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Abstract: Distributed hypothesis testing (DHT) has emerged as a significant research area, but
the information-theoretic optimality of coding strategies is often typically hard to address. This
paper studies the DHT problems under the type-based setting, which is requested from the popular
federated learning methods. Specifically, two communication models are considered: (i) DHT problem
over noiseless channels, where each node observes ii.d. samples and sends a one-dimensional
statistic of observed samples to the decision center for decision making; and (ii) DHT problem over
AWGN channels, where the distributed nodes are restricted to transmit functions of the empirical
distributions of the observed data sequences due to practical computational constraints. For both
of these problems, we present the optimal error exponent by providing both the achievability and
converse results. In addition, we offer corresponding coding strategies and decision rules. Our results
not only offer coding guidance for distributed systems, but also have the potential to be applied to
more complex problems, enhancing the understanding and application of DHT in various domains.

Keywords: hypothesis testing; distributed system; information theory; local geometry

1. Introduction

Distributed hypothesis testing (DHT) is a significant problem in the field of informa-
tion theory [1]. In this problem, each distributed node observes partial data generated from
the joint distribution and transmits an encoded message through a communication channel
to a decision center, aiming to detect the true hypothesis. The primary goal of DHT is to
maximize the decision error exponent in the asymptotic regime, where many different com-
munication models [2-6] were considered in the previous literature. The main challenges of
the DHT arise in two respects. Firstly, due to the intricate distributed structures, most of the
existing works have focused on demonstrating achievability results, with converse results
being limited to specific cases, such as the 1-bit [3], log, 3-bit [7], and O(log, n)-bit [1]
communication channels. Secondly, many of the achievability results were established
using random coding with auxiliary random variables [8], which are difficult to implemen
in real systems.

Notice that the distributed encoders in many real applications are required to process
high-dimensional data [9], such as images, texts, and audios. Consequently, many of the
federated learning algorithms focus on computing the quantities, such as the statistics,
empirical risks, and gradient of data [10], which can be viewed as certain functions of the
empirical distribution (type) of the data (for example, given the data x1, . .., x;, and feature
function f (x): the statistic 1 Y | f(x;) = L, Px(x)f(x) is a linear function of the empirical
distribution Pyx).
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Motivated by this observation, we investigate the optimal decision error exponent of
DHT based on the empirical distributions (type-based) under two common communication
models. The first problem considers a noiseless channel, which is the typical mathematical
model in real federated learning scenarios. It comes from the reality that federated learning
often assumes that the nodes and the center machine can exchange information precisely;
however, the dimensionalities of the transmitted signals are limited [9]. Specifically, it
is assumed that each node can only transmit the empirical mean of a one-dimensional
feature, and such settings have gained significant attention recently in federated and
multi-modal machine learning [9,11]. The second problem assumes that the signal of
each node, encoded with the empirical distribution, is transmitted over an additive white
Gaussian noise (AWGN) channel, which is a widely-used mathematical model for real-
world channels [12]. The main goal of this paper is to establish the optimal error exponent
for the aforementioned two problems by presenting: (i) the converse bound for the error
exponent; and (ii) a practical coding strategy that achieves the converse bound.

The contributions of this paper are summarized as follows. First, in Section 4.1, we
demonstrate the optimal error exponent for the type-based hypothesis testing over noiseless
channels, where one-dimensional functions for all nodes and the corresponding decision
rule are provided. Moreover, by applying the information geometric approach in [13],
the hypotheses and the feature functions of each node can be modeled as vectors in the joint
and marginal distribution spaces, respectively. In Section 4.3, the optimal feature function
of each node can be interpreted as a decomposition of the hypothesis vector in the joint
distribution space into vectors in the marginal distribution spaces, where each decomposed
component indicates the contribution of the corresponding node in making the inference.

Second, we establish the optimal achievable error of the type-based hypothesis testing
over AWGN channels by presenting both the achievability and converse results. In par-
ticular, the achievability part is based on a mixture coding strategy of both the amplify-
and-forward and decode-and-forward strategies. Specifically, when the observed empirical
distribution at a distributed node is sufficiently close to one of the true marginal distribu-
tions with respect to the two hypotheses, the node is confident of the true hypothesis. Then,
we apply the decode-and-forward strategy, which first estimates the true hypothesis based
on the observed empirical distribution, and then we apply the binary phase shift keying
(BPSK) to transmit the decoded bit to the decision center. On the other hand, when the
observed empirical distribution is far from both true marginal distributions, we apply the
amplify-and-forward strategy to encode and transmit the observed empirical distribution
by the pulse amplitude modulation (PAM) to the decision center. By applying the proposed
coding strategy and conducting the log-likelihood ratio test at the decision center, we show
in Section 5.2 the achievable error exponent. Finally, we demonstrate the converse results of
the error exponent in Section 5.3 based on a genie-aided approach. The main idea is to add
additional information to the distributed nodes. By either leveraging the true hypothesis to
the distributed nodes or eliminating the channel noises, we show that the error exponent
in Section 5.2 is also an upper bound of the optimal error exponent, which establishes
the optimality.

2. Problem Formulations

Suppose that there are K random variables XK £ (Xj,..., Xk). In this paper, we
consider the binary hypothesis testing problem, and the two hypotheses Hy and H; are
defined as:

1 iid. (0
Ho: (xlV, o xlD), e, (ol (i p§(K) o
iid.
Hy (xﬁl),- . /xg)),' . (xgn),- .. ,x§<n>)1r1\J p)((lK),
where the observable data are i.i.d. generated according to either P)(g() or P)(;K) from the

alphabet set (A}, --, Xk). In addition, we assume that there are K distributed nodes,
where the k-th (k = 1,-- - ,K) node can only observe the samples X = {x,(cl), e ,xlgn)}.
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To facilitate clarity in our illustration, we concentrate on the discrete case, assuming that
each alphabet &} is discrete, and X £ X x --- x Xg. In addition, for a joint distribution
Qxk € Px, we use [Qyk|x, to denote its marginal distribution with respect to Xj. We also
@ .

