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Abstract: Data anonymization is a technique that safeguards individuals’ privacy by modifying
attribute values in published data. However, increased modifications enhance privacy but diminish
the utility of published data, necessitating a balance between privacy and utility levels. K-Anonymity
is a crucial anonymization technique that generates k-anonymous clusters, where the probability of
disclosing a record is 1/k. However, k-anonymity fails to protect against attribute disclosure when
the diversity of sensitive values within the anonymous cluster is insufficient. Several techniques
have been proposed to address this issue, among which t-closeness is considered one of the most
robust privacy techniques. In this paper, we propose a novel approach employing a greedy and
information-theoretic clustering-based algorithm to achieve strict privacy protection. The proposed
anonymization algorithm commences by clustering the data based on both the similarity of quasi-
identifier values and the diversity of sensitive attribute values. In the subsequent adjustment phase,
the algorithm splits and merges the clusters to ensure that they each possess at least k members and
adhere to the t-closeness requirements. Finally, the algorithm replaces the quasi-identifier values of
the records in each cluster with the values of the cluster center to attain k-anonymity and t-closeness.
Experimental results on three microdata sets from Facebook, Twitter, and Google+ demonstrate the
proposed algorithm’s ability to preserve the utility of released data by minimizing the modifications
of attribute values while satisfying the k-anonymity and t-closeness constraints.

Keywords: information theory; entropy; data anonymization; clustering; privacy-preserving;
individuals’ privacy

1. Introduction

Data privacy protection is a critically important area of research, especially as data
collection from individuals increases and proliferates rapidly. Data often contains sensitive
information that could pose privacy risks if released without proper processing. To ensure
the privacy of individuals, many countries have enacted privacy protection laws, such as
the General Data Protection Regulation (GDPR) in the European Union, the Personal Data
Protection Act (PDPA) in Singapore, and the Personal Information Protection Law (PIPL)
in China. These laws aim to regulate data handling practices and safeguard individuals’
personal information. As data collection and usage continue to grow exponentially, effective
privacy protection techniques remain vital to uphold individuals’ rights while enabling
data-driven innovation.

Preserving data privacy presents several challenges, the most significant being the
prevention of information leakage during data release. Data can contain different types
of information; therefore, it is crucial to identify confidential data and assess the potential
consequences of a data breach. Identifying and classifying sensitive data are key steps in
developing an effective data privacy protection strategy. Once the sensitive data has been
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identified, organizations can determine the appropriate data privacy protection measures
to implement. To protect individuals’ privacy, it may be necessary to anonymize the data
while considering the type of data, the intended use, and the potential privacy risks.

Data anonymization is a practical and widely adopted approach to protecting indi-
vidual privacy when releasing data. Anonymization techniques aim to reduce the risk of
unauthorized disclosure by converting personal information into anonymous data. This
balanced approach to safeguarding privacy mitigates the original details in the dataset to
some extent [1]. Anonymizing data involves modifying quasi-identifier values to reduce
specificity, enhancing privacy protection while preserving data utility [2].

Data containing confidential information about individuals is prone to privacy breaches,
so it is essential to protect sensitive information from privacy threats [3]. One way to protect
personal privacy is to erase direct identifier attributes, such as names and addresses, before
releasing the original data to the public. This process, known as de-identification, is
insufficient to protect privacy, as a study by Sweeney [4] showed that 87% of Americans can
still be uniquely identified based on just three quasi-identifiers: gender, age, and postal code.
To prevent privacy threats, researchers have proposed several privacy models, including
k-anonymity (KA) [5], l-diversity (LD) [6], and t-closeness (TC) [7]. In the following, we
briefly overview these models and their anonymization operations.

Anonymization techniques have become increasingly important for ensuring privacy
in data publishing. Among these techniques, KA is widely used by researchers [5]. KA
aims to protect privacy by modifying quasi-identifiers to ensure that each record is indis-
tinguishable from at least k-1 other records. It is important that individual records remain
faithful to the original data while meeting privacy requirements after anonymization [8].
Generalization, suppression, and perturbation are the main anonymization operations used
to achieve k-anonymization algorithms:

• Generalization replaces some quasi-identifier values with parent values in the equiva-
lent class, while specialization is the opposite operation. Generalization preserves data
privacy but reduces data accuracy [3]. Excessive generalization results in significant
information loss (IL) and reduced data quality [9].

• Suppression replaces specific quasi-identifier values with asterisks (*), while the
disclosure is the opposite. Suppression causes more IL than generalization. For
example, suppose we have a dataset of people’s ages. We could generalize this dataset
by replacing all ages with a range of ages, such as 20–30, 30–40, and so on. This would
reduce the accuracy of the dataset, but it would still preserve some information about
the people’s ages. On the other hand, if we suppress data points from the dataset, we
would be losing information altogether.

• Perturbation involves modifying a feature’s value by replacing it with another value
to minimize the difference between the original and modified datasets. One of the
most popular perturbation techniques is microaggregation, which clusters records in
the dataset with a restriction on cluster size. Microaggregation replaces the values
of each record in the anonymized dataset with the values of the cluster center to
which the record belongs. This approach is more effective than generalization and
suppression [10] and simplifies further data analysis.

Table 1 shows a sample of de-identified original data, and Table 2 shows its 3-
anonymized version. The Weight, Gender, and Age attributes are set as quasi-identifier
attributes, and disease is the sensitive attribute. All records in a cluster share the same
values for the quasi-identifier attributes, making them indistinguishable from each other.
However, the 3-anonymity model in Table 2 does not prevent attribute disclosure. For
example, if an adversary knows that a person’s record is in cluster C1 in Table 3, they can
infer that the person has pneumonia.
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Table 1. Patients’ original data.

No. Weight Sex Age Disease

1 73 Male 33 Pneumonia

2 56 Female 36 Pneumonia

3 82 Male 31 Pneumonia

4 71 Female 44 Bronchitis

5 51 Female 47 Colon cancer

6 68 Female 40 Flu

7 70 Female 55 Colitis

8 69 Male 60 Colon cancer

9 48 Female 59 Flu

Table 2. 3-Anonymity version of original data.

