogeneity cases can be formulated
according to {1l

k}.

3.1.2. Heterogeneity Case

The major challenge of FL with heterogeneous local models is to design the rules
for model assignment and aggregation. Fortunately, the layer-wise mechanism of FedLP-
Q gives an explicit solution to such problems. That is, each client initializes the local
model of different layers. Let Lk denote the layer count (LC). As shown in Figure 1b, its
local model shall be initially pruned into θ̃k =

[
θ1

k , · · · , θ
Lk
k , (θO

k )
]
, where θO

k (if it exists)
is the personalized fully connected (FC) layer to fit the output dimensions and will not
be uploaded for aggregation. Then, the pruned accumulated gradients of client k in
heterogeneity settings can be expressed as:

g̃k =
[

g1
k , · · · , gLk

k

]
. (5)

and the layer indicators {1l
k} can be determined.

In this case, the computation complexity for local training is notably reduced since
client k only needs to train a sub-model with Lk layers. As a result, the straggler clients are
able to contribute to the global model by training and transmitting small sub-models. This
scheme considers the imbalance of the local devices and their computation–communication
capabilities, which is more practical in real scenarios.

3.2. Quantization and Coding Phase

Based on layer-wise pruning, we further formulate the corresponding quantization
settings and the coding scheme.

3.2.1. Quantization Scheme

For each preserved layer, FedLP-Q conducts the quantization method with equal
intervals, which is similar to the quantized-SGD (QSGD) in [20]. Layer-wise quantization
after pruning proceeds as follows: for a preserved layer l on client k and the preset
quantization bit b, the quantized aggregated gradient Q(gl

k; b) is defined by:

Q(gl
k; b) =

∥∥∥gl
k

∥∥∥
2

2b · sgn
(

gl
k

)
� seg

(
gl

k; b
)

, (6)

where � is the element-wise product, sgn(·) is the sign function, and seg
(

gl
k; b
)

is the

interval segmentation function. Specifically, for the full gradients gl
k of the l-th layer, we

firstly divide its `2-norm into 2b equal intervals, which takes b bits. Then, each gradient
in the layer follows a stochastic quantization: for g(l,i)k , if it locates at the s-th interval, i.e.,

|g(l,i)k |/‖gl
k‖2 ∈ [ s

2b , s+1
2b ], the gradient g(l,i)k will be quantized as the values of two sides

according to the distances from the two endpoints of the interval. The quantization can be
expressed as:

seg
(

g(l,i)k ; b
)
=

{
s + 1 with probability p(l,i)Q (s; b),

s otherwise.
(7)



Entropy 2023, 25, 1205 6 of 15

Therein, the stochastic quantization probability is defined as:

p(l,i)Q (s; b) =
|g(l,i)k |
‖gl

k‖2
· 2b − s, (8)

which is the ratio between the distance to the left endpoint and the interval length.

3.2.2. Coding Design

Given the quantization bit b and the layer 2-norm ‖gl
k‖2, the quantized value of each

gradient can be handled as the index of the interval. Then, the coding of the quantized
gradients can be considered as the representation of the integers. Therefore, we adopt a
classic solution: recursive Elias coding, which is also known as Elias omega coding [28].
The core idea of Elias omega coding is to recursively encode the prefix of the binary
representation. Hence, the code length of any positive integer N follows |Elias(N)| =
1 + log N + log log N + · · · = 1 + (1 + o(1)) log N. Then, we shall consider the simple
encoding scheme for layer-wise pruning-quantization. The full coding scheme for FedLP-Q
proceeds as follows: For each preserved layer l, the layer 2-norm will firstly be encoded
into 32 bits (float). The quantization setting b (integer) will be attached using Elias omega
coding. Then, for each gradient, the index of interval segl

k(i) for stochastic quantization will
be sequentially encoded according to the Elias omega coding. The sign of each gradient will
additionally take 1 bit (a boolean variable standing for positive/negative). The decoding
scheme is also simple: The decoder firstly reads off the 32 bits to obtain the layer 2-norm
‖gl

k‖2 and decodes the Elias codes of b. Then, for each gradient, its interval index will be
reconstructed according to Elias omega decoding, while the sign will be decoded by the
last bit.

