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Abstract: Point cloud completion aims to generate high-resolution point clouds using incomplete
point clouds as input and is the foundational task for many 3D visual applications. However, most
existing methods suffer from issues related to rough localized structures. In this paper, we attribute
these problems to the lack of attention to local details in the global optimization methods used for the
task. Thus, we propose a new model, called PA-NET, to guide the network to pay more attention
to local structures. Specifically, we first use textual embedding to assist in training a robust point
assignment network, enabling the transformation of global optimization into the co-optimization of
local and global aspects. Then, we design a novel plug-in module using the assignment network and
introduce a new loss function to guide the network’s attention towards local structures. Numerous
experiments were conducted, and the quantitative results demonstrate that our method achieves
novel performance on different datasets. Additionally, the visualization results show that our method
efficiently resolves the issue of poor local structures in the generated point cloud.

Keywords: computer vision; point cloud; multi-modal; 3D shape completion

1. Introduction

Raw point clouds captured by 3D scanners and depth cameras are often sparse and
incomplete due to the devices’ low resolution [1]. Point cloud completion, aimed at
generating complete shapes from incomplete point clouds, enhances the usability of the
collected data for subsequent tasks. Consequently, this task has garnered significant
attention among researchers. Initially, geometry-based methods [2,3] were employed to
fill in missing areas of point clouds. However, these methods proved inadequate when
dealing with extensive missing sections of point clouds.

Due to advancements in deep learning and the availability of large-scale point cloud
datasets, deep learning-based methods for point cloud completion have gained significant
traction among researchers. These techniques, such as those proposed by Han et al. [4] and
Litany et al. [5], focus on capturing the overall distribution of an object’s point cloud and
can be applied to various scenarios. One of the primary challenges in deep learning-based
approaches is enhancing the accuracy of the completion results.

FoldingNet [6] addresses this challenge by employing a two-stage generation process,
assuming that the 3D object lies on a 2D manifold. This approach gradually generates
a high-quality point cloud. Another method, PF-Net [7], predicts multi-scale complete
point clouds, which are fused to achieve more precise results in subsequent steps. These
innovative techniques represent significant strides in improving the accuracy of point cloud
completion results.

However, existing methods often struggle with preserving intricate local details within
point clouds. Completing fine-grained elements like sharp edges and corners remains
a challenging task. While certain techniques, like Snowflake [8], attempt to leverage
hierarchical approaches to enhance local structures, they lack explicit guidance on how
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the network should refine these intricate details, also achieving bad local structures, as
illustrated in Figure 1. The reason behind this limitation is their failure to effectively
model the local structure, preventing them from optimizing local details in a specific and
targeted manner.

SnowflakeNet Ground Truth SnowflakeNet Ground Truth   

Figure 1. Despite Snowflake’s efforts to enhance part-completion effectiveness, it still struggles with
inadequate local structures.

The problem we identify arises from the limitations of the commonly used optimiza-
tion method, Chamfer Distance (CD). The loss function in use does not impose a one-to-one
constraint. In Figure 2, the blue circle represents the ground-truth point cloud, while the
red circle depicts the generated point cloud. Assuming that the ground truth forms a
right triangle with its three points, illustrated in Figure 2a, the sum of the distances from
the triangle vertices to the generated point is minimized when the blue point aligns with
the triangle’s center of gravity, as seen in Figure 2b. This principle extends to Chamfer
Distance, which minimizes the sum of the shortest distances between points in two sets
of point clouds. With an expanding number of points, the resulting points tend to cluster
within the structure, forming an arc, as seen in Figure 2c. At this juncture, inverse distance
computation is inadequate for correction, leading the complementary result towards a local
optimum, as depicted in Figure 2d. In essence, it tends to smooth sharp edges and corners,
generating rounded surfaces. As depicted in Figure 3a, similarly, we choose a right-angled
structure to investigate the solution. A straightforward solution involves dividing the over-
all point cloud into distinct sets. Although constraining the interaction between different
sets can help the network escape local optima, a basic clustering method, as illustrated in
Figure 3b, does not effectively address this issue. Sharp parts typically consist of numerous
points with similar spatial coordinates, causing these points to be assigned to the same
cluster. This situation introduces the same local optimum. Fortunately, we have observed
that this problem can be resolved by dividing the point cloud into parts based on the overall
direction of the local point cloud, as demonstrated in Figure 3c. The splitting method aligns
closely with what is commonly known as semantic parts. Therefore, segmenting the point
cloud according to semantic parts can effectively mitigate these challenges.

(a) (b) (c) (d)

GT Completion

Figure 2. Ambiguity in structure arises from the use of the Chamfer Distance loss function. The
blue circle represents the point cloud in the ground truth, while the red one represents the generated
point cloud.
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Figure 3. The analysis of the poor local structure in sharp regions is illustrated in the figures provided.
For a sharp part, such as the armrest of the chair in the figure, the point cloud distribution of the
ground truth is approximately presented at right angles, shown as blue points. As analyzed in
Figure 2, in (a), it is evident that the generated point cloud tends to distribute on a smooth surface,
leading to a local optimum. Figure (b) demonstrates that the straightforward clustering method fails
to resolve the problem effectively. In contrast, in (c), our proposed splitting method successfully
addresses the issue, providing an effective solution.