Cluster Weight Sex Age Disease

C1

70.33 Male [30–39] Pneumonia

70.33 Male [30–39] Pneumonia

70.33 Male [30–39] Pneumonia

C2

63.33 Female [40–49] Bronchitis

63.33 Female [40–49] Colon cancer

63.33 Female [40–49] Flu

C3

62.33 Female [50–59] Colitis

62.33 Female [50–59] Colon cancer

62.33 Female [50–59] Flu

Table 3. 3-Anonymity 2-Diversity version of original data.

Cluster Weight Sex Age Disease

C1

64.66 Female [40–49] Pneumonia

64.66 Female [40–49] Colon cancer

64.66 Female [40–49] Colitis

C2

57.33 Female [40–49] Pneumonia

57.33 Female [40–49] Flu

57.33 Female [40–49] Flu

C3

74.00 Male [40–49] Pneumonia

74.00 Male [40–49] Colon cancer

74.00 Male [40–49] Bronchitis

While KA is effective in preventing identity disclosure, it remains vulnerable to
attribute disclosure attacks. Specifically, if the range of sensitive attribute values within a
k-anonymous cluster is limited, there is a risk of inferring the value of individuals’ sensitive
attributes. Several extended KA models have been proposed to address this issue [11],
including LD [6], which ensures a minimum degree of diversity (l) of sensitive values in
each cluster.

Table 3 shows 3-anonymity and 2-diversity to the original data presented in Table 1.
All records within each cluster in Table 3 have the same value for the quasi-identifier but
contain distinct values for the sensitive attribute. This means that even if an adversary
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knows the cluster containing a target individual’s record, they cannot narrow down or
disclose the person’s specific sensitive value (disease).

However, LD also has drawbacks [12]. For example, if an attacker knows that a
person’s record is in cluster C2 in Table 3, they can infer that the person has the Flu with a
probability of 66%. To address these limitations, Li et al. [7] introduced the concept of TC.

To meet TC requirements, the distribution of sensitive information must be similar
for each group of indistinguishable records and the entire original dataset. Table 4 shows
an anonymized version of the original data from Table 1 that satisfies 3-anonymity and
0.33-closeness. This anonymized table is safe for public release because it protects the
privacy of the individuals in the dataset. In addition to protecting against the attacks men-
tioned above, TC also offers safeguards against potential skewness attacks and similarity
attacks, as detailed in [7].

Table 4. A 0.33-Closeness version of original data.

Cluster Weight Sex Age Disease

C1

74.00 Male [40–49] Pneumonia

74.00 Male [40–49] Colon cancer

74.00 Male [40–49] Bronchitis

C2

61.00 Female [40–49] Pneumonia

61.00 Female [40–49] Flu

61.00 Female [40–49] Flu

61.00 Female [40–49] Pneumonia

61.00 Female [40–49] Colon cancer

61.00 Female [40–49] Colitis

TC provides stronger privacy guarantees compared to other techniques like LD. It
protects against attribute disclosure by restricting the distance between sensitive attribute
distributions in any cluster and the original distribution. The parameter t effectively
controls the balance between privacy protection and data utility. Decreasing t enhances
privacy by requiring sensitive attribute distributions to more closely mirror the original
distribution. However, it can reduce utility if overly strict clustering is needed to satisfy
the tighter threshold. Conversely, increasing t may compromise privacy protection as it
allows more divergence from the original distribution. However, it can improve utility by
permitting more flexible clustering.

The Earth Mover’s Distance (EMD) [13] is used to calculate the TC metric using
variational distance [7,14] as follows:

EMD(P, Q) =
1
2

m

∑
i=1
|pi − qi| (1)

where pi and qi are the probabilities of distributions P and Q, respectively. It is assumed that
|P| = |Q| = m and both P and Q are normalized distributions, that is ∑m

i=1 pi = ∑m
i=1 qi = 1.

As Figure 1 shows, there is an inverse relationship between data privacy and data
utility, meaning that improving one inevitably reduces the other [15]. Therefore, a funda-
mental goal of anonymization is to balance these two factors when creating an anonymized
dataset suitable for publication. This balance requires determining an acceptable trade-off
between privacy and utility.



Entropy 2023, 25, 1613 5 of 26

D
at

a 
P

ri
va

cy

Data Utility

High Privacy
Low Utility

Low Privacy
High Utility

Figure 1. Trade-off between privacy and utility level.

Table 5 summarizes the key abbreviations used throughout this paper for ease of reference.

Table 5. The main abbreviation used in the paper.

Description Abbreviation

K-Anonymity KA
L-Diversity LD
T-Closeness TC

Information Loss IL
Earth Mover’s Distance EMD

Normalized Avarege QI-group CAVG
Average Distortion Ratio ADR

Greedy Clustering-based Anonymization Algorithm GCAA

The Contribution

In recent years, researchers have explored clustering-based anonymization methods
to protect people’s privacy from potential intruders [16–20]. These methods involve identi-
fying important attributes to anonymize and using clustering techniques to group records
according to their characteristics and similarities. The desired level of privacy protection
can be achieved by modifying the attribute values of records within each cluster [21].

Byun et al. formulated the KA problem as a clustering problem and proposed the k-
member algorithm to achieve optimal KA [20]. To enhance this algorithm, Honda et al. [22]
developed a fuzzy variant of the k-member algorithm. Rahimi et al. [23] successfully
implemented all three KA, LD, and TC restrictions on the original microdata using the
X-means clustering algorithm. Langari et al. [24] also satisfied all three aforementioned
constraints by formulating the anonymization problem as an optimization problem and
subsequently employing an evolutionary algorithm and modifications to sensitive attribute
values. Abbasi et al. [16] introduced a clustering process using the K-means++ method to
achieve optimal KA.

Most real-world datasets contain non-numerical data (categorical data), which presents
challenges for anonymization using generalization and suppression since categorical fea-
tures lack natural distance metrics. For example, quantifying the distance between two
different occupations, such as ‘dentist’ and ‘farmer’, is difficult. Therefore, most exist-
ing anonymization methods often focus on numerical data. This paper designs a novel
approach for anonymizing categorical data using a greedy and information-theoretic
clustering-based algorithm to protect microdata privacy against identity and attribute
disclosure attacks.