After layer-wise pruning-quantization, the layer gradients can be represented by a
4-element tuple

{
‖gl

k‖2, b, seg(gl
k; b), sgn(gl

k)
}

. Therefore, based on Elias omega coding,
the code structure of each layer with Ml parameters is shown in Figure 2. Furthermore,
the corresponding encoding and decoding procedures can be developed as shown in
Algorithm 1 and Algorithm 2, respectively.

𝒈𝑘
𝑙

2
seg𝑘

𝑙 (1) sgn𝑘
𝑙 (1) seg𝑘

𝑙 (2) sgn𝑘
𝑙 (2) seg𝑘

𝑙 (𝑀𝑙) sgn𝑘
𝑙 (𝑀𝑙)…

Float32 Elias code Bool

𝑏

Elias code

Figure 2. Code structure of each layer’s gradients under the FedLP-Q scheme.

Algorithm 1 Encoder for layer l

Input:
{
‖gl

k‖2, b, seg(gl
k; b), sgn(gl

k)
}

, Ml ;

1: Cl ← Concat
(
Float32

(
‖gl

k‖2
)
, Elias_Encoder(b)

)
; . encode the header

2: for i← 1 to Ml do
3: Cl ← Concat

(
Cl , Elias_Encoder

(
seg(g(l,i)k ; b)

))
; . encode the interval index

4: Cl ← Concat
(
Cl , Binary

(
sgn(g(l,i)k ; b)

))
; . encode the gradient sign

5: end for
Output: encoded message Cl .
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Algorithm 2 Decoder for layer l

Input: received message Cl ; Initialization: segl ← [ ], sgnl ← [ ], i← 0;
1: Gl ← Float32_Decoder

(
Cl
)
; . decode the gradient norm

2: Cl >> 32;
3: (b, lE)← Elias_Decoder(Cl); . decode the quantization bit
4: Cl >> lE;
5: while Cl do
6: (segl

i , lE)← Elias_Decoder
(
Cl
)
; . decode the interval index

7: Cl >> lE;
8: (sgnl

i , lE)← Cl ; . decode the gradient sign
9: i← i + 1; Cl >> 1;

10: end while
Output: decoded elements

{
Gl , b, segl , sgnl

}
.

3.2.3. Algorithm Formulation

Finally, we formulate the procedures of FedLP-Q as in Algorithm 3. The main changes
from the original FL include (1) layer-wise pruning (for both the homogeneity and het-
erogeneity case ) for the local gradients is conducted in Line 5; (2) stochastic quantization
and the corresponding encoding/decoding are performed in Lines 6 and 7; and (3) Line 9
introduces the layer-wise aggregation for the proposed pruning-quantization schemes.

Algorithm 3 FedLP-Q
Initialization: local models, pruning configures, etc.

1: for t← 1 to max_epoch do
2: for participator client k in parallel do . client side
3: Update θk,t ← Local_Train(θk,t−1;Dk);
4: Calculate the accumulated gradients gk,t;
5: Conduct layer-wise pruning: g̃k,t;
6: Quantize the local gradients: Q(g̃k,t);
7: Carry out Algorithm 1 to encode the quantized gradients;
8: Upload local message to parameter server;
9: end for

10: Carry out Algorithm 2 to decode the received messages; . server side
11: Aggregate each layer θ̄

l
t by (3);

12: Download the global model: θk,t ← θ̄t; . client side
13: end for
Output: global model: θ̄t.

3.3. Theoretical Analysis

Then, we theoretically analyzed the convergence and coding performance of FedLP-Q.

3.3.1. Impacts on Convergence

Since FedLP-Q modifies the aggregation process of the original FL, the main impacts
on convergence come from layer gradient pruning and quantization. Assuming that local
training is independent from the pruning operations, the following proposition indicates
the convergence result of FedLP-Q.