denote Py Lo, P(i) as the marginal distributions of P(i,l, fori = 0, 1. In the distributed hy-
X, Xx g X y

pothesis testing problem, we introduce a common assumption in the distributed setup [14]

that the generating distributions P)((O,g and PQK) satisfy D(P)(SK) ||P)(§<)) < 0, D(P)(gg ||P)((1K)) < oo,

to avoid the trivial irregularities. Due to the type-based restriction, we further assume
that P)((i) # P(t), k=1,.--,K. Otherwise, the transmitted message as a function of the
empirical distribution would be uninformative for distinguishing the hypotheses. In the
following, we denote pxk as the empirical distributions of X, defined as:

Py, (xy) 2 % yifn=x}. @)

2.1. Type-Based Hypothesis Testing over Noiseless Channels

As shown in Figure 1, node k (k = 1, - - - , K) can encode the observed data X; and
transmit a scalar signal by function u. Due to the computational requirement as introduced
in Section 1, we impose a restriction whereby the encoder uy, is explicitly dependent on
the empirical distribution pXk/ ie., ur: Py, — R, and Py, denotes the set of probability
distributions defined on the alphabet AX}. For the most direct method, we can transmit
the emprical distributions by encoding them into the real space, which can lead to com-
putational difficulty for federated learning data. In this paper, we further consider one
of the most commonly used approaches in federated learning [15,16] and assume that 1
computes a one-dimensional statistic

w(P) = 3 L f)") = B 1K) ®

where feature function f;: Xj — R. Then, the decision center collects statistics {u(Px,) }11;1,
and makes a decision H on the true hypothesis. We prove in Section 4 that the further
restrictions of computing the empirical means of features are without a loss of generality,
where we can make good decisions as we observe the types. Additionally, the error
probability is defined as

Pi(H#H)2 Y Py(H)Pu(H #HH =H;),
ie{0,1}

where H denotes the true hypothesis, Py(Hp) and Py(H;) are the prior distributions,
and [P, (+) is the probability measure defined from the data sampling process (1). In particu-
lar, we focus on the asymptotic error decaying rate, i.e., the error exponent, defined as

1 -
L2 1im — =
E= lim ——logPu(H # H), )
where all logarithms are base ¢ unless otherwise specified. The goal is to find the maximal
error exponent of (4) and design the feature functions f1,- - - , fy and the detailed deci-
sion rule such that this error exponent can be achieved based on the log-likelihood ratio
test (LLRT).
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Figure 1. The transmission procedures for the type-based distributed hypothesis testing problem

over noiseless channels.

2.2. Type-Based Hypothesis Testing over AWGN Channels

As depicted in Figure 2, we employ the identical hypothesis testing formulation
as presented in (1). In this context, it is assumed that nodes 1 through K encode and
transmit a length-m sequence using functions g1, - - - , gk, which operate based on their
respective observations through additive white Gaussian noise (AWGN) channels to the
central decision center. To accommodate the computational constraints, we restrict that the
encoder g (k =1, - - -, K) is a function of the empirical distribution pXk/ ie.,

8k Py —R", k=1,--- K (5)

Moreover, the averaged power constraints of the AWGN channels are:

1 o
aE[Hgk(PXk)HZ} S]gk/ k:1/ /K/ (6)

where the expectations are taken over the data sampling process defined in (1). Then, the de-
cision center makes a decision H based on the received signals g; (pX1) +Zy,---,8x (pXK) +
Zx, where the noises are drawn from

Ze~ N(0,081,), k=1, K, (7)

and I, denotes the m x m identity matrix.

Additionally, we make the following assumption to make the errors arising from the
AWGN channels and the decision process comparable, so that the trade-off between them
can be described. In detail, we assume that the sequence length m also increases with n,
and there exists a positive constant y such that

nlglr}o m(n)

= ®)

Our goal is to design the optimal encoders g, - - - , gk, subjected to the constraints
(5) and (6), as well as the decision rule H, where we have assumed Py (Hg) = Py (H;) = %
for explicit mathematical expression, such that the error exponent as defined in (4)
is maximized.
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Figure 2. The transmission procedures for the type-based distributed hypothesis testing problem
over AWGN channels.

3. Related Works

Distributed hypothesis testing problems, also known as multiterminal hypothesis
testing [1,3,14] or decentralized detection [17,18], have been extensively explored in the
literature. In scenarios where each node can observe a single observation and send an
encoded message to the central machine, the authors of [17] demonstrated that deter-
mining the optimal coding scheme is NP-hard, while [18,19] provided characterizations
for the minimum decoding error rate and the optimal coding scheme for conditionally
independent nodes.

Furthermore, in situations where each node can observe n samples and transmit an
encoded message to the decision center, [3,5,14,20] investigated the optimal decoding error
exponents for the case of K = 2 nodes, with [21] generalizing the results to K > 2 nodes.
Additionally, the author of [5] studied the Neyman-Pearson-like test, which further con-
strained the encoded messages to being an empirical functional mean, and provided
optimal functions for the scenario with K = 2 nodes. The outcome presented in Section 4
can be perceived as a generalization of such setups to the case with K > 2 nodes.

On the other hand, DHT over noisy channels represents a novel and highly significant
sub-problem within the broader context. While current research has primarily focused
on transmission over discrete memoryless channels, certain aspects of this sub-problem
have been investigated. For instance, some studies have explored scenarios involving side
information [22] and cases that counteract independence assumptions [23]. Additionally,
optimal Type-II error considerations have been examined [24], along with investigations
into the optimal pairs of Type-I and Type-II errors [25].

Diverging from the existing literature, the present paper delves into the DHT problem
in the context of widely considered AWGN channels while also addressing the implications
of computational demands. This novel approach fills a critical research gap and extends
the understanding of DHT to a broader set of channel conditions, thus contributing to the
advancement of the field.

4. Type-Based Hypothesis Testing over Noiseless Channels

In this section, we present the optimal error exponent along with the corresponding
decision rule for the type-based hypothesis testing over noiseless channels. We commence
by introducing the optimal error exponent under the condition that the decision center has
access to the empirical distributions from different nodes.
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Definition 1. The quantities Di*(Rxl, -+ ,Rxy), fori = 0,1, are defined as

D} (Ry,,++, Rx) £ min  D(Qxx [Py, ©)
X

where

S é{QXK: [QXK}Xk = RXk/ k=1,--- /K},
which represents the set of all distributions with given marginals Rx,, - - - , Rx,.

The following result provides the operational meaning of (9), which can be proved by
Sanov’s theorem [12].