The algorithm aims to minimize mutual information loss of records within each cluster
while ensuring strict privacy protection. To this end, the clustering-based anonymization
algorithm operates on a binary data table converted from the original data table. The
output is an anonymized binary data table where some attribute values have been modified
to achieve strict privacy protection.
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The proposed method is specifically designed to anonymize non-numerical microdata
so it can be publicly released for research and knowledge discovery while protecting privacy.
We evaluated the proposed algorithm against four different approaches, including state-of-
the-art methods, on three different datasets. The results demonstrated its superiority in
achieving strict privacy protection while preserving data utility. It ensures that each cluster
satisfies both KA and TC, protecting the anonymized data against identity and attribute
disclosure attacks.

To summarize, the key contributions of this study are:

• Proposing a 3-phase anonymization algorithm that aims to achieve strict privacy
protection while maximizing the data utility.

• To form clusters, we used the loss of mutual information and proposed an agglomera-
tive clustering based on information bottleneck.

• Considering the diversity of sensitive values in addition to the similarity of quasi-
identifier values during clustering to reduce the cost of implementing privacy constraints.

The paper is structured as follows: Section 2 introduces the key fundamental con-
cepts necessary to understand privacy-preserving data anonymization, while Section 3
reviews existing methods. Section 4 then provides a detailed explanation of the proposed
anonymization algorithm. In Section 5, an empirical performance evaluation and compar-
ison of GCAA is conducted against four state-of-the-art benchmark methods. Both the
privacy protections and utility preservation of the different algorithms are analyzed and
discussed. Finally, Section 6 offers conclusions and outlines potential future work.

2. Basic Definition

Datasets can be modeled as tables, with each row containing a record of an individual
and each column containing values related to their features. Features in tables to be
anonymized are often classified into four main categories [25].

• Direct identifiers: Such as names, national ID numbers, and email addresses, allow
for direct identification of individuals. Thus, it is essential to remove them from the
original data table before anonymizing the data.

• Quasi-identifiers: They are attributes that do not directly identify an individual but can
be used to do so when linked to external data sources.

• Sensitive Attributes: They are confidential information that individuals may not want
to share publicly. Disclosing this information to third parties can be harmful and may
be misused. Examples of sensitive attributes are disease, income, and political or
religious views.

• Non-Sensitive Attributes: They are any information that does not fall into the other
categories. Examples of non-sensitive attributes include physical characteristics such
as eye or hair color. Non-sensitive attributes are only released if they are essential for
further analysis.

Orooji et al. [26] classified disclosure into two types: identity disclosure and at-
tribute disclosure.

• Identity Disclosure: Individuals can be identified from a dataset with accurate identity
disclosure. External information sources, such as voter lists, can be used to identify a
person, as shown in Figure 2.

• Attribute Disclosure: It occurs when an attacker can link a person to a sensitive attribute
in a dataset. This is often the result of identity disclosure, which uniquely identifies an
individual and makes it easier to associate their sensitive attributes [27].

By linking a person to a record in the anonymized dataset using external sources, an
attacker can identify that record and associate the values of its sensitive attributes with
the person’s identity, a process known as re-identification. The KA is proposed to avoid
re-identification.
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Figure 2. Identity disclosure using external information.

2.1. k-Anonymity

Given a data table T, the KA model requires that every record in the modified data
table T∗ be indistinguishable from at least k-1 other records with respect to their quasi-
identifiers. To achieve KA, the original dataset is partitioned into equivalence classes, each
containing at least k members sharing the same quasi-identifier values. These equivalence
classes can be referred to as QI-groups [28] or QI-clusters [29].

2.2. l-Diversity

The LD is a more robust privacy notion than KA, addressing some of the latter’s
limitations. A cluster is l-diverse if it contains at least l distinct values of the sensitive
attribute. A table is considered l-diverse if all its clusters satisfy the LD criterion. The LD
principle ensures that each cluster has at least l distinct values for the sensitive attribute [7].

2.3. t-Closeness

The primary objective of the TC is to restrict the information an attacker can extract
about sensitive attribute values within a particular cluster. It achieves this by requiring
the distribution of sensitive attribute values within each cluster to be sufficiently similar to
the distribution of sensitive attribute values in the entire dataset. The TC privacy metric
is successful when all clusters satisfy the constraint. A cluster satisfies TC if the distance
between the two distributions is smaller than t.

2.4. Information Theory Concept

Because our new privacy framework uses an information theory metric, we briefly
overview the basic concepts of information theory [30] used in this paper.

• Information Entropy: Information entropy, also known as Shannon entropy, is the
average amount of information in each event. The more uncertain an event is, the
higher its entropy; the less uncertain an event is, the lower its entropy. Let X be a
discrete random variable that takes its values from the set X′. If P(xi) is the probability
density function of values xi (xi∈X′), the entropy of variable X is defined as follows:

H(X) = − ∑
xi∈X′

P(xi) log P(xi) (2)

• Conditional Entropy: It measures the uncertainty associated with a random variable
given the value of another random variable. Let Y be another discrete random variable
with values yj taken from the set Y′. The conditional entropy H(Y|X) is calculated
as follows:

H(Y|X) = − ∑
xi∈X′

P(xi) ∑
yi∈Y′

P(yi|xi) log P(yi|xi) (3)
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Conditional entropy measures the additional information required to predict the value
of Y given the value of X, beyond what can be predicted from X alone.

As shown in Figure 3, it can be used to measure the uncertainty in predicting the
value of a discrete random variable when the value of another variable is known. Mutual
information measures the extent to which knowing the value of one variable enables the
prediction of another.

𝑯(𝑿|𝒀) 𝑯(𝒀|𝑿)
𝑰 𝑿; 𝒀
= 𝑰(𝒀; 𝑿)

𝑯(𝑿) 𝑯(𝒀)

Figure 3. Relation between mutual information and conditional entropy.

• Mutual information: Mutual information is expressed as follows:

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = I(Y; X) (4)

where I(X; Y) = 0 if and only if X and Y are independent random variables.

This concept enables us to identify which clusters can be merged at each stage of the
clustering process to minimize mutual information loss.

• Kolbeck-Leibler (KL) divergence: KL divergence, also known as relative entropy, is
a metric that measures the dissimilarity between two probability distributions. It
provides a criterion for determining how different one distribution is from another. A
KL divergence value of 0 indicates that the two distributions are similar in behavior,
though not necessarily identical. Conversely, a value of 1 for this measure implies that
the two distributions exhibit opposite behaviors. Given two probability distributions,
P and Q, defined over a set F, the KL divergence quantifies how much they diverge
from each other.