Proposition 1. Consider a fairness case where ωk = 1/K and pl
k = p for all k = 1, · · · , K.

FedLP-Q leads to (1− p)K convergence rate decay compared to the original FL scheme, i.e., the
expectation of the aggregated gradient in FedLP-Q satisfies:

E
[

ĝl∣∣ḡl
]
=
[
1− (1− p)K

]
· ḡl . (9)
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Therein,

ḡl =
1
K ∑

k
gl

k, ĝl = ∑
k

1
l
k

∑m 1l
m

Q(gl
k) (10)

denote the aggregated gradients in the original FL and FedLP-Q, respectively.

Proof. For simplicity, rewrite the client index in Pt as {1, 2, · · · , K}. According to the
layer-wise aggregation in (3), the expectation of the pruned-quantized gradients can be
obtained by:

E
[

ĝl∣∣ḡl
]
= E

[
K

∑
k=1

1
l
k

∑m 1l
m

Q(gl
k)

∣∣∣∣ḡl

]
=

K

∑
k=1

E
[

1
l
k

∑m 1l
m

Q(gl
k)

∣∣∣∣ḡl

]
(11)

À
=

K

∑
k=1

E
{
E
[

1
l
k

∑m 1l
m

Q(gl
k)
∣∣∣ḡl ,1l

k

]∣∣∣∣ḡl

}
(12)

=
K

∑
k=1

p ·E
[

1
1 + ∑m 6=k 1

l
m
·Q(gl

k)

∣∣∣∣ḡl

]
(13)

=
K

∑
k=1

p

[
K

∑
m=1

1
m

(
K− 1
m− 1

)
pm−1(1− p)K−m

]
E
[

Q(gl
k)
∣∣ḡl
]

(14)

Á
=

K

∑
k=1

[
K

∑
m=1

1
K

(
K
m

)
pm(1− p)K−m

]
E
[

Q(gl
k)
∣∣ḡl
]

(15)

=
[
1− (1− p)K

]
E
[

K

∑
k=1

Q(gl
k)

K

∣∣∣∣ḡl

]
(16)

Â
=
[
1− (1− p)K

]
· ḡl , (17)

where À is the result of equation E[X|Y] = E
{
E[X|Y, Z]

∣∣Y}, Á holds because 1
m (K−1

m−1) =
(K−1)!

(K−m)!m! = 1
K (

K
m), and Â is the unbiased quantization property of QSGD-based

quantizers [22,25]. Then, the proposition is proved.

Remark 1. (9) shows that the aggregated gradients of FedLP-Q decreases compared to the orig-
inal FL schemes, which implies (1− p)K convergence rate decay. In addition, the conclusion of
Proposition 1 can be directly adopted in the assumptions of model pruning/quantization (e.g., [22,24])
and the specific convergence theorems can be further modified.

According to the proposition, such impacts on convergence can be mitigated by
increasing either the layer preserving rate p or the number of participator clients K.

3.3.2. Coding Performance

Based on the stochastic quantization method and the corresponding coding scheme, we
obtained the following proposition, which highlights the communication costs of FedLP-Q.

Proposition 2 (Code length). By employing layer-wise pruning-quantization, the average bit
number to communicate gl

k for client k is upper-bounded by:

Ĉ
(

gl
k; b
)
= 33 +

(
1 + o(1)

)
log b + Ml

[
2 +

(
1 + o(1)

)
b
]
. (18)

Proof. The proposition is an intuitive result of the proposed quantization coding scheme.
As discussed above, the code length of an integer N using Elias omega coding satisfies
|Elias(N)| = 1 + log N + log log N + · · · = 1 + (1 + o(1)) log N. Consider the code blocks
of the l-th layer as shown in Figure 2, the code length can be divided into three parts: (1)
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The first block to represent the layer 2-norm ‖gl
k‖2 takes 32 bits; (2) the Elias codes of the

quantization level b takes 1 + (1 + o(1)) log b bits; and (3) after stochastic quantization, the
interval index of each parameter is an integer less than 2b, which takes 1 + (1 + o(1))b bits,
and its sign takes one more bit. Hence, the total code length can be upper bounded as
shown in (18).