To address this problem, we must overcome three key challenges: (1) Mismatched
granularity in datasets: The current datasets for point cloud part segmentation are not
suitable for our segmentation needs because the granularity of their divisions does not align
with our requirements. (2) Differences between generated and ground-truth point clouds:
The generated point cloud might significantly differ from the ground truth. A robust
splitting method is necessary to ensure that the parts segmented from these two point
clouds are accurately aligned. (3) Need for suitable framework and constraints: A suitable
framework, along with appropriate constraints, is essential to enabling the effective learning
of this knowledge by the network.

To tackle these challenges, we introduce a novel framework, called PA-NET, which
applies constraints directly to the segmented parts, guiding the network to generate intri-
cate local details. Specifically, we introduce a robust multi-modal point cloud assignment
module (MPCA) that allocates point clouds to different local parts. This method incorpo-
rates textual embeddings to address dataset limitations, ensuring a robust splitting process.
We enforce semantic definitions on the output part set by aligning textual embeddings
and part features in a specific order; thus, the module can split the coarse point cloud
generated by the backbone network and the ground truth into aligned parts. Additionally,
we propose a multi-stage part-aware refine module (MPR) for the co-optimization of parts
and the global structure. This framework guides the network to learn local geometric
features and produce results with clearly defined local structures. We introduce a novel
loss function that measures part similarity guided by the assignment matrix given by the
MPCA module. A refinement network is designed to transfer constraints to the features, di-
recting the network’s focus towards local structures. To validate our method, we conducted
extensive experiments, providing visualizations and analyses. The experimental results
demonstrate that our approach achieves novel performance in accuracy and generates
clearly localized structures.

Our primary contributions can be outlined as follows:

• We introduce a novel multi-modal part assignment module aimed at addressing the
scarcity of suitable datasets, enabling the aligned part segmentation of coarse point
cloud and ground truth.

• We introduce a plug-in module along with a corresponding part loss function designed
to guide the network in learning local structures, enhancing local details.

• Extensive experiments and visualizations demonstrate that our method achieves novel
performance, significantly enhancing localized structures.
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2. Related Work
2.1. Deep Learning-Based Point Cloud Completion

PCN [9] was the pioneering work that introduced deep learning into point cloud
completion. This approach utilized a network to model the mapping between residual and
complete point clouds. Subsequent studies [10–12] have made significant contributions to
this field. The recent focus has shifted towards obtaining more fine-grained results. These
methods can be categorized based on different decoding approaches.

2.1.1. Folding-Based Decoding

These methods operate under the assumption that 3D objects lie on a 2D manifold.
The initial work, FoldingNet [6], employed a two-step network approach, utilizing 3D
grid points to enhance result details. SA-Net [1] extended the generation process into
multiple stages and introduced a hierarchical folding strategy for more precise outcomes.
PU-GAN [13] incorporated Generative Adversarial Network (GAN) techniques to enhance
robustness through the adversarial training of the encoder and decoder. ASHF-Net [14]
introduced an adaptive sampling strategy, leading to a more robust method. While these
techniques enhance point cloud surface quality, they do not explicitly model the local
structure of the point cloud, making it challenging to generate results with improved
local detail.

2.1.2. Coarse-to-Fine Decoding

To enhance the accuracy of generated point clouds, a coarse-to-fine framework proves
to be effective. These methods typically employ a two-stage approach, first generating
a low-resolution point cloud and then refining it to higher resolution. This framework
is highly interpretable and easy to control. PCN [9] and NSFA [15] were the pioneering
works that introduced this framework to point cloud completion. Building upon this
foundation, CDN [16] and PF-NET [7] added more generation stages to achieve superior
results. More recently, Snowflake [8] introduced a point-wise splitting operation to enhance
the decoder’s capabilities, achieving state-of-the-art performance. Despite the progress
made, these methods do not explore local structures such as corners and often perform
poorly when it comes to capturing detailed aspects of the point cloud.

Unlike the aforementioned methods, our PA-NET synchronizes the refinement of local
structures while maintaining global performance by splitting the overall point cloud into
several parts of points with similar geometric properties and optimizing these properties
within each part. This approach explicitly guides the network to learn the representation
of local features, resulting in superior performance in localized parts compared with the
methods mentioned above.