DKL[P||Q] = ∑
f∈F

P( f ) log
P( f )
Q( f )

(5)

3. Related Work

Most state-of-the-art anonymization techniques use a clustering-based KA algorithm
to achieve privacy preservation. These techniques partition input data into distinct clusters,
containing a minimum of k records, before applying anonymization operations to create an
anonymized output. The following section investigates several representative approaches
to privacy-preserving.

LeFevre et al. [31] introduced the Incognito algorithm, a bottom-up approach that
utilizes global generalization to generate an optimal k-anonymous dataset. However, this
method has a high level of IL due to the full-domain generalization technique, which can
negatively impact the usefulness of the anonymized data. To address this issue, Ref. [32]
proposed a top-down greedy algorithm called Mondrian, which uses local recoding to
generate an optimal k-anonymous dataset.

Byun et al. [20] proposed a clustering-based approach to solve the KA problem using
a k-member greedy algorithm to find the optimal solution. The method partitions the
dataset into clusters with at least k members and generalizes the quasi-identifier values in
each cluster to achieve KA. However, it is sensitive to outlier records because it selects the
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furthest record from the previous cluster to create a new one, which leads to a high amount
of IL. Honda et al. [22] introduced a fuzzy version of this approach that considers the
degree of fuzzy membership when assigning records to clusters. However, this approach
may overfit the data to satisfy KA, a significant drawback.

Abbasi et al. [16] proposed a clustering-based approach for privacy preservation
in healthcare datasets. They first used the normal distribution function to identify and
remove less frequent data, which is more vulnerable to privacy breaches. Then, they
used the K-means++ algorithm to generate clusters during the clustering process. Finally,
they applied the KA algorithm to each cluster separately to achieve the desired level of
privacy preservation.

Truta et al. [29] proposed a p-sensitive k-anonymous technique to protect against ho-
mogeneity and background knowledge attacks. The algorithm ensures that each equivalent
class has at least p distinct values (p ≤ k). However, this technique leads to a high degree
of IL when the distribution of sensitive attribute values is not uniform. To enhance this
approach, Sun et al. [28] proposed two improved versions of the p-sensitive k-anonymity
technique: p+-sensitive k-anonymity and (p, α)-sensitive k-anonymity. Their approach first
categorizes the sensitive attributes and then focuses more on the categories of sensitive
values rather than their specific values. However, this method may still result in a high
amount of IL in particular scenarios.

Solanas et al. [33] proposed a heuristic microaggregation-based algorithm to apply
p-sensitive k-anonymity to the original dataset. Their algorithm first creates clusters with
at least k members that satisfy the p-sensitive k-anonymity property. To achieve this, it
randomly selects a record and then adds the closest records with different sensitive values
to form the cluster. Finally, the algorithm anonymizes the original dataset by replacing the
values of each record with the values of the cluster centroid to which the record belongs.
This method reduces the loss of information and provides higher data utility than other
p-sensitive k-anonymity techniques.

Existing approaches that incorporate diversity in sensitive values have limitations,
especially in protecting individuals’ privacy from attribute disclosure attacks. Researchers
have suggested a privacy-preserving model known as TC to address this drawback.

Rahime et al. [23] proposed a 3-layer clustering algorithm that applied KA, LD, and
TC constraints for anonymizing the original dataset. This approach protected individuals’
privacy against identity and attribute disclosure attacks, but its main weakness was the
high amount of IL.

Langari et al. [24] proposed a hybrid approach for anonymizing graph and tabular
data. Their method first partitions the data into clusters with at least k members using the
fuzzy clustering technique and then uses the Firefly evolutionary algorithm to optimize the
anonymization and clustering parameters simultaneously. LD and TC were implemented
using the modification of sensitive values. However, its scalability is questionable due to
the use of an evolutionary algorithm.

Our Contributions against the Existing Methodology

Table 6 summarizes several state-of-the-art algorithms. These algorithms use different
anonymization techniques and operations. According to the table, most algorithms were
designed to satisfy only the KA constraint and do not adequately protect anonymized data
against attribute disclosure attacks. Algorithms that provide more protection by satisfying
LD or TC constraints suffer from a high amount of IL or low data utility. This is because
almost all of these algorithms only consider the similarity of quasi-identifiers when creating
clusters. Therefore, to satisfy the privacy limitation, they are forced to merge more clusters,
which in the worst case, could result in a single cluster with zero data utility.

Most anonymization techniques use generalization operations, which tend to incur
high levels of IL (except for the algorithms in [24,33]). However, anonymization inherently
reduces data usefulness to some degree by obscuring details. Therefore, it is crucial to
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consider the trade-off between privacy and IL to maintain the utility of anonymized data
for knowledge extraction.

Table 6. The review of state-of-the-art privacy-preserving algorithms.

Paper Privacy Model Operation Key Demerits

[29] KA Generalization
Insufficient to protect against attribute disclosure (AD) attacks

High amount of IL

[33] KA, LD Microaggregation Insufficient to protect against AD attacks

[22] KA Generalization
Insufficient to protect against AD attacks

Overfitting to data

[23] KA, LD, TC Generalization
High amount of IL

Low amount of data utility

[16] KA Generalization Insufficient to protect against AD attacks

[24] KA, LD, TC Perturbation
High computational complexity

Lack of scalability

Compared to the proposed method, most investigated approaches perform poorly in
maintaining the trade-off between privacy protection and data usefulness. Additionally,
unlike the proposed method, some of these techniques remove data points from the table
as outliers, while others change the values of the sensitive attributes to meet the LD and
TC requirements. This leads to a significant decrease in the usefulness of the data.

To overcome the limitations of prior work, a new greedy, information-theoretic cluster-
ing algorithm is proposed for microdata anonymization. It differs from existing techniques
in several important ways:

• The proposed algorithm clusters data points by considering both the similarity of
quasi-identifier values and the diversity of sensitive values within each cluster. This
approach ensures that clusters have high intra-cluster similarity for quasi-identifiers
and high intra-cluster diversity for sensitive attribute, which reduces both the modifi-
cation of values and the merging of clusters as a result of increasing the usefulness of
the data.