Lemma 1. When H; is the true hypothesis, the probability that nodes 1, - - - , K observe the empirical
distributions Px,, - - -, Px,, respectively, is given by

Pu(Px,, -+, Px¢[H = H;) = exp(—nDj (Px,,- -+, Px,)), i=0,1,

where = is the conventional dot-equal notation, i.e., we denote f;, = g, when lim, %log fu =
limy—c0 + l0g §u. In addition, by applying the log-likelihood ratio test to detect the true hypothesis,
the optimal decision error exponent based on the empirical distributions is

E*2 min max D/(Rx, - -,Rx,). 10
Rx, /Ry i€{0,1} F(Rxq x) {10)

Note that the type-based hypothesis testing problem assumes that the signal from
each node is a function of the empirical distribution. Hence, the optimal error exponent

in (4) will not exceed E*. In the following, we prove that error exponent E* can be achieved
and provide the corresponding decision rule.

4.1. Optimal Feature

First, we introduce the following definitions of exponential and linear families, which
will be useful for delineating our results.

Definition 2 (Exponential family). Given distribution Pz(z), and a function T: Z — R, we
define the distribution Pé/\)( -;T,Pz) as

M) (2T, P,) 2 Py(z) exp(AT(z) — a(A)), forallz € Z, (11)
with a(A) £ 1log Y ez Pz (z') exp(AT(2')). In addition, we use
Ez(T,Py) 2 {Pé”( ST, P7): A€ R} (12)
to denote the exponential family passing through Pz with T being the natural statistic.
Definition 3 (Linear family). Given a function h: Z — R, we define the linear family L z (h) as
Lz(h) 2 {QZ € PZ: Eg, [h(2)] = o}. (13)

In addition, we define the half-spaces S(;) (h) and Sg) (h) as
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SO n) & {QZ € PZ: Eq, [h(2)] < o},

0}.

85 () 2 {Qz € PZ: Eg, In(2))

v

Then, fori = 0,1 and t > 0, we define the sets
Di(t) £ {(Rx,, ..., Rxy): Df (Rx,, ..., Rx,) < t}.

We also define D(t) £ Dy(t) N Dy (t). It can be verified that, for all t > 0, both Dy(t) and
D (t) are convex subsets of Py, x - - - X Py,, and thus D(t) is also convex. In addition, we
have the following lemma.

Lemma 2. For E* as defined in (10), we have D(t) = @ forall t € [0, E*] and D(t) # & for all
t > E*. Additionally, a unique (Rx,, ..., Rx,) € Py, X -+ X Py, exists such that

Dj(Rx,, ..., Rx,) = D} (Rx,, ..., Rx,) = E*. (14)

Proof. See Appendix A. [

Based on Lemma 2, it follows from the separating hyperplane theorem (see, e.g.,
Section 2.5.1 of [26]) that functions (f7,..., f¢), where f: & — R, k = 1,--- K exist,
such that for all (Rx,,...,Rx,) € Do(E*),

K K
Yo Y Rx(x)ff(xi) = }_Ery [ff (Xi)] <0, (15)
i=1

i=1x;€X;

and for all (Rx,,...,Rx,) € Di(E"),

K
Y Ery [ff (X)) 2 0. (16)
i=1
Furthermore, we denote
L&
(%) 2 Y f(x), (17)
i=1

and then we have the following proposition. Given Pz € Pz and S C Pz, we adopt the no-
tation [27,28] D(S||Pz) £ infg,cs D(Qz||Pz), where Pz denotes the set of all distributions
supported on Z.

Proposition 1. The optimal exponent E* as defined in (10) satisfies
* 0) 1 % 1 1) 1y % 0
E* = D(SY (h)||P\Y) = D(SY (h*)||P%). (18)
Proof. See Appendix B. O

Consequently, we establish the optimality of E* and provide the corresponding deci-
sion rule.

Theorem 1. Let f],..., fg denote the features as defined in (15) and (16). The optimal error
exponent of (4) is given by

fim —%mgm(ﬂ £ H) = E, (19)

n—o0
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where E* is defined in (10). In addition, the corresponding decision rule H is
K . H=H,
Y Ep [fE(X0)] = 0. (20)
k=1 F A=H,

Proof. See Appendix C. O

4.2. General Geometric Structure

The geometry associated with Proposition 1 and Theorem 1 is depicted in Figure 3.
In this figure, each point represents a distribution in Py, and the decision boundary (20)
corresponds to the linear family £y (h*) defined as in (13). In addition, from Corollary 3.1
of [27], Ay, A1 € R exist such that

Q(l) é ~()\i)( . ,h*, P)((Z[Z)/ l — 0, 1, (21)

satisfy
D(SY " (n)[|PY) = D(QUX[|PY), (22)

where 15)(3(")( -;h*,P)(;,Z),i = 0,1 are as defined in (11). In this context, Qggz and Qgg,g in

(21) are the I-projections [27] of P)(((L) and P)(;lg onto this linear family, respectively, which

also induces the two exponential families £y (h*, P)(g()) and Ey (h*, P)(<1K)> with h* as their
common natural statistic. Additionally, all the points in Dy(E*) and D1 (E*) are divided by
the the linear family £y (h*).

Lx(h*)

Figure 3. The geometric structure in distributed hypothesis testing, with Qg( denoting the I-

projection of P)(g,z onto the linear family Ly (h*), i = 0,1, and Ly (h*) can devide Dy(E*) and
D1 (E*) in different half spaces.

4.3. Local Information Geometric Analysis

Although an explicit information geometry has been shown, we apply the local infor-
mation geometric framework [13] to provide fundamental insights into this problem. Some
useful notations and definitions in local information geometry are introduced as follows.

Definition 4 (e-neighborhood). Given a finite alphabet Z, and letting Rz be a distribution
supported on Z with all entries being positive, its e-neighborhood NZ (Rz) is defined as

NZ(Ry) & {pz epy. ¥ (P2l - Re)P ez}'

2eZ RZ(Z) -
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Then, with R used as the reference distribution, each distribution Py € Pz can be
equivalently expressed as a vector ¢ € RIZ| or a function f: Z — R with

s Pz(2) —Rz(z) s ¢z
= %0 , flz) = Rz(z)' Vze Z, (23)

referred to as the information vector and feature function associated with Pz, respectively. This
provides a three way correspondence Pz <+ ¢ <+ f, which will be useful in our derivations.
Based on Definition 4, we introduce the local assumption that

¢(2)

Pl) e N¥(Py), for i=0,1, (24)

We use () P)(;,Z,i = 0,1 to represent the corresponding information vectors [cf. (23)].
Foreachk =1,...,K, and given feature f;: X, — R, we define the corresponding informa-
tion vector ¢y € Rl where Py, = [Pxk]x, is used as the reference distribution. Note that

fori =0, 1, the correspondence Bglp(i) <—> P)((lk) exists, where P)((lk) = [P)(;,Z} x, represents the
corresponding marginal distributions. Specifically, By is an | X'| x |X)| dimensional matrix
with entries [29]

Br(xK, %) & | L0 s,, (25)

where 6, 3, represents the Kronecker delta.