2.2. Point Cloud Part Segmentation

Point cloud part segmentation aims to assign each point of an object to different
part classes. Due to the challenges associated with labeling, existing point cloud part
segmentation datasets are limited in size and primarily consist of ShapeNet-part [17] and
PartNet [18]. Current methods in this domain can be categorized into supervised part
segmentation and semi-supervised part segmentation. Kpconv [19] is a representative
supervised method that intelligently selects K key points in the point cloud to efficiently
aggregate features, achieving commendable performance. PartNet [20] also falls under
the supervised category; it divides the point cloud according to a tree structure, resulting
in robust and explainable part segmentation. Semi-supervised methods [21,22] employ
techniques such as sampling key points and clustering to assist the network in achieving
effective part segmentation. These methods bridge the gap between supervised and
unsupervised learning, leveraging partial annotations for improved segmentation results.

While the studies mentioned above have made progress, their part definitions do not
align with our method’s part requirements. To address this, we drew inspiration from Large
Language Models (LLMs). We adopted a question-and-answer format to obtain annotated
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information tailored to our approach. Additionally, we designed multi-modal modules to
acquire part-specific knowledge, enabling precise and controllable part segmentation.

2.3. Multi-Modal Method of Point Cloud

Multi-modal deep learning has emerged as a powerful approach to advancing point
cloud processing tasks. By integrating complementary information from various sources
such as images and texts, multi-modal networks can learn more distinctive representations,
leading to significant improvements in performance. In the realm of visual modality, a
common technique involves merging Li-DAR data with camera images to enhance 3D
object detection [23]. Additionally, pioneering work by Su et al. [24] introduced a deep
neural network that combines point clouds with texture images, resulting in improved
semantic segmentation outcomes. These studies highlight the value of incorporating visual
features from images to enhance point cloud analytics. In the realm of textual modality,
innovations like Text2mesh [25] utilize both point clouds and textual descriptions for 3D
model retrieval, generating more relevant and accurate results. Moreover, the advent of
large models such as CLIP [26] has significantly contributed to the multi-modal evolution
of point cloud applications. Recent works by Zhang et al. [27] and Huang et al. [28] employ
novel image–text models to distillate 3D networks, further advancing the capabilities of
multi-modal point cloud processing.

Indeed, while there have been efforts in the realm of multi-modal methods, applying
them to part segmentation remains a challenging endeavor. The intricate and nuanced struc-
tures of components make it exceptionally difficult to transfer this knowledge effectively.

3. Method
3.1. Overview

As illustrated in Figure 4, our network, PA-NET, mainly comprises two modules: a
backbone network and a refinement framework named MPR.
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Figure 4. The framework of our method involves a plug-in module called MPR, which can be
integrated after a standard backbone, enhancing the performance concerning local structures. The
entire module comprises three refinement stages, with each stage utilizing a refinement network
to enhance the quality of the point cloud. MPCA is employed to guide the network’s attention
towards local structures and is added after the second stage. Within this framework, the loss function
constrains the network at both global and local levels.

3.1.1. Backbone Network

We utilize a standard encoder–decoder framework as our backbone. Let P = {pi}
represent the input point cloud, where 0 ≤ i ≤ N. Here, N is the number of point
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clouds, and pi denotes a point in 3D space having a shape of 1× 3. Employing three feature
extraction layers from Snowflake [8] as the encoder, we transform the point features (N× 3)
into a global feature, fg, with a shape of 1× 512. The decoder’s objective is to generate a
coarse point cloud, PC, guided by global feature fg. The structure of the decoder mirrors
is that of Snowflake, enabling the generation of the coarse point cloud with dimensions
512× 3.

3.1.2. MPR Module

The MPR module, designed as a plug-in component, can be seamlessly integrated
after various standard backbones, enhancing the quality of locally generated structures.
This module consists of three stages, refining the generated point cloud incrementally.
Denoting the shapes of the output point clouds as P1, P2 and PO, with N1, N2 and NO
points, respectively, the number of point clouds increases in each progressive stage. The
entire module comprises two crucial sub-modules and their corresponding loss functions,
which will be elaborated upon in the subsequent sections.

3.2. Refinement Sub-Module

As shown in Figure 5, the refinement module is designed to direct the network’s
focus towards specific regions of the point cloud. It takes as input the point features
output by i− 1-th layer Fi−1, the coarse point cloud generated by i− 1-th layers Pi−1 and
global feature fg. Within this module, a multi-layer perceptron (MLP) network extracts
global feature fi from Pi−1. Subsequently, fi and fg are concatenated and passed through a
max-pooling layer to serve as weights for channel-wise attention applied to the row-wise
point features. Guided by this combined global feature, the attention of the model becomes
more focused on local regions. To capture local context, we employ a skip-transformer [8],
which takes Fi−1 and the row-wise point features as input. The skip-transformer facilitates
step-by-step optimization in all three refinement stages, enhancing the point-wise features
in each stage. Using these features, a more detailed point cloud is generated through
shift prediction and upsampling. A de-convolution layer is employed for upsampling the
point-wise features to match the desired output shape. Three MLP layers predict the shift
(∆Pi) for each point, with Fi as input. The Pi−1 coarse point cloud is upsampled to twice its
size, and the shifts are applied to produce the final output point cloud in the i-th layer.