• The proposed algorithm protects released data from identity and attribute disclosure
attacks by satisfying the KA and TC privacy constraints. These constraints ensure that
individuals are indistinguishable from the anonymized data and that the distribution
of sensitive attribute values is preserved.

• As shown in Figure 1, there is a trade-off between data privacy and data utility. Exist-
ing methods prioritize data privacy at the expense of data utility, but our algorithm
achieves strict privacy by adhering to KA and TC while minimizing IL. This approach
strikes a balance between data privacy and utility, ensuring that the anonymized data
remains useful for its intended purposes.

4. Proposed Approach

Creating a dataset that satisfies the TC constraint through generalization involves
solving an optimization problem to determine the minimum generalization required to
meet the TC requirement. A common strategy for this is an iterative process of progressively
generalizing one or more attributes until the resulting dataset meets the TC constraint.

Traditional methods for achieving TC first cluster records into groups containing at
least k members to ensure KA. KA can be achieved through generalization techniques that
replace quasi-identifier values with broader categories or microaggregation techniques
that substitute original values with statistical approximations. Next, the methods merge
clusters of records to construct a t-close dataset. The clusters are progressively merged to
minimize the distance between sensitive attribute distributions across merged clusters. The
distance metric guides the selection of cluster mergers, identifying combinations that most
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reduce divergence between clusters’ sensitive field distributions. This process continues by
merging clusters until all satisfy the threshold for TC.

Generating t-close datasets using the traditional methods is costly, primarily due to
the reduction in data utility. A key factor is the lack of consideration for sensitive attribute
value diversity during initial clustering. Real-world datasets often contain records with
similar quasi-identifiers but different sensitive attribute values. To enhance data utility,
our proposed approach generates clusters having more similar quasi-identifiers and more
diverse sensitive values. Additionally, merging clusters to achieve t-closeness can severely
compromise data utility, sometimes rendering it entirely useless (all clusters merged into
one). A more effective strategy could be to swap records between clusters instead of
merging clusters, which could potentially mitigate this problem.

Pre-processing, clustering, and adjustment are the three phases of the proposed ap-
proach to generating anonymized datasets. In the pre-processing phase, the original data
table T is converted into a binary table, Tb, with values of 1 or 0. Tb is then normalized to
the range [0, 1] and divided into two subtables: quasi-identifier, TQI , and sensitive attribute,
TSA. In the clustering phase, a bottom-up clustering algorithm is used to generate clusters
with similar quasi-identifier values but distinct sensitive values within each cluster. Finally,
to create the anonymized table T∗, which satisfies the KA and TC requirements for strict
privacy, we apply an adjustment process. The quasi-identifier values in each cluster are
replaced with the centroid quasi-identifier value to anonymize the data. Figure 4 shows the
overall workflow of the proposed approach.

4.1. Pre-Processing

The original input data table T contains n records from the setR, each of them having
m values of attributes from the set F which is represented by the matrix M.

First of all, attribute values are converted to binary values. Let feature Fj from the set
F have a value domain Fj = {vj1, vj2, . . . , vjdj

} (for each j = 1, 2, . . . , m). Therefore, each
record r ∈ R takes exactly one value from the set Fj for its jth feature. Let F = F1 ∪ F2
∪ . . .∪ Fm be the set of all possible values of the attributes in the original table. Also, let
d = d1 + d2 + · · ·+ dm be equal to the size of F.

In this case, the original matrix converted to a matrix Mb with the size n× d, where
each record r ∈ R in this matrix is a vector with binary values of features size d. If the
record r contains the attribute value f , the value of Mb[r, f ] equals 1, otherwise is equal to
0. For example, according to Table 7, the first feature is the Gender, and its values domain is
{Male, Female}. In the binary table, if the person is male, only the attribute Male value is 1
and Female value is 0, and vice versa.

Table 7. Original data table (T).

Quasi-Identifiers Sensitive Attributes

ID Gender Status Nationality Disease Salary

1 Male Married Russian HIV >50 K

2 Female Single American Flu >50 K

3 Female Married Iranian Cancer ≤50 K

4 Male Married Iranian HIV ≤50 K

5 Male Single American Cancer >50 K

Next, we identify quasi-identifiers and sensitive attributes in the data table and parti-
tion the feature set F into two sets, FQI and FSA. We then construct two sub-tables, TQI
and TSA, from the original data table, ensuring that each record retains its unique ID across
both sub-tables. In the next step, we normalize the values in both sub-tables to lie within
the interval [0, 1], so that the sum of the values for each record in each sub-table equals 1.
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Figure 4. Overall flowchart of the proposed algorithm.

Let R and F (FQI and FSA) be discrete random variables whose values are taken
from sets R and F , respectively. In this case, each record in the two sub-tables has
the conditional probability distribution P( fQI |r) (for all fQI∈FQI) and P( fSA|r) (for all
fSA∈FSA), respectively. The normalized sub-tables of the original Table 7 are shown in
Tables 8 and 9.

Table 8. The normalized quasi-identifiers version (TQI) of Table 7.

The Quasi-Identifiers Values Domain

ID Male Female Married Single Russian American Iranian

1 1/3 0 1/3 0 1/3 0 0

2 0 1/3 0 1/3 0 1/3 0

3 0 1/3 1/3 0 0 0 1/3

4 1/3 0 1/3 0 0 0 1/3

5 1/3 0 0 1/3 0 1/3 0
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Table 9. The normalized sensitive attribute version (TSA) of Table 7.

The Sensitive Attributes Values Domain

ID HIV Flu Cancer >50 K ≤50 K

1 1/2 0 0 1/2 0

2 0 1/2 0 1/2 0

3 0 0 1/2 0 1/2

4 1/2 0 0 0 1/2

5 0 0 1/2 1/2 0

4.2. Clustering

The two sub-tables generated in the previous phase, TQI and TSA, serve as input
to the clustering phase. The proposed bottom-up clustering algorithm simultaneously
considers both TQI and TSA to group the records. The goal is to form clusters where quasi-
identifier values are highly similar within each cluster, but sensitive values remain diverse.
Algorithm 1 outlines the bottom-up clustering process.