Remark 2. According to [20], the original coding scheme proposed in QSGD for the l-th layer
leads to the average code length asymptotically bounded by:

32 +
[

3 +
(

1.5 + o(1)
)

log
2(S2 + Ml)

S(S +
√

Ml)

]
S(S +

√
Ml), (19)

where S = 2b is the count of the quantization intervals. Comparing the two upper bounds of encoding
the layer-wise gradients in (18) and (19), one can find that the proposed coding scheme for FedLP-Q
has a shorter code length than that in the original QSGD when the number of parameters is not
extremely large.

Specifically, the Elias coding approach for QSGD considers the positional coding of the
non-zero gradient to fit the cases with sparse and numerous parameters. On the contrary,
in FedLP-Q, the gradients of each layer are handled independently. Therefore, the sparsity
and the element amounts are not enough to show the advantages of the Elias coding scheme
in QSGD. The experimental results in the next section also indicate that the quantization
coding for FedLP-Q can be simple but more efficient. Overall, by employing layer-wise
pruning and quantization, FedLP-Q improves the communication–computation efficiency
in FL, and also simplifies the code design for model uploading.

Furthermore, we discuss the code efficiency. After layer-wise pruning-quantization,
the gradients of Q(gl

k) can be represented by a set of interval indexes. Then, the entropy
rate of the layer gradients can be defined as follows:

Definition 1. After the b-bit quantization, the entropy rate of the layer gradients gl
k is defined as:

H
(

Q(gl
k); b

)
:= lim

n→∞

1
n

n

∑
i=1
H
(

segl
k(i)
)

; (20)

where seg(·) is the quantization index. Consider the independence of each gradient and the empirical
distribution, the above entropy rate can be approximated by:

Ĥ
(

Q(gl
k); b

)
≈ Ĥ

(
segl

k

)
:= − ∑

s∈{segl
k}

f (s) log( f (s)), (21)

where f (s) = count(s)
Ml

is the proportion of index s in segl
k.

Then, the code efficiency can be investigated by comparing the per-gradient code
length and the entropy rate. According to Proposition 2, the per-gradient code length can
be expressed asymptotically by:

Ĉ
(

gl
k; b
)

Ml
≈ 2 +

(
1 + o(1)

)
b. (22)

Hence, the aim is to make the asymptotic per-gradient code length as close as possible to

the entropy rate, i.e.,
Ĉ(gl

k ;b)
Ml

→ Ĥ
(

Q(gl
k); b

)
. Moreover, consider the whole procedure of

FedLP-Q, the equivalent per-gradient code length pl
k
Ĉ(gl

k ;b)
Ml

can be even smaller than the

entropy rate Ĥ
(

Q(gl
k); b

)
, where pl

k is the preserving proportion of the gradients of the
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l-th layer. In the next section, we will show that the proposed FedLP-Q can achieve the
above goals through experiments.

4. Experimental Results

In this section, we describe several experiments to evaluate the performance of the
FedLP-Q schemes.

We carried out the experiments on an image classification FL task on CIFAR-10 with
100 clients and a 0.1 participation rate. Specifically, the parameter server randomly selected
10 clients for aggregation in every global round. The number of the local training epoch
was fixed at 5. We adopted the global model as a CNN-based neural network with six
Conv layers and two FC layers. Batch normalization and maxpooling were also conducted
following each Conv layer. As for the two proposed schemes, we adopted the consistent
LPR p for the homogeneous case, abbreviated as FedLP-Q_Homo(p). For the heterogeneous
case, we separated the Conv layers into five ordered sequences with LC from 1 to 5. These
five sub-models were assigned to clients according to LC distributions. FedLP-Q_Hetero(l)
means that the model with l LC was assigned with the highest probability and the parameter
’u’ represents the uniform assignment.