Pi-1

fg

σ(MLP)

Maxpooling

fi

+ Maxpooling

Channel-wise
attention

Raw Point-wise
feature

Skip-
Transformer

Point-wise
feature

D
eC

ov

Fi-1

Fi

σ(MLP)

Upsampling

ΔPi + Pi

Part-aware Feature Point Cloud Generation

Figure 5. Refinement sub-module: This module comprises two essential components—part-aware
feature extraction and point cloud generation.

3.3. MPCA Module
3.3.1. Textual Embedding Generation

Inspired by [29], we developed a Q&A-based method to acquire information about
parts, addressing the challenge of obtaining relevant prior knowledge due to the limi-
tations of existing part segmentation datasets in meeting our specific requirements for
part segmentation.
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For a given point cloud P, we captured multiple photos from various angles by
rendering the point cloud and taking images using Cloud Compare software (https://
www.cloudcompare.org/). For each point cloud, we initially positioned its center of gravity
at the coordinate origin. Subsequently, we placed the camera at the appropriate location on
its side. We then rotated the point cloud and captured an image every 30°, resulting in a
total of 12 images taken from various perspectives.

These photos served as queries in conjunction with a series of part-related language
prompts. For each category in the dataset, we manually labeled the potential parts it might
have contained. For instance, a chair could include parts such as “Leg”, “Armrest”, “Seat”,
“Backrest” and “Footrest”. For each component, we created two types of questions: an
existential one and a quantitative one. The existential question was formulated as “Does
the [CLASS] have a [PART]?”, and the quantitative one, as “How many [PART] does the
[CLASS] have?” Here, [CLASS] represents the category of the object obtained from the
ground truth, and [PART] is a pre-defined component. When a part of an object does not
exist, no questions about the quantity are asked.

Using this template, we swiftly obtained text labels for the parts of a class of objects.
For each object, we amalgamated the answers to the two questions and inserted them into
the template “The [CLASS] has [NUM] [PART]”, where [NUM] signifies the number of
corresponding parts. This process resulted in a list of parts associated with each object,
where each list item described a specific part of the object, as illustrated in Figure 6.

Subsequently, we utilized a pre-trained Bert [26] to project these sentences into a
textual embedding space. Once we obtained textual embeddings with dimensions M× C,
we replicated embedding K× C based on the number of distinct parts using a Num Tile
module, which can tile the embeddings with the number of the corresponding part. Here,
N represents the maximum number of parts a single object can be divided into. If K ≤ N,
the padding module added blank vectors until K = N was achieved. The resulting textual
embedding, N × C, represented the part features of the object’s segmentation.

P

Discription

The chair has no legs.

The chair has two armrests.

The chair has backrest.

.......

The chair has a seat.

Bert ...... Num Tile ...... Padding

......

M X C K X C

N X C

Epp Epp MLP

Point-wise Feature

Global Feature
Max Pooling

Prat Embedding

+

E
nc

od
er ......

N X C LCLIP

Transformer

Only Training

Assign
Matrix

LRECONS

Text 

Point Cloud

Figure 6. MPCA module: This module is trained using a multi-modal approach. Once the training is
complete, the parameters are frozen and integrated into the backbone framework. This integration
allows the module to split the point cloud into local parts.

3.3.2. Framework

The entire framework takes a point cloud as input. Initially, two EdgeConv (Egg)
layers [30] are employed to generate a 64D point-wise feature for each point. These features
are then passed through MLP layers and a max-pooling layer to obtain a 512D global
feature. A part embedding matrix of dimensions N× 512 is created to be concatenated with

https://www.cloudcompare.org/
https://www.cloudcompare.org/
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the global feature, resulting in the initial part features. This part embedding is essentially a
one-hot matrix encoding the part order.

Subsequently, the combined features, totaling 2N × 512, are fed into an encoder to
calculate the part features, resulting in a matrix of dimensions N × C. A loss function
measures the distance between the output part features and the textual embedding. To
obtain the assignment matrix, the point-wise features and part features are used as input
for a transformer, which calculates the relationships between these features. The final
assignment matrix (N ×M) is constrained with reconstruction loss to ensure the accuracy
of the assignment matrix, decoded by the transformer layer. This process ensures the
effective alignment of part features and textual embeddings.

3.3.3. Loss Function of MPCA

The loss function mainly contains two parts, CLIP loss and reconstruction loss. CLIP
loss is inspired by CLIP [26], aligning features between modalities effectively. Recon-
struction loss is used to force the points assigned to the same part to form the same
local structure.
) CLIP loss. The CLIP loss function serves two primary purposes: firstly, it efficiently
aligns features between modalities, and secondly, it guides the network to encode part
features in a specific order. The application of this loss function ensures that the split point
clouds generated by the network carry specific semantic meanings.

The CLIP loss function is defined by Formula (1).