Algorithm 1 The Pseudocode for the Clustering Process

1: Input: Microdata table T with n×m dimensions, parameters K, T, β, and γ
2: Output: Clusters C1, C2, . . . , Cc (c < n)
3: Let n: the number of records, m: be the number of features, and d: the size of the feature

values domain, S: the distribution of sensitive values in the dataset.
4: Convert data table T to binary table Tb with n× d dimensions
5: Select quasi-identifiers and sensitive attributes, then establish two sub-tables TQI and

TSA with unique ID
6: Initially, let each record be a distinct cluster, Cn = (c1, c2, . . . , cn)
7: Calculate P(ci) based on Equation (6) for i = 1, 2, . . . , n
8: while δI(cn+1)− δI(cn) ≤ γ do
9: Calculate δI(ci, cj) based on Equation (13) for all i 6= j

10: Select a pair of clusters cx, cy that have minimum δI(cx, cy)
11: if |cx|+ |cy| ≤ K + β then
12: if EMD(cx ∪ cy, S) < min(EMD(cx, S), EMD(cy, S)) then
13: Merge cx and cy, and update both sub-tables based on Equations (8) and (9)

and go to Line 7
14: else
15: Select the next pair of clusters and go to Line 12
16: end if
17: else
18: Select the next pair of clusters and go to Line 11
19: end if
20: end while
21: Return obtained clusters C1, C2, . . . , Cc

A k-clustering Ck partitions the records of data table T into k clusters
Ck = {c1, c2, c3, . . . , ck}, where each cluster ci ∈ Ck has three properties as follows: (1) |ci| 6= 0,
(2) ci ∩ ci = 0 for all i, j, i 6= j, (3) ∪k

i=1ci = T. We define the probability of each record r in
data table T as p(r) = 1/n, where n is the number of records in T. Then, for each cluster
c ∈ ck we have:

P(c) = ∑
r∈c

P(r) =
|c|
n

(6)

For example, from Tables 8 and 9, one can conclude that P(ri) =
1
5 for i = 1, 2, . . . , 5.

In addition, P( fQI |r1) and P( fSA|ri) are the feature vectors for the quasi-identifier and
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sensitive attribute of record r1, respectively. They are equal to [1/3, 0, 1/3, 0, 1/3, 0, 0] and
[1/2, 0, 0, 1/2].

Initially, each record is assumed to be an independent cluster. We denote this partition
as Cn, where Cn is a partition with n clusters {c1, c2, . . . , cn} such that:

P(ci) = 1/n, (i = 1, 2, . . . , n) (7)

At each iteration, the proposed algorithm seeks to generate a new cluster with similar
quasi-identifier values and distinct sensitive values from the existing clusters. To this end,
we employ the Agglomerative Information Bottleneck algorithm [34]. The algorithm starts
with a Cn partition. In this case, I(F; R) = I(F; Cn), and in each step, it merges two clusters,
reducing the number of clusters by one. According to the definition of mutual information,
this causes an increase in the uncertainty of predicting the features with respect to clusters,
or, equivalently, a reduction of the information that clusters contain about the values of
the features, i.e., I(F; Cn−1) ≤ I(F; Cn). We use δI to represent this information reduction.
Therefore, at each step, the algorithm attempts to merge the pair of clusters with the
minimum δI.

After merging two clusters ci and cj, new cluster cij has:

P(cij) = P(ci) + P(cj) (8)

P( f |cij) =
P(ci)

P(cij)
P( f |ci) +

P(cj)

P(cij)
P( f |cj) (9)

for all f∈F. Tishaby et al. [35] showed that:

δI(ci, cj) = P(cij)× JSD[P( f |ci), P( f |cj)] (10)

for all f ∈ F. JSD in Equation (10) is the Jensen-Shannon divergence defined below:

JSD[P( f |ci), P( f |cj)] =
P(ci)

P(cij)
DKL[P( f |ci)||P̄] +

P(cj)

P(cij)
DKL[P( f |cj)||P̄)] (11)

where DKL is KL divergence, and P̄ is avarge distribution of P( f |ci) and P( f |cj) and calculated
by Equation (9). Finally, the δI(ci, cj) which i 6= j is calculated with the following formula:

δI(ci, cj) = P(ci) ∑
f∈F

P( f |ci) log
P( f |ci)

P( f |cij)
+ P(cj) ∑

f∈F
P( f |cj) log

P( f |cj)

P( f |cij)
(12)

where δI(ci, cj) = δI(cj, ci).
At each step, the proposed algorithm calculates δI of each pair of clusters ci, cj (i 6= j)

for both sub-tables TQI and TSA as δIQI(ci, cj) and δISA(ci, cj), respectively. Then δIF(ci, cj)
is calculated according to the following formula:

δIF(ci, cj) = δIQI(ci, cj)− δISA(ci, cj) (13)

At each step, the algorithm aims to merge the pair of clusters with the minimum δIF
value. However, if two clusters have identical quasi-identifiers (i.e., δIQI = 0), the algorithm
selects the pair of clusters with the highest diversity in sensitive values for merging. By
following this strategy, we can step-by-step create clusters of records with similar quasi-
identifiers but different sensitive values. This process reduces IL and improves the quality
of anonymous data.

To create balanced clusters and minimize changes during TC enforcement, our al-
gorithm imposes two additional restrictions on merging. To speed up the process and
create more evenly sized clusters, we remove any cluster that has between k and k + β (i.e.,
k ≤ |c| ≤ k + β) data points from the clustering process. To make it easier to enforce TC dur-
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ing the adjustment phase, two clusters are merged only if they meet the following criteria:

EMD(Scij , S) < min(EMD(Sci , S), EMD(Scj , S)) (14)

where S is the distribution of sensitive values in the entire dataset, and Sci is the distribution
of sensitive values in cluster i.

The algorithm runs until it reaches a stopping point, defined as follows: if the change
in mutual information after each merging step δIF exceeds the threshold γ, the merging
process stops, and the final clusters are formed.

4.3. Adjustment

The adjustment phase is a crucial step in the proposed algorithm to satisfy the KA
and TC constraints. It takes as input the set of clusters generated in the clustering phase,
denoted as C1, C2, . . . , Cc, and outputs a new set of clusters, denoted as C∗1 , C∗2 , . . . , C∗c∗
(c∗ ≤ c), that all satisfy the KA and TC constraints while preserving the data quality.
The resulting anonymized table T∗ can be easily constructed using the modified clusters.
Algorithms 2 and 3 present the pseudocode for the adjustment phase.