Moreover, the feature f; defined on &}, when considered as a mapping from X to R,
corresponds to the information vector B¢y in RI¥l. Leveraging this correspondence, we
can further establish the information vector for h(xK) = YK | fi(x;) as

=

Bigi = Bogp € RV, (26)
i—1

where we have defined
o)
Bo£[By -+ Bx] and ¢o= | : |, (27)
P

and where foreachk =1,..., K, ¢ € RI¥%| denotes the information vector corresponding

to fk'

Additionally, given a matrix A € R™*"™, we use A to denote its Moore-Penrose
inverse [30], and we define the associated column space R(A) £ {Ax: x € R"™} and
projection matrix IT4 £ AA'. Then, we can establish the local counterpart of E* in
Theorem 1 as follows.

Theorem 2. Under the local assumption (24), let (&) < P}(;,Z i = 0,1 denote the corresponding

information vectors. Then, for h* as defined in (17), we have the correspondence h* <+ By, where

¢5 2 By (pV) — 9@, (28)

and where By is defined in (27). In addition, the optimal exponent E* in (10) can be expressed as
1 2
E* = [|Bogg | +o(e?). (29)

Proof. See Appendix D. [
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Note that from Theorem 2, we have
h* < BoBg(lp(l) _ lp(o)) - HBO(IIJ(U — 1/,(0)),

where I, is the projection matrix associated with the subspace R (By). The optimal feature
B¢y in (26) corresponds to the projection of the sufficient statistic fiir <> (pM — () onto
the function space that encompasses all possible /s satisfying the form h(xX) = YK | fi (x;).
In other words, By¢; represents the best approximation of fi;r within the function space
of interest, which leads to the optimal decision error exponent E* as shown in (29).

Moreover, from (26), this optimal feature can be decomposed to K components in
subspaces R(By), fork=1,...,K,

K
Bogy = kZ By, (30)
=1

where ¢ is stacked by ¢} € R‘Xk‘, k=1,...,K, asin (27). This decomposition structure
can be depicted as Figure 4 for the case K = 2.

R(Bs)

g, (Body)

e

N Bogy = B1¢] + B¢y

Byo3

R(By)

d |
|
|
|
|

‘. & 8 fR( Bl)
Bigr g, (Bogy)
Figure 4. The information decomposition structure in distributed hypothesis testing with K = 2
nodes, compared with the orthogonal decompositions on the subspace R (By) for eachnode k = 1,2.

Remark 1. The vectors B are not simply the orthogonal projections of Bogy onto the subspaces
R (By) since these subspaces, for k = 1,...,K, are not mutually orthogonal. Therefore, the decom-
position of By will depend on the Gram matrix [30] of the subspaces R(By), as illustrated in
Figure 4. Furthermore, it is noteworthy that the orthogonal projection of By onto the subspaces
R(By) can be interpreted as characterizing the optimal error exponent of the binary hypothesis
testing problem solely with the observations of Xy [12]. When the subspaces R (By) are orthogonal
to each other, the optimal inference approach is straightforward, involving the extraction of the
optimal information from each node by orthogonal projection. However, when the subspaces R (By)
are not orthogonal, different nodes may share various forms of common information. Our result
fundamentally demonstrates how to handle this shared information and extract the optimal features
through the decomposition of the information vector over non-orthogonal subspaces. This insight
provides a novel approach to address the challenges posed by the non-orthogonal subspaces and
reveals how to extract the most informative features effectively, ultimately leading to improved
performance in the distributed hypothesis testing problem.

5. Type-Based Hypothesis Testing over AWGN Channels

This section presents the optimal error exponent of the type-based hypothesis testing
problem over AWGN channels, along with the corresponding coding strategy. To begin,
we introduce several notations that will help in the presentation of the results.

Definition 5. Let [K] £ {1,2,---,K}, and for subset w C [K], i = 0,1, we define

DY ({Ry Jiew) £ min D(Qxe|IP), (1)

xK w
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where
Sw ={Qxk: [Qxx]x, = Rx,, k € w}.

It would be easy to find that DI[K] (-) = D} (-), and D; (-) is as defined in (9). Moreover,
we define the following error exponent with respect to w C [K].

E, 2

_ 2
max {D&”({ka}kem oy GV

min 5
{Rx, trew A0 ke K\ ke[K\w 2uo;;

2
DY ({Rx, brew) + Y W}, (32)

R

where we have used A \ B to represent the relative complement of set B in set A, and where
u is as defined in (8). We can also find E K] = E* and E* is as defined in (10). Finally, we
define the quantity E®, which will be shown as the optimal error exponent

E®2 min E,, (33)
weS([K))

where S([K]) denotes the power set of [K].

Theorem 3. The optimal error exponent of (4) is given by

lim —%loan(Fl #H)=E®. (34)

n—o0
In the following, we prove Theorem 3 by both the achievability and converse result.