LC =
1
2

[
1
B

B

∑
k=1

exp
(
Svk ,tk /τ

)
∑B

l exp
(
Svk ,tl /τ

) + 1
B

B

∑
k=1

exp
(
Svk ,tk /τ

)
∑B

l exp
(
Svl ,tk /τ

)], (1)

where B is the batch size and τ is the temperature hyperparameter. Sv,t is the total similarity
score, defined by Formula (2):

Sv,t =
1
2

 Nv

∑
i=1

wi
v max

j
aij +

Nt

∑
j=1

wi
t max

i
aij

. (2)

Variables u and v represent two different modalities, such as text and point clouds, while aij
is a feature similarity matrix obtained by multiplying features from different modalities. The
weights of the modal features are represented by wi

v and wj
t, obtained as

[
w0

v, w1
v, ..., wNv

v

]
=

Softmax
(

MLPv

(
Vf

))
, where MLPv represents the fully connected layers used to encode

modal v.
) Reconstruction loss. To efficiently guide the point cloud assignment results, we employ
the reconstruction loss to constrain the point cloud assignment process. This approach,
commonly used in unsupervised part segmentation, assumes that each part can be enclosed
by a minimum rectangle. We follow the method used in CAVS [31] for reconstruction,
utilizing the point cloud assignment matrix output by MPCA.

The reconstruction loss is defined by Formula (3).

Lrec =
1
N

N

∑
n=1

M

∑
m=1

Wm,nd(pn, partm), (3)

where Wm,n represent the probability of the n-th point belong to the m-th part; W is the
assignment matrix calculated by the network; d(·, ·) represents the distance between a
point and the part, reconstructed using the method from CAVS [31]. We apply the same
method to calculate distances as in CAVS [31].

3.4. Loss Function

The loss function guides the network to learn the generation of the complete point
cloud both globally and locally. The global loss function (Lglobal) employs the common CD



Entropy 2023, 25, 1588 9 of 17

loss, which ensures that the generated point cloud closely matches the ground truth globally.
The local loss function (Lpart) measures the distance between the generated result and the
ground truth for each corresponding part, directing the network’s attention to local details.
The overall loss function is defined by Formula (4), where α and β represent the weights of
each loss function. The specific definitions of each loss function are provided below.

L = αLglobal + βLpart. (4)

3.4.1. Global Loss

Lglobal =
1
P ∑

x∈P
min
y∈Q
||x− y||2 + 1

Q ∑
y∈Q

min
x∈P
||y− x||2. (5)

The global loss function (Lglobal) is defined by Formula (5), where P and Q represent
the generated point cloud and ground truth, respectively. x and y denote individual points
in point clouds P and Q. This formula ensures that the two point clouds are as close as
possible globally.

3.4.2. Part Loss

The part loss (Lpart) constrains the distance between points in the corresponding parts
of the generated point cloud and the ground truth, directing the network’s attention to local
parts. This is achieved using the point-to-part assignment matrix output by MPCA. The
loss function is defined bidirectionally, as shown in Formula (6), where P and Q represent
the generated point cloud and ground truth, respectively, and M and N represent the
assignment matrices corresponding to P and Q.

Lpart = Dpart(P, Q, M, N) + Dpart(Q, P, N, M). (6)

Dpart is defined as the distance function between two point clouds guided by the
assignment matrix, as shown in Formula (7). Dpart is a one-way distance metric, where N
represents the number of points in point cloud P. In the formula, k represents the k-th part
in the point cloud, and m is the maximum number of parts in one object.

Dpart(P, Q, M, N) =
1
N

N

∑
i=0

min
qj∈Q,0≤k≤m

WD(pi, qj, Mik, Njk). (7)

In Formula (7), WD(·, ·, ·, ·) is the weighted distance between two points, as defined
by Formula (8). The weighted distance between points p and q is calculated as a weighted
L2 distance, where the weight is determined by assignment probabilities m and n.

WD(p, q, m, n) = (2−m · n) · ||p− q||2. (8)

The part loss quantifies the similarity between the generated point cloud and the
ground truth at the local level. Its application directs the network’s focus, guiding the
generation of more precise local structures.

4. Experiment

This section systematically evaluates our proposed method with a series of extensive
experiments. We first present validation experiments to assess the efficacy of the MPCA
sub-module, followed by a demonstration of the overall performance of the entire network
in point cloud completion.
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4.1. Experiment on MPCA Module
4.1.1. Dataset and Settings
Implementation Details

Our experiments were conducted using an Nvidia GeForce GTX TITAN X graphics
card with 12 GB of RAM. The training process employed the Adam optimizer with an
exponential decay rate of 0.9 and an initial learning rate of 6× 10−3. The data batch size was
set to 32, and a total of 300 iterations were performed. Initially, the network was trained to
align the features of the point cloud parts and textual embeddings for the first 100 iterations.
Subsequently, the entire network was trained together for the remaining iterations.