We evaluated the performance of the proposed FedLP-Q schemes under both iid
and Dirichlet non-iid data (α = 1) settings. As shown in Figure 3, the FedLP-Q schemes
reached a similar accuracy and convergence as the original FedAvg. In particular, the
homogeneous case with high quantization bits (b = 10) led to nearly the same test accuracy
curves as that of FedAvg, but significantly reduced the communication traffic. Small
quantization bits and the non-iid data settings led to a lower accuracy and the instability
of the global model. Therefore, there exists redundancy in the transmitted gradients and
the quantization representation. By setting different FedLP-Q configures, FL systems can
reduce the requirement of the communication rate and computation capability, which
enables more devices to participate in the FL tasks.

The detailed numerical results for the test accuracy and the communication–computation
efficiency are listed in Table 2. The savings of communication and computation are rep-
resented by the decay ratios of the parameter count and the million floating point of
operations (MFLOPs) per local model, respectively. One can find that, for homogeneity
cases, FedLP-Q performs better on both data settings. The randomness caused by the proba-
bilistic layer-wise pruning and stochastic quantization even benefit the model performance.
In addition, the number of parameters can be reduced, which relieves the communication
loads. For heterogeneity cases, though there exists degradation of the test accuracy, FedLP-
Q can significantly reduce both the communication and computation costs with acceptable
model performance. This is an important characteristic, especially for mobile scenarios
where the clients’ capabilities of transmission and local computation are limited.
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Figure 3. Test on CIFAR-10. FedLP-Q_Homo(0.5) and FedLP-Q_Hetero(u). (a) Under iid data.
(b) Under non-iid data.
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Table 2. Comparisons on accuracy, communication, and computation saving.

Schemes
Test Accuracy % (iid/Non-iid) #Param

↘
MFLOPs

↘No Quant b = 10 b = 8

FedAvg 78.8/75.3 76.2/74.9 71.7/68.5 / /

FedLP-Q(0.2) 73.4/68.2 71.5/66.8 56.6/50.4 40.0% /
FedLP-Q(0.5) 75.5/73.5 75.4/72.5 66.7/62.0 25.0% /
FedLP-Q(0.8) 78.9 /77.3 78.3/76.2 71.3/66.9 10.0% /

FedLP-Q(1) 64.4/60.3 64.1/59.2 53.6/49.4 84.6% 51.2%
FedLP-Q(3) 66.8/62.0 66.1/61.7 58.4/53.9 79.6% 32.3%
FedLP-Q(u) 70.1/66.5 68.3/65.4 60.7/55.7 71.1% 34.5%
FedLP-Q(5) 74.6/73.1 74.4/72.1 68.6/64.5 35.6% 17.2%

Figure 4 displays the model performance, communication traffic, and computation
load savings of several schemes, including FedAvg, homogeneous FedLP-Q, and heteroge-
neous FedLP-Q, with different quantization settings. The higher vertical axis represents a
higher model accuracy. The x-axis denotes the reduced communication traffic (MB) and the
y-axis is the saved local computation complexity (MFLOPs). The horizontal plane implies
the communication and computation efficiency. If a projection on the x-y plane lies farther
from the zero point, the scheme saves more communication and computation loads. By
plotting the 3D figure, the trade-offs between the model performance and system efficiency
can be intuitively shown. According to this trade-off, the corresponding system design and
the pruning-quantization settings can be well guided.

Comm. saving (MB)

0
2

4
6

8 Com
p. 

sav
ing

 (M
FLOPs)

0
2

4
6

8
10

12

Te
st

 a
cc

ur
ac

y 
(%

)

0
10

20

30

40

50

60

70

80

Quantization setting
None
b=10
b=8

Scheme
FedAvg
FedLP-Q(0.5)
FedLP-Q(0.8)
FedLP-Q(u)
FedLP-Q(5)

Figure 4. Trade-off: accuracy vs. communication–computation savings (under iid data).