5.1. The Coding Strategy for Distributed Nodes

First, we define the different regimes of empirical distributions, foreachk =1,--- ,K
and for some 7 € (0,1). Basically, the specific choice of -y does not effect the achievable
error exponent as long as y € (0,1). It helps conduct the decode-and-forward and amplify-
and-forward coding strategies as introduced in Section 1.
Decode-and-forward regime:

MO & {ka: D(ka||P§(i>) < n‘V},
M 2 {ka; D(Rx, | Py)) < n—v}.
Amplify-and-forward regime:
M & { Ry, : min{ D(Rx, |P{)), D(R, | P{))} > n 7} (35)

Note that for eachk = 1, - -, K, the probability of the empirical distribution Px, in M
is exp(—n!~7). Consequently, in the amplify-and-forward regime, we can transmit such
empirical distributions with exponentially large power by Pulse Amplitude Modulation
(PAM) while still satisfying the power constraint. Specifically, let ng() be the set of all

possible empirical distributions of Xj with n samples, and denote 7, = \ng() N Mgl

We define the bijective function ¢y : 73/,(\1) NMg = {1,..., 7} as the indices of empirical
distributions. Then, according to the observed empirical distribution, the encoder of node
k(k=1,---,K)is designed to transmit the signal

1—

Qi(Px,) 2 Gk(Px) -exp (7). (36)



Entropy 2023, 25, 1434

12 of 24

Furthermore, if the empirical distributions are in the decode-and-forward regimes, we
initially detect the true hypothesis and then transmit the bit using Binary Phase Shift Keying
(BPSK) with the appropriate power. By employing these strategies, the achievability result
can be obtained through repeated transmissions from all the distributed nodes. In other
words, the resulting encoder for node k is defined as follows:

=18 .8l k=1---,K (37)
where
Pk — 5(71/ /Y)/ if pXk € M]((O)
gi(Px) =< — pr—6(n, ), ifPx, € ./\/l,gl), (38)
Qi(Px,), if Py, € M
and where
IP) (PX S M ) 1—y

5(n Ak R (4 1) L exp (20T ). 39
(0 1) & mex Ghs gy (1 DI exp (2 (39)

Proposition 2. The encoders as defined in (38) satisfy the power constraint (6), and
lim 6(n, ) = 0. (40)
Proof. See Appendix E. [

5.2. Decision Rule and Achievable Error Exponent

After the decision center receives the output signals g% (Px,) + Z1,- - -, gx(Px, ) + Zx,
we then compute

[I>
SR
™=

Il
MR

gk [glt(pxk)'f'zk]i, k=1,---,K,

where [-]; denotes the i-th entry of a given vector. Then, we conduct the log-likelihood ratio
test (LLRT) to detect the true hypothesis:

Py(0y, -+, 0k [H = Hp) HZo
1 = 0. 41
og Pn(gl/ 9K|H — Hl) H<Hl ( )

Note that exponentially large power is allocated for the empirical distributions in the
amplify-and-forward regime (cf. (35), (36)); the decision center can correctly detect the
coding regime of the nodes with super-exponentially high probability, ie., fork =1,--- K,

lim ——log]P’n (ka € Mk‘Bk < exp(n%)) = 0o,

n—oo

lim —flogIP) (PXk ¢ Mk‘ek > eXp( ]’”)) = . (42)

n—o0

Therefore, we can assume that the decision center knows the coding regime of the nodes
and define the following regime of the received signals with respect to subset w C [K].

@wé{(Bl,---,G ): 0k>exp(n 1 ) Vk € w, and Oy <exp(n 1 ) VK € [K }\w},
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for all w € Y([K]). When the received signals (64, - - - ,0x) € O, the decision center can
recover the empirical distributions Px, (k € w) from the received signals 6y by the decoder:

Q0 2 & (|0/ exp(n7") +05)), (43)

where |- | denotes the floor function [31]. The following result shows that decoding error
of (43) can be neglected.

Proposition 3. For all 15Xk IS 7?/,(\2) UMS k=1,---,K,

n—oo

lim —% log P(Q, ! (6) # Px,) = oo. (44)

Proof. See Appendix F. [

In the following, we denote pfc £ px — 0, fork =1,---,K and discuss the decision
error exponent when the received signals are in ®,,. For k € w, the empirical distribution
Px, can be recovered by (43), and for k € [K] \ w, node k detects the hypothesis according
to the observed empirical distribution and transmits the detected bit by BPSK (cf. (38))
through the AWGN channel. Then, the decision center detects the true hypothesis from the
received signals by LLRT (41), which can be reduced to

A=H,
E8)(91/ e /GK) z E(f)(el/ e IeK)I (45)
A=H,
where fori =0, 1,
E¥ (61, ,0k)
] ] 6k —\/PL)? (6 + /P
é_(lnin D;k(PXI’”"PXK)_'—Z 2102 Z 2102
@€3([K]\w) k@ 1oy K €[K]\ (wU®) %

where $([K] \ w) denotes the power set of [K] \ w, and where fork=1,--- K,

Q. '(6), ifkew
Py 2 p)((‘i), ifk € @ . (46)
P, ifke K]\ (wU @)

Consequently, the decision error exponent is characterized by the following proposition.

Proposition 4. Forany e > 0and w € I([K]), the decision error exponent by the decision rule
(45) satisfies

1 .
lim —Elog]P’n(H #H, (61, ,0k) €0Oy) > E” —¢, (47)

n—o0

where E is as defined in (33).

Proof. See Appendix G. [

Noticing that the overall decision error probability is

Pa(A#H) = Y PH#AH (61, ,6k) € Ou),
weS([K))
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the following proposition establishes the achievable error exponent by the coding strat-
egy (38).

Proposition 5. By using the encoders g;,- - , g% as defined in (38), and the decision rules H
from (41), the achievable error exponent is given by E®, i.e.,

lim —%loan(ﬂ #H) > E®, (48)

n—oo
where E is as defined in (33).

5.3. The Converse Result

In this section, we show that E® is indeed an upper bound of (4), which establishes The-
orem 3. Our main technique is to apply a genie-aided approach, which provides different
kinds of additional information to both nodes and computes the corresponding error expo-
nents under additional information. As depicted in Figure 5, given index set w € J([K]),
suppose that for all k € w, node k can know and cancel the channel noise in advance;
then, the channel is noiseless, and the decision center can perfectly receive the empirical
distribution Py, . On the other hand, suppose that for all k' € [K] \ w, we can leverage the
true hypothesis H to node k’; then, with such additional information, we can establish the
following upper bound of (4) (cf. (33)).

Proposition 6. Given index set w € I([K]), suppose that for all k € w, the decision center can
obtain Py, perfectly. Additionally, for all k' € [K] \ w, node k' can obtain the true hypothesis H.
The resulting optimal decision error exponent is

lim —%log]P’n(H #H) =L, (49)

n—o0

where E,, is as defined in (32).

Proof. See Appendix H. O

______________________________________________________ Decision ~

ﬂ Vk/ c [K] \w Center

Z ~ N(0,021,,)

9r () Ny

Figure 5. A geometric explanation of the genie-aided approach, which can lead to E,, as the upper
bound of the error exponent in (4).