Dataset

We trained the network using the ShapeNet-Part dataset [32], which consists of
16,881 shapes from 16 different categories with a total of 50 labeled parts. One of the
main challenges posed by this dataset is the high imbalance among categories. Each shape
in the dataset is sampled with 2048 points, and most shapes have fewer than six parts. It is
important to note that we did not utilize the labels during training, reserving them only
for evaluation purposes. The dataset was divided into a training set and a test set in an
8:2 ratio.

4.1.2. Visualization Results on ShapeNet-Part

To showcase the effectiveness of our approach, we assigned each point cloud to the
part with the highest probability and visualized the results by assigning distinct colors to
different parts. This visualization was conducted on the test set, and we chose the novel
unsupervised method CAVS [31] for comparison. We selected seven categories that are
commonly encountered in point cloud completion for this comparison, as depicted in
Figure 7.

The results clearly demonstrate the efficacy of our method in accurately dividing
point clouds into several geometrically similar parts. Notably, the circled area in the figure
highlights instances where our method outperforms CAVS. Furthermore, our approach
consistently produces reasonable results across various categories, showcasing its ability to
accurately segment point clouds into parts suitable for point cloud completion.

CAVS

OURS

GT

Plane Headset Toy Desk Knife Chair Table

Figure 7. The visualization results on ShapeNet-Part [32] are presented in the figure, with a com-
parison made using the novel unsupervised method CAVS [31]. The distinctive advantages of our
approach are particularly evident in the portion of the figure encircled by the red line.

4.1.3. Visualization Result on Completion3D Dataset

In our experiments on the Completion3D dataset, we validated the effectiveness
of our method as a point assignment module. Throughout the completion process, we
extracted the assignment matrix of the point cloud and utilized the visualization method
outlined in Section 4.1.2. The results are displayed in Figure 8. Notably, CAVS [31] exhibits
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highly unfavorable assignment outcomes on previously unseen data. In contrast, our
method, trained using multi-modal information, demonstrates robustness on new data
and effectively divides the point cloud into logical parts. The incorporation of MPCA can
divide the point cloud into meaningful parts, leading to these positive outcomes.

CAVS

OURS

Figure 8. Visualization results on Completion3D dataset. The figure demonstrates the capability of
our method to effectively divide the point cloud into reasonable parts.

4.2. Experiment on Point Cloud Completion
4.2.1. Dataset and Settings
Implementation Details

In our experiments, we utilized a GeForce RTX 3090 graphics card with 24 GB of RAM.
The training process employed the Adam optimizer with an exponential decay rate of 0.9
and an initial learning rate of 0.001. The learning rate was halved every 50 rounds, and
a data batch size of 32 was set, totaling 150 iterations. During training, we set hyperpa-
rameters α and β of the loss function to 0.5 each, ensuring equal influence from both loss
functions on the network.

Dataset

To comprehensively evaluate the effectiveness of our method, we selected two widely
used benchmarks, PCN [9] and Completion3D [33]:

• The PCN [9] dataset consists of eight categories. Incomplete shapes are generated by
back-projecting complete shapes into eight different partial views. We followed the
settings of Snowflake [8] to align the ground truth.

• The Completion3D dataset [33] comprises a total of 30,974 objects across eight cate-
gories, with each object containing an incomplete point cloud and its corresponding
ground truth. Each complete point cloud consists of 2048 points, while the incomplete
point cloud is obtained by back-projecting depth images into 3D space, resulting in a
varying number of points. We divided the dataset into training, validation and test
sets following the Completion3D protocol.

Evaluation Metric

We employed the widely used evaluation metric, Chamfer Distance (CD), for our
evaluations. Consistent with established practices, we utilized the L1 version of CD for
the PCN dataset and the L2 version of CD for the Completion3D dataset, adhering to the
settings of previous methods.

4.2.2. Quantitative Analysis
Experiments on PCN Dataset

Table 1 presents the quantitative results of our method in comparison to other methods
on the PCN dataset [9]. We meticulously reproduced these methods locally and conducted
the experiments. Clearly, our method achieves novel performance, with an average Cham-
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fer Distance value of 7.24 compared with 7.32 in the other methods. Particularly, for cate-
gories with well-defined local structures, such as Chair and Table, our method outperforms
other methods significantly. We attribute this success to our method’s ability to effectively
segment these parts and optimize the local structure, leading to superior outcomes.

However, there are categories, such as Plane and Watercraft, where our results are
slightly inferior. This discrepancy might arise from the substantial individual differences
within these categories and their unclear structures. Additionally, the accuracy is notably
influenced by the composition of the test set, potentially introducing errors into the results.

In summary, our method excels on the PCN dataset, demonstrating superior perfor-
mance in terms of average Chamfer Distance across most categories. This showcases the
capability of our approach.

Table 1. Point cloud completion on PCN in terms of per-point L1 Chamfer Distance 10−3 (lower
is better).