Algorithm 2 The Pseudocode for the Adjustment Phase

1: Input: Clusters C1, C2, . . . , Cc, parameter K and T
2: Output: Clusters C∗1 ,C∗2 , . . . ,C∗c∗ (c∗ ≤ c), Anonymized table T∗

3: Let D1, D2, D21, and D22 be empty sets
4: Let SortedList: Sort all clusters based on their EMD in descending order
5: for i = 1, 2, . . . , c do
6: if Ci satisfy KA and TC then
7: ADD Ci To D1
8: else
9: ADD Ci To D2

10: end if
11: end for
12: for j = 1, 2, . . . , |D2| do
13: if |Cj| ≥ K then
14: ADD Cj To D21
15: else
16: ADD Cj To D22
17: end if
18: end for
19: for all clusters c in D22 do
20: while c is not empty do
21: Randomly select a record r From c
22: c = c \ {r}
23: p = Findthebestcluster(SortedList, r)
24: p = p ∪ {r}
25: end while
26: end for
27: for all clusters c in D21 do
28: while c is not empty do
29: Randomly select a record r from c
30: c = c \ {r}
31: p = Findthebestcluster(SortedList, r)
32: p = p ∪ {r}
33: end while
34: end for
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Algorithm 3 Function: Findthebestcluster(C,r)

1: Input: A set of clusters C that sorted based on their EMD in descending order, and a
record r

2: Output: A cluster c ∈ C such that the EMD(c∪{r}, S) is decreased
3: Let n = |C|, best = null
4: for i = 1, 2, . . . , n do
5: if EMD(ci∪ r, S) < EMD(ci, S) then
6: best = ci with the lowest ADR value
7: break
8: end if
9: end for

10: Return best

The input set of clusters is partitioned into two subsets: D1, which contains the clusters
that satisfy both KA and TC, and D2, which contains the clusters that do not meet one or
both of these constraints. D2 is further partitioned into two subsets: D21, which contains
clusters with more than k records, and D22, which contains clusters with less than or equal
to k records.

The algorithm then proceeds to modify the clusters in D22 by transferring their records
to clusters in D21 using the Findthebestcluster function to minimize the EMD between the
merged clusters. If the EMD of the modified cluster is less than or equal to the predefined
threshold T, the cluster is moved from D21 to D1.

The process continues until D22 is empty. If D21 is not empty, the algorithm selects the
cluster with the highest EMD value and transfers its records to the best cluster based on
the Findthebestcluster function until all clusters in D21 satisfy the TC constraint and are
moved to D1.

5. Performance Evaluation and Discussion

To evaluate the proposed algorithm, we use two metrics to measure the quality of
anonymized datasets.

• Normalized Avarege QI-group (CAVG): The metric was proposed by [32]. It measures
the quality of the KA constraint. The closer the value to 1, the better the result. The
normalized average group is defined as follows:

CAVG =
N

C× k
(15)

where C is the number of clusters and k is the privacy parameter.
• Average Distortion Ratio (ADR): This metric measures the amount of distortion (IL)

introduced by the anonymization process. If a feature value is not changed, there is
no distortion. If a feature value is changed, the distortion increases by 1. The metric is
defined as follows:

ADR =
∑N

i=1 ∑d
j=1 Fij

N × d
(16)

where Fij = 1 if jth features of record i is modified and 0 otherwise, N is the number
of records, and d is the domain of the feature values.

To assess the effectiveness of the algorithm in protecting against identity and attribute
disclosure attacks, we use two penalty criteria: PKA and PTC. These criteria are defined
as follows:

• PKA is incremented by 1 if any cluster does not satisfy the KA constraint.
• PTC is incremented by 1 if any cluster does not satisfy the TC constraint.

These criteria enable an evaluation of the algorithm’s ability to satisfy the desired
privacy constraints while minimizing the risk of information disclosure.
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The proposed anonymization algorithm was developed in Python version 3 and
implemented on a personal computer with a 2.6 GHz (Core i7) processor and 16 GB
of memory. The effectiveness of the proposed Greedy Clustering-based Anonymization
Algorithm (GCAA) was compared to four other clustering-based anonymization techniques:
K-anonymity L-diversity T-closeness 3Layer (KLT3L) [23], K-member Fuzzy Clustering
Firefly Algorithm (KFCFA) [24], P-Sensitive K-Anonymity (PSKA) [28], and Fuzzy K-
Member Clustering (FKMC) [22]. The comparison was performed in terms of their ability
to protect against identity and attribute disclosure attacks.

To ensure a fair comparison with existing methods, we designed our experiment
to match the setup of [24] as closely as possible. We used three microdata sets (https:
//snap.stanford.edu/data/, accessed on 10 February 2023) that were also used in the [24].
Each dataset contained a table of records, with each record having a set of features. The
details of the microdata sets are summarized in Table 10.

Table 10. Microdata sets characterstics.

Dataset Number of Records Number of Features The Domain of Features Values

Facebook 347 19 224
Twitter 244 28 1364

Google+ 352 6 289

The level of protection against intruder attacks increases with higher values of k and t
but at the cost of increased I. To assess the performance of our algorithm under different
conditions, we considered three different privacy scenarios, each with different parameter
values. A summary of the scenarios is presented in Table 11.

Considering the privacy requirements and the potential severity of intruder attacks, we
chose different values for the anonymization parameters k and t for each privacy scenario.
As shown in Table 11, we considered three scenarios, ranging from simple to strict, with
corresponding values of l set to 3, 4, and 6, respectively. We also set the parameters β
and γ to bK/2c and 0.5, respectively. To terminate the clustering process, we monitored
the difference between two consecutive δI values for merging. Clustering was stopped
when this value exceeded 0.5, at which point the current clusters were considered to be the
final clusters.

Table 11. Different privacy scenarios.