Notice that Proposition 6 is verified for all w € J([K]), and we cannot obtain a better
performance than Proposition 6 for the DHT over AWGN channels without the additional
information. We then conclude the following error exponent upper bound.
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Proposition 7. For all possible encodes g1, - - - , gk under the power constraint (6), the correspond-
ing error exponent with respect to the LLRT decision rule satisfies

lim f%loan(I:I #H) <E®, (50)

n—oo

where E® is as defined in (33).
Finally, by combining Propositions 5 and 7, Theorem 3 is proved.

Remark 2 (Local-geometric interpretation). Note that the expression of the optimal error ex-
ponent E® as defined in (33) is quite intricate, which could limit our understanding. To simplify
the analysis, we introduce the local geometry assumption as given in (24). In Appendix I, we
demonstrate that the error exponent corresponds to a more manageable expression

1 )
EY = min o|BuBL (Y —¢0)| + Pk 4+ 0(e?), 51
2B 8PP v ke%\ﬂwﬁ () &b

where for w = {iy, - - - 1|, }, we have defined
B, & [Bil . Bz‘\wdr (52)

and 475’1) “ [P§;I)<]Xi]"-Xfw"i = 0,1. Given w € ([K]), the first term in (51) represents the
optimal error exponent (cf. (29)) when the decision center can access the empirical distributions
PXk, k € w. The second term corresponds to the optimal error exponent when node k, k € [K] \ w
can know the true hypothesis H and transmit the bit using BPSK modulation. The total error
exponent is the sum of these two parts, and E© aims to determine the minimum sum among all
possible splits of the index set [K]. In other words, E finds the optimal trade-off between accessing
empirical distributions at the decision center and having individual nodes transmit bits with BPSK
modulation.

6. Discussion

This paper discusses the DHT problem over two communication models. The first
is the noiseless channel, which is mostly considered in current distributed learning and
federated learning systems [9,11]. For the noiseless channels, we show that by using one-
dimensional statistics from different nodes, it is possible to achieve the same error exponent
when the decision center has knowledge of the corresponding empirical distributions. This
result is significant as it simplifies the coding process at distributed nodes, allowing them
to transmit only the necessary statistics rather than the entire empirical distribution, which
provides a practical implementation of the result in [5]. This finding proves the rationality
of transmitting statistics as the most widely-used strategy in distributed learning and
federated learning [11].

For the AWGN channels, this paper introduces a novel coding strategy, which cleverly
combines decode-and-forward and amplify-and-forward techniques. The underlying
concept of this coding strategy is based on the observation that the probability of the
empirical distribution deviating significantly from the true marginal distribution diminishes
exponentially. Consequently, by employing sufficiently large power, we can transmit the
empirical distribution almost perfectly to the decision center while satisfying the averaged
power constraint. When the prior distributions are not 1/2, the strategy still work for
the optimal error exponent, and the only difference is to adjust the BPSK points for two
hypotheses according to the power constaint. The demonstrated optimality of the achieved
decision error exponent further indicates that the proposed coding strategy is highly
effective and successfully approaches the theoretical limit within the given constraints of
the problem.
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7. Conclusions

This paper focuses on investigating DHT problems over both noiseless channels and
AWGN channels, where the distributed nodes are constrained to encoding the received
empirical distributions, driven by practical computational considerations. In the first
problem, we demonstrate that utilizing one-dimensional statistics of distributed nodes
and simply summing them up as the decision rule can lead to the optimal error exponent.
For the second problem, we propose a coding strategy that combines decode-and-forward
and amplify-and-forward techniques. We further introduce a genie-aided approach to
establish the optimality of the achieved decision error exponent. Overall, our findings
offer valuable insights into coding techniques for distributed nodes, and the established
strategies can be extended to more general scenarios, broadening the applicability of DHT
in diverse settings.
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Appendix A. Proof of Lemma 2
We have the following facts:

Di(Py),..., P{)) < D(PY|IPY)
and
Di(PY,...,PY)) < D(PL|IPY),

reeer Xy

from which we know D(f) # &, where f £ min{D(P)(((Q HPSK) ), D(P}(:K) HP)(((Q)} Moreover,
from the facts D(0) = @ and

D(t1) CD(tp), forall0 <t <ty (A1)
we define
to = sup{t > 0: D(t) = o}. (A2)
We also have

D(t) # @ = D(t —€) # @ for some € > 0. (A3)
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Indeed, since D(t) is non-empty, (Rx,,...,Rx,) and e > 0 exist such that
Df(RXl,.. .,RXK) <t—eg,

fori = 0,1, and thus D(t — €) is non-empty.

To sum up, from (A1)—(A3) we obtain D(t) # @ forall t > ty and D(t) = @& for all
t <t

Furthermore, to prove (14), we define

@i(t) £ {(Rxl,. . .,RXK)Z D?(Rxl,.. .,RXK) < t},
and D(t) £ Dy(t) N Dy (t). Then, for all t > t; we have

min  max D;(Rx,,...,Rx;)
Ry, Ry ic{o1} '~ VK

= min max Df(Rx.,...,R € [to, tl,
(Rx, -Rx, JED(t) i€{0,1} P (Rx, xc) € [tor]

where the second minimum exists since D(t) is closed and bounded. This implies that
to = E* (cf. (10)). Hence, marginal distributions Ry, ..., Rx, exist such that

D;(Rx,,...,Rx,) = E*, i=0,1 (A4)

Finally, to illustrate the uniqueness of (Ry,, ..., Rx,), suppose that (14) also holds
for (R/Xl,...,R’XK) # (Rx,, ..., Rxy)- Let R;’(k £ (Rx, + R’Xk)/Z fork =1,...,K; then, it
follows from the strong convexities of Dj(-) and Dj (-) that

DI (RY,,..., Ry ) <ty, i=0,1,
which contradicts (A2).

Appendix B. Proof of Proposition 1

We know that D;(E*) C Sg) (h*), for i = 0,1. This implies that Sg) (h*) € D§_,(E¥),
where for t > 0 and i = 0,1, we have defined D§(t) £ (Py, X - -+ X P, ) \ Di(t).

Moreover, let (Rxl, .. .,RXK) € Px, X -+ X Py, be as defined in Lemma 2; then, we
have

(R, .-, Rx,) € La(h*) = SO () n 8P (n). (A5)
As aresult, fori = 0,1 we have
E* = D;‘(Rxl,...,RXK)
> D(SY ) 0)]| P

= min ) D;F(Rxl,...,RXK)
(Ryy Ry )ESS ) (%)
> min Df(Rx,,..-,Rxy)
(R, Ry )EDE(E) 1! K
> E¥, (A6)

which implies (18).