Method Plane Cabinet Car Chair Lamp Couch Table Watercraft Average

PCN [9] 6.03 21.67 11.12 8.73 10.68 11.53 12.04 10.23
TopNet [33] 7.26 13.26 10.68 14.24 14.69 14.55 11.67 10.98 12.16
GRNet [34] 6.23 10.29 9.65 9.33 8.16 10.46 8.37 8.22 8.84
Snowflake [8] 4.35 9.32 8.52 7.51 6.21 9.42 6.42 6.78 7.32

Ours 4.41 9.14 8.52 7.09 6.19 9.65 6.13 6.82 7.24

Experiments on Completion3D Dataset

In Table 2, we present the quantitative results of our method alongside other methods
on the Completion3D dataset [33]. We meticulously replicated these methods locally
and conducted the experiments. The table clearly indicates that our method achieves
novel performance, with an average Chamfer Distance value of 8.13, surpassing the other
methods, which score 8.37. Our method achieves much more accuracy than Snowflake [8]
in most categories, especially in Table (12.32 vs. 13.93).

Table 2. Point cloud completion on Completion3D in terms of per-point L2 Chamfer Distance 10−4

(lower is better).

Method Plane Cabinet Car Chair Lamp Couch Table Watercraft Average

PCN [9] 9.68 21.04 12.87 24.76 22.14 20.02 19.93 11.92 17.80
TopNet [33] 7.29 18.38 12.69 19.34 14.28 16.12 14.78 8.86 13.96
SA-Net [1] 4.29 12.41 6.79 11.64 11.73 12.13 11.75 7.89 9.83
GRNet [34] 5.83 15.62 7.32 10.32 10.05 9.39 12.02 6.03 9.57
VE-PCN [35] 2.56 12.03 6.23 10.04 9.62 9.10 15.10 4.72 8.68
Snowflake [8] 2.08 11.55 5.94 10.48 9.71 8.40 13.93 4.90 8.37

Ours 2.25 11.35 6.08 10.06 9.52 8.70 12.32 4.71 8.13

Upon observation, our method demonstrates superior accuracy in categories with
distinct local structures, such as Cabinet, Chair and Table. However, for categories like
Plane, Car and Couch, our accuracy is comparable to Snowflake’s.

In summary, the results on the Completion3D dataset underline our method’s ability
to generate more accurate local structures from incomplete point clouds.

Ablation Study

) Point cloud assignment methods. To assess the effectiveness of our MPCA module, we
conducted ablation experiments on this component. We replaced the MPCA module with a
clustering method employing different numbers of clusters (denoted by K) for predicting
the point cloud assignment matrix. Specifically, we tested K values of 1, 2, 4, 8 and 16 in
our experiments. For each setting, we computed clusters for both the point cloud output
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from the network and the ground truth, aligning the split parts by calculating the distance
between the cluster centers.

The experimental results, presented in Figure 9a, demonstrate the average Chamfer
Distance under various configurations, allowing us to evaluate performance with different
settings. As depicted in the table, when K = 1, it signifies that no parts are split for the
point cloud. Using a simple clustering approach to divide the point cloud results in a
slight improvement in accuracy with fewer divisions (K = 2). However, as the number of
clustering centers increases (K = 4, K = 8), it leads to instability in the completion effect
and a decrease in accuracy. We attribute this to significant differences in the distribution
between the network output and the ground-truth point cloud, causing variations in the
clustering effect.

This ablation study underscores the robustness of our method in achieving assignment
results. It effectively transforms global optimization into local optimization, guiding the
network to perform better in terms of accuracy and stability.
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Figure 9. Results of ablation study with point cloud assignment methods (a) and part loss (b).
Per-point L2 Chamfer Distance 10−4 is used as matrix. (Lower is better).

) Loss Function. We initially conducted ablation experiments on the existential aspect of
our loss function. This involved replacing all the loss functions of the three stages with
a specific loss function, and the resultant outcomes are presented in Table 3. The table
clearly indicates that employing any of the loss functions in isolation does not yield optimal
results. This substantiates the necessity of both global optimization and local optimization
to complement each other for achieving the best outcomes.

Table 3. Ablation study on loss function on the Completion3D in terms of per-point L2 Chamfer
Distance 10−4 (lower is better).

Global
Loss

Part
Loss Airplane Cabinet Car Chair Lamp Couch Table Watercraft Average

% ! 2.07 11.6 6.17 10.54 9.85 9.38 12.66 4.63 8.39
! % 2.08 11.55 5.94 10.48 9.71 8.40 13.93 4.90 8.37
! ! 2.25 11.35 6.08 10.06 9.52 8.70 12.32 4.71 8.13

We also explored the impact of hyperparameters α and β. Our empirical findings
demonstrate that larger α, indicating a greater weight for the global loss, results in better
performance for categories with local ill-structured shapes, such as Car. Conversely, larger
β leads to improved performance in categories with more well-defined local structures,
such as Chair. To enhance the network’s generalization capability, we set the values of α and
β to 0.5 when computing the final result, ensuring their equal influence on the network.