We next evaluated the efficiency of the coding scheme for FedLP-Q. Figure 5a shows
how the code length evolves as the number of the parameters increases. We compared the
expected code length of the proposed Elias coding for FedLP-Q (as in (18)), the Elias coding
for QSGD (as in (19)), and the non-quantization coding (Float32). For a parameter count of
less than 600 K, the Elias-based coding scheme proposed in Section 3.2.2 led to the lowest
expected code length. The superiority of the QSGD coding scheme in [20] appeared for an
extremely large parameter count. Notably, since we adopted a layer-wise approach, the
parameter count of each layer commonly fell within the red region marked in Figure 5b.
As a result, the proposed coding scheme is more suitable for FedLP-Q. Figure 5b presents
the practical code length of the neural network model employed in the experiments. By
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implementing the Elias code, FedLP-Q encodes the accumulated gradients into a lower bit
rate, which reduces the requirement for the communication rate in real-world systems.
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Figure 5. The comparison of coding schemes of model uploading (b = 10). (a) Encoded bits vs.
parameters. (b) Code length of each layer.

Finally, we investigated the gap between the per-gradient length of the proposed
schemes and the entropy rate of the gradients. Figure 6 displays the quantized gradient
distribution of the selected clients under iid and non-iid data settings. The quantized
gradient distributions of different layers have similar shapes under both iid and non-iid
settings. This again demonstrates the potential and future directions of introducing layer-
wise operation into FL. That is, the distribution and the entropy of each layer gradients can
be modeled. Then, the communication traffic of each client can be better estimated and
further coding schemes can be specifically designed.
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Figure 6. The quantized gradient distribution of selected clients. (a) Under iid data, 2nd global epoch,
client 7. (b) Under non-iid data, 71st global epoch, client 81.

Figure 7 shows the entropy rate Ĥ
(

Q(gl
k); b

)
and the equivalent per-gradient code

length pl
k
Ĉ(gl

k ;b)
Ml

of each layer. Herein, the entropy rate of the gradients can be calculated
through (21) based on the distributions shown in Figure 6. It is intuitive that the per-
gradient length of the proposed schemes is close to the entropy rate of the gradients.
In particular, as discussed in Section 3.3.2, with a lower LPR, the expectation of the per-
gradient code length can take even fewer bits than the entropy rate, e.g., as shown by the
curves of pl

k = 0.7. This indicates that the proposed coding scheme is efficient and can be
adjustable to meet different system requirements on compression.
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and the equivalent per-gradient code length pl
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Ĉ(gl

k ;b)
Ml

of
each layer.

All the above results suggest that there exists a significant redundancy in the inter-
action of FL systems. Layer-wise pruning-quantization and the proposed coding design
can be applied without damaging the model performance. Therefore, it can be concluded
that FedLP-Q is an efficient scheme that improves the system efficiency and facilitates the
deployment of FL applications by mitigating the straggler effects.

5. Conclusions

In this article, we proposed FedLP-Q, an efficient pruning-quantization approach for
FL by adopting layer-wise operations. The corresponding pruning strategies, stochastic
quantization, and coding scheme were formulated. Both the theoretical and experimental
analyses indicated that FedLP-Q achieves a better communication–computation efficiency
with controllable performance loss. This may be vital for the deployment of FL applications
in mobile scenarios.

This work also opens up several potential research directions for future work, includ-
ing exploring the robustness and security of layer-wise pruning-quantization, combinations
with other FL structures, quantization/coding designs based on layer-gradient entropy
estimation, and more practical modeling for the communication of FL clients.
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Abbreviations
The following abbreviations are used in this manuscript:

FL Federated Learning
iid Independent and Identically Distributed
non-iid Non-Independent and Non-Identically Distributed
FedAvg Federated Averaging
QSGD Quantized Stochastic Gradient Descent
FedLP Federated Learning with Layer-wise Pruning
FedLP-Q Federated Learning with Layer-wise Pruning and Quantization
Conv Convolutional
FC Fully Connected
FLOPs Floating Point Operations
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