Appendix C. Proof of Theorem 1
On the one hand, note that from the Markov relation

A

H— (stl,. ..,ISXK) — (ul(pxl),.. .,MK(PXK)),
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the minimum possible decision error can be obtained when we choose the empirical
distributions 15X1, s, PXK themselves as the statistics.
One the other hand, from Proposition 1, the error exponents associated with the

type L error and the type Il error are D (Sg) (h*)]] Pg?) and D (SS?) (h)]| P}((lK)), respectively.
From (18), both exponents are E*, and thus the error exponent for P, (F| # H) is also E*.

Appendix D. Proof of Theorem 2

To begin, we define ¥ £ (1) — (0. Then, for given f: X; — R it follows from
Lemma 17 of [13] that the exponent based on the feature h(xX) = Zle fr(xg) is

1
5 g o)

where we have defined = Bygy € R(By), and where ¢ is as defined in (27).
Then, note that the projection matrix Ilp, satisfies Ilp, = (HBU)2 and ¢ = Ilg,C.
Therefore, from the Cauchy-Schwarz inequality we have

($.0° _ (5,07 (Ugyp,0)°
HE HE A&

where the inequality holds with equality if and only if { takes the optimal values

< ||HB()¢7 2

7

g* =c- HBowf

or equivalently, Bo¢j = ¢ - ByBly for some constant scalar ¢ # 0.
To determine the value of ¢, note that we have {* > h* where h* is the optimal feature

as defined in (17). Note that in (21), for eachi = 0,1, Q depends only on the product
Aih*; we may assume Ag = 1/2 and simply use A to denote A1. Then, we have

Similarly, we have

Qe (x) & (¥ +2¢ +o(e)).

Then, it follows from the second-order Taylor series expansion of the K-L divergence
that (see, e.g., Lemma 10 of [13])

1
D(QQ[PY) = f||g\|2+o e2),

D(QW|PY) = \|§||2+o< ). (A7)
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Moreover, note that since (cf. Lemma 9 of [13])

E o [h*(XK)] = <¢(O> + ;€,€> +o(e?),

Q")
Eq) [h*(xK)] - <¢<l> + /\§,§> +o(e?),
we have
0=E [h*(XK) —EQQ [h*(x )]

= c<1,b + (/\ — % c- HBO¢,HBO¢> + 0(€?)

=c- [1 + (A - ;H gy |* + o(€?). (A8)

As aresult, it follows from D (Qg?,z HP}((OK)) =D (QS,Z HP}(;K ) and (A8) thatc = 1,A = —1.
Then, we obtain

¢* =g,y = BoByy = Bog;,

where ¢ £ Bly.
Finally, the optimal error exponent is

1 1
E* = g I+ o(e?) = g - [Bodi [ + o(e?)

Appendix E. Proof of Proposition 2
According to Sanov’s theorem, ]P’n(lsxk € My) = exp(—nl’"Y), and ]Pn(pxk ¢ Mp) =1

Then, we have
]P’n(ﬁxk € Mj) 2, 17\ . _
A =TTk (- 12 exp (2077 ) = ex —nl77),
Py (Pyx, ¢ M) (n+1) p( ) P( )

which will converge to 0 as n — 0. Additionally, for the power constraint,

A N 1— 2 .
Elgi? (Px,)] < (pi = 0(n,7)) - Ba(Px, & M)+ (IMEl-exp(n 7)) - P(Px € M)
< pi—8(n,7)  Ba(Py, & M)+ (n+ 174 exp (202" ) - B(Px € M)
< Pk

Appendix F. Proof of Proposition 3

Note that equivalently,

Ok = g5 (Px,) + Z, (A9)

where Z ~ N'(0,02/m). We then apply the typical result for Gaussian tail [32], i.e., for any

a >0,
2
— lim %log]P’(Zk > ) = i

n—00 2]40'}( !
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which implies that

. 1 _ N ~ A . 1 ~ 1 1—y
nlgrc}ofalogIP’(le(Qk(PXk) +7Zy) # ka> > nlgrolonlogIP(|Zk| > Eexp(n Z )) = oo.

Appendix G. Proof of Proposition 4
Note that

Py ((61,--+,0k), (01, -+ ,0k) € Ow|H = Ho)
= ]P)n ((9]/ .. ,QK)/pXk S MC,Vk c (U,pXk/ g Mi/,Vk/ c [K] \w‘H _ H0> (Alo)

{ H P(Gk/ pXk’ S MI((O)) . H P(Qku
weS([K\w) \ Kew k" e[K]\ (wU@)

T Y P(6|Px,) Pa (ka,ﬁxk € M§,Vk € w, Py, € MY, WK € a,

kew p (m)
ka EPXk

pXk” S M]El)>

Py, € M)WK € [K]\ (@ U@)|H = Ho) } (A11)

where (A10) comes from (42). By decoding the empirical distributions from 6 with Q, 1)
for k € w and Proposition 3, we have

Y. P(0cIPx) Py (P, Px, € ME Wk € w, Py, € M, WK € @, Py, € My,
PXkeP%?
W € K]\ (wU@)|H = Ho)
= P(6:/Py, = Qi (6)) P (Px, = Qi (680), Py, € M, Vk € w, Py, € M), WK € @,
Py, € MU, VK" € K]\ (w U@)‘H = Ho)

= P(6k| Px, = Q; ' (6)) -exp(—n - D§(Px,, -+, Px,))-

With
5 o), - (O — \/PTQ/)Z
]P)(ek’|PXk/ S Mk ) =exp| —n- To.k% ,
and \/7
O — p’,,)Z
p (1Y - ( k 15
P(ek”|PXku S Mk ) =exp| —n- Takzﬁ ,
we have
Py ((01,---,0k), (01, -+ ,0k) € Ou|H = Hp)
= 2 {H~P(9k|pxk = Q,;l(f)k))-eXP(—n-ES’(Gl,~~- ,gK))}_
@eS([K\w) Lkew
Similarly,

P ((01,- - ,0k), (01, -- ,0k) € Ou|H = Hy)

= ) {HPmeXk—Qk—l(em~exp(—n-Ei”<91,---,9K>)}.

kew
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Note that P(6|Px, = Q; 1(6y)) is not related to @ and H, and then we can derive the
decision rule (45) with LLRT. To compute the error exponent, we use Proposition 3 and the
fact that P(6|Px, = Q; 1(6)) = 1 when 6, = Q(Py, ). Then, the optimal error exponent
corresponds to

X min max  min
{Px; HrewA O e =01 @ES(K\w)
- - (6 — \/Pr)? (O +\/Pr)?
DiRG, -+ RG)+ L — Y Y an
kew 1O} K € [K)\ (wUa@) WO

where fork=1,--- ,K,and @ € S([K] \ w),

pxk, ifkew
RG 23 PY), ifkew . (A13)
P, ifk e K]\ (wU @)

To finish the proof, we introduce the following lemma.