In addition, as shown in our framework, the refinement process for coarse point clouds is
divided into three stages, with our part loss function being applied to the output of the second
stage. To understand whether imposing this constraint yields different effects in different
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stages, we conducted an ablation experiment. We denoted the stage in which the part loss
function is imposed as p. The results of this ablation study are presented in Figure 9b.

The results show that the network’s performance improves whenever the loss function
is imposed. However, introducing the loss function too early (p = 1) causes its effect to be
overshadowed by the CD loss. On the other hand, incorporating the loss function in the
final stage amplifies the effects of noise, leading to inferior results. Therefore, integrating
the part loss function in the intermediate stage yields the most significant enhancement.

Plug-in Experiment

MPR serves as a plug-in framework. To demonstrate its ability to enhance the accuracy
of the baseline, we conducted a simple experiment. We selected PCN and Snowflake
as the baseline networks and integrated MPR into them. Both networks were tested on
Completion3D, and the quantitative results are presented in Table 4.

The results are evident: when our MPR module is added to PCN, the accuracy signifi-
cantly improves (15.32 vs. 17.80). Similar enhancements were observed in our experiments
using Snowflake [8] as the backbone network (8.13 vs. 8.37).

Table 4. Plug-in experiment on the Completion3D on terms of per-point L2 Chamfer Distance 10−4

(lower is better).

Method Plane Cabinet Car Chair Lamp Couch Table Watercraft Average

PCN [9] 9.68 21.04 12.87 24.76 22.14 20.02 19.93 11.92 17.80
PCN + MPR 8.32 16.03 11.06 22.04 18.32 17.63 16.67 10.96 15.32

Snowflake [8] 2.08 11.55 5.94 10.48 9.71 8.40 13.93 4.90 8.37
Snowflake + MPR 2.25 11.35 6.08 10.06 9.52 8.70 12.32 4.71 8.13

4.2.3. Visualization
Visualization Results on Completion3D

We conducted experiments on the Completion3D dataset [33]. For visualization,
we selected the classical method PCN [9], as well as the current state-of-the-art method,
Snowflake [8]. The visualization results are depicted in Figure 10. In the figure, we present
the point clouds of input, output from PCN, output from Snowflake, output from our network,
and ground truth separately. We chose six common types of objects to showcase the results.

It is evident from the visualization that our method significantly outperforms PCN. While
Snowflake achieves good results, there are still outline points visible at the edges, as observed
in the cabinet and table examples. Additionally, their method does not provide a clear local
structure, as seen in the plane example. In contrast, our method demonstrates a substantial
improvement over PCN and excels at optimizing local details compared with Snowflake.

Visualization Result on Chair Category

From the findings presented in Section 4.2.2, our approach, which involves global–
local co-optimization through part division, significantly enhances completion performance
in categories with distinct and complex structures, such as Chair and Desk. To further
illustrate this, we provide visualization results specifically focusing on Chair, a category
with intricate local structures. As depicted in Figure 11, we compared our method with
PCN [9] and Snowflake [8]. The comparison vividly demonstrates that our method excels
at preserving local details with remarkable clarity in comparison to the other techniques.
This highlights our method’s exceptional ability to generate intricate and finely detailed
local structures.
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Coach Cabinet Car Table Chair Plane

Input

PCN

Snowflake

Ours

GT

Figure 10. Visualization results. In our comparative visualization with the classical method PCN [9]
and the state-of-the-art method, Snowflake [8], significant differences in the generated results are
evident. Our method excels at producing finer details, outperforming Snowflake [8], particularly at
object edges and in localized areas.

Input PCN Snowflake Ours GT

Figure 11. Visualization results on Chair. We are confident that our method excels at generating
precise local structures, especially for objects with distinct and intricate local features. To underscore
this capability, we provide additional visualizations of completion results for chairs with complex
local structures, comparing our approach with PCN [9] and Snowflake [8]. These visualizations
distinctly showcase our method’s ability to produce highly accurate local structures.

5. Conclusions

Point cloud completion plays a significant role as an upstream task in 3D vision. How-
ever, many existing point cloud completion methods suffer from unclear local structures.
In this paper, we analyze the limitations of Chamfer Distance and propose a part-aware
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point cloud completion method that avoids falling into local optima by transforming global
optimization into a local–global co-optimization. Firstly, to achieve robust point-to-part
assignment, we introduce a multi-modal point cloud assignment (MPCA) module that can
split the coarse point cloud and ground truth into parts in a specific order. Then, using
this module, we present a novel completion framework designed to focus the network’s
attention on local structures. Importantly, our proposed module, MPR, is a plug-in module.
The generation of fine-grained local structures can be enhanced by adding this module
after different backbones. We conducted extensive experiments to validate our method.
The experimental results demonstrate that our approach achieves novel performance in ac-
curacy. Visualization results further illustrate that our method excels at generating intricate
local structures.
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