Lemma A1l. For arbitrary functions vy,--- ,vy: Z +— Rand wy,--- ,wp: Z — R, where Z is
a given set, we have

rzréig max { min{vy(z),- -+ ,v(z)}, min{w; (z),- -+, wp(z)}}

= min min maxi< v;(z ,wi(z) V. Ald
ie{l, - 0} je{l, - 0} 2€2 {vi(2),wj(2)} (A14)

With Lemma A1, we only need to compare each component in (A12),i.e.,

min X min max
@,@"€3([KN\w) {Px, brewA O birerp e

0, — 1\2 0., /,2
{ . "'/R?(K)Jrz(k i) Py (O + 1/ P))

i 2uo} vekiwa)  2H0%

Di(RY,-+ ,RE)+ X (A15)

keaw’

X

(0 — /P})? . (B + P;’(/)Z}
K e [K]\ (wU')

2u0? 2u0f

Given @ and @', let @ = @ N @'. By selecting 6, = ,/p; for k € @ and 6 = —,/p;, for
ke [K]\ (wU (@ U@")) in the minimization of (A15), (A15) equals

min . min max
a‘),d)’é%([K]\w) {PXk}kewl{ek’ }k’ewua/\w
{D*(‘w ) Y (O =/ Pi)? Py (O +/Pr)?
(VAN CTANN AR 5,2 T 5,2 7
' Y kdew  2HOR Kew\@ 2oy

6, + /)2 O — //2
Di(RY, - RZ)+ ¥ MJF y W} (A16)

2
keavw  ZMO% Kea\@ 2uoy

In the following, we denote Q £ [K] \ (wU (@ U@")). For those indices k € @ or k € Q,
although they do not contribute to the Gaussian-like error exponents, they restrict that
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Rg = RS"}; = P)(((])() or R§ = R‘g’}; = P)((lk). By letting R = R‘)";}: = Px, (k € @ ork € Q) that
can be optimized, we find the lower bound of (A15).

(A15) > min X min max
(Z;,(I;’e‘\‘y([K} \w) {PXk }kewudqur{ek/ }k/e@ua/\a]
{D*(_“’ RZ)+ T (0 — \/PL)’? (60 +/Pp)?
(VAN ST AAD'¢ T 2 T e, 2
' Y kdma  2HOR Keahw  2HOp
/12 [ \2
Di(RE, - K+ T oV TV }
7 7 2 2
' Yoo 2Hog veah\e M0
= min  E,uoua—€ > E® —¢, (A17)

@, €3([K]\w)

where we have used the fact that lim,,_, pfc = Pr,
DS( _gé]’ Tty _()D(K) = DSJU‘DUQ ({pxk}kE(UUdJUQ)/

DT( _g_é]’ e ’RQK) = DfIUU‘DUQ ({pxk}kE(UUdJUQ)/

and have substituted —6,s for 6.

Appendix H. Proof of Proposition 6

Let the encoders for k € [K] \ w be functions of H and Px, . The upper bound comes
from the fact that the type is also generated from the hypothesis H. Therefore, the encoder
on both the hypothesis and the type is just a function of the true hypothesis. Suppose that
pr: {0,1} — R™ (k € [K] \ w) satistying + E[||px(H)|?] < px. Let p]((l) denote the i-th entry
of px, and

(D) ey —
() () 2 § %+ AEH=Ho A18
o (H) {RIEI)’ ifH = H,’ (A18)
where %Kl(ci)2 + %K]Ez‘)z = P;(ci) and )}, p,(ci) = pi. The error exponent with respect to the
LLRT is
: 1 m (gl) _ y(0))2
0y max { — 7+ DY ({R, Jrew),
{Rx; Heew A0 Irekpwi=t, - m ke[K]\w i=1 O
1 m (G(i) _ k(i))z
S LA DF (R hken) | (A19)
ke[K]\wi=1 O
Here, we explain the optimality of K]Ei) = —K]Ei) = - ,((i), under which let Ry , Glgi)* be

the solution to problem (A19). For other pairs of (klgi),K]gi)), |k,(ci) - K,(Ci)\ <2 p,(ci). Let

9£1)*+ pl((z)

élgl)* _ K}Ei) + (k]EZ) o K(i)) . W Then, we have
k

k

(9]£1>* . pl((z))z (~]£i)* . K]Ei))z
207 - 202




Entropy 2023, 25, 1434 23 of 24

and

O+ @ -y
207 - 207

which will lead to a smaller error exponent (cf. (A19)) and the optimality is proved. The so-
lution to problem (A19) is

m i) _ pl((i))z
lim min max{l ¢ T + DY ({Rx, Jrew),
{Rx; thew A0 e K)\w,i=1,--- m ke[K\w i=1 k
m (9(1') i p(i))z
L Lt DY ({Rx, Jrew) |
" elK\wi=1 k
9 _ 2
= min max {fo({RXk brew) + Z ki\ﬁ),
{Rx, Frew A O bre K\ ke[K\w 2uc}

DY ({Rx, bkew) + Y Ot /P )}

e 2H0%
— E.. (A20)

Appendix I
Based on the results in Appendix D, E, as defined in (32) satisfies

1 + (0) 2 (6 — /Pr)?
E, = min max < = ||Bu(B.,Wew — Pw + — 5
PR {8 bk {8 H ( wy ¢ )H ke[%]:\w 2}”‘71?

SIBaBEE — gl P+ T (9"+‘ﬁ)} to(ed),  (A21)

kelhw  2HOR

where ke £ Y ke |Xk|, and then the result can be easily verified using Lagrangian multipliers.
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