Privacy Scenario Parameter k Parameter t

Simple Privacy 4 0.7
Medium Privacy 6 0.5

Strict Privacy 8 0.3

5.1. Experimental Result for Simple Privacy Scenario

Table 12 displays the results obtained for a simple privacy scenario on the Facebook
micro dataset using the proposed algorithm. In this scenario, the algorithm generated
70 clusters from the data. Cluster sizes ranged from a minimum of four records to a
maximum of eight records. All clusters satisfied the LD requirement, containing at least
l distinct sensitive attribute values. Sensitive attribute diversity within clusters varied
between 3 and 7 different values.

Importantly, all clusters generated by the algorithm satisfied both KA and TC privacy
criteria. This is because the clustering process prioritized forming groups with a high
diversity of sensitive values. Additionally, none of the 70 clusters produced were susceptible
to attribute disclosure attacks. By ensuring sensitive attribute diversity within each cluster,
the proposed method successfully anonymized the data while preventing homogeneity
and skewness of sensitive values that could otherwise compromise privacy according to
the attribute disclosure attack model.

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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It is worth noting that, unlike other techniques, our proposed approach did not
remove any records from the original data table as outliers. These results demonstrate the
effectiveness of the algorithm in achieving both KA and TC privacy goals while preserving
data utility, as shown by retaining all records. A key advantage of our approach compared
to other anonymization methods is the ability to satisfy strong privacy standards without
eliminating any records. By clustering records rather than discarding outliers, more of the
original information can be retained for analysis purposes. Maintaining all records has
important implications for data utility, as no information is lost due to outlier removal. This
highlights the strengths of the proposed method.

Table 12 shows that while the FKMC method performed best in terms of CAVG and
ADR, it suffered from a significantly high PTC error. Although PSKA and FKMC had no
PKA errors, they remained susceptible to attribute disclosure due to their non-zero PTC
penalty errors. Only the KLT3L and KFCFA methods generated clusters that fully satisfied
the TC constraint, making them truly comparable to the proposed GCAA approach in
terms of privacy protection.

Table 12. The obtained result for a simple privacy scenario in the Facebook dataset.

Metrics Description GCAA (The Proposed Algorithm) KLT3L KFCFA PSKA FKMC

C Number of Clusters 70 16 49 18 86
CAVG Equation (13) 1.239 5.42 1.77 4.81 1.008
ADR Equation (14) 0.0197 0.07 0.005 0.001 0.001
PKA Penalty of KA 0 0 0 0 0
PTC Penalty of TC 0 0 0 17 71

Time Average Running Time 16 2.3 46 3.1 3.4

The proposed GCAA method generates more balanced clusters than KLT3L and
KFCFA, which improves CAVG by 78% and 33%, respectively, compared to KLT3L and
KFCFA. Moreover, GCAA significantly reduces ADR compared to KLT3L, although it does
not outperform KFCFA. KFCFA changes sensitive values to achieve TC, which significantly
reduces data utility, whereas GCAA does not require such changes.

Table 12 also reports the average CPU running time of each model. The proposed
GCAA algorithm showed computational performance that was nearly three times faster
than the KFCFA approach. This significant difference can be attributed to KFCFA’s use of
an evolutionary algorithm during its optimization process, which induces greater computa-
tional overhead compared to GCAA.

Figures 5–7 show a comparative analysis of C, CAVG, and ADR for three microdata
sets. The results show that the proposed GCAA algorithm performs better than KLT3L on
all three datasets and outperforms KFCFA in most cases.

Figure 5. Comparison of C for simple privacy scenario.



Entropy 2023, 25, 1613 19 of 26

Figure 6. Comparison of CAVG for simple privacy scenario.

Figure 7. Comparison of ADR for simple privacy scenario.

Figure 5 reveals that GCAA produces more balanced clusters than KLT3L for all three
datasets, resulting in higher C values. Moreover, Figure 6 shows that GCAA consistently
outperforms KLT3L in terms of CAVG across all datasets. Finally, Figure 7 demonstrates
that GCAA significantly reduces ADR compared to KLT3L on all three datasets.

In addition, GCAA achieves competitive results with KFCFA, outperforming it in
terms of C and CAVG on two datasets, as shown in Figures 5 and 6. While KFCFA performs
slightly better than GCAA in terms of ADR on one dataset, Figure 7 shows that GCAA still
achieves excellent results with a lower ADR than KFCFA on the other two datasets.

5.2. Experimental Result for Medium Privacy Scenario

To limit the anonymization process, the experimenters increased k to 6 and decreased
t to 0.5. The results were compared across different models, as shown in Table 13.

Similar to the previous scenario, FKMC outperformed other methods in terms of C
and CAVG. At the same time, GCAA, KLT3L, and KFCFA were superior to PSKA and
FKMC due to more robust privacy protection. These methods satisfied the TC constraint
in all clusters, resulting in zero PTC error. KLT3L merged many clusters to satisfy the TC
constraint, resulting in a reduction in the number of final clusters to 12. This resulted in a
larger CAVG of 4.82, which is almost four times larger than GCAA, and an ADR that was
twice as large. KFCFA outperformed the proposed GCAA in this experiment, as shown in
Figures 8 and 9.

These figures compare the C and CAVG criteria for GCAA, KLT3L, and KFCFA in the
medium privacy scenario on three microdata sets. The proposed GCAA had a lower CAVG
error in all datasets than KLT3L. KFCFA performed better than GCAA on the Facebook and
Twitter datasets, but GCAA had fewer errors than KFCFA on the Google+ dataset. Figure 10
shows a similar comparison for ADR criteria, with the proposed GCAA performing better
than KLT3L in most cases.
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Table 13. The obtained result for a medium privacy scenario in the Facebook dataset.

Metrics GCAA KLT3L KFCFA PSKA FKMC

C 43 12 49 17 57
CAVG 1.344 4.81 1.18 3.40 1.01
ADR 0.0242 0.046 0.021 0.001 0.001
PKA 0 0 0 0 0
PTC 0 0 0 17 37

Figure 8. Comparison of C for medium privacy scenario.

Figure 9. Comparison of CAVG for medium privacy scenario.

Figure 10. Comparison of ADR for medium privacy scenario.

5.3. Experimental Result for Strict Privacy Scenario

To evaluate the algorithms under an even more restrictive privacy setting, the ex-
perimenters increased the KA parameter k to 8 and decreased the TC parameter t to 0.3.
Table 14 shows the results of different approaches on the Facebook microdata set. KLT3L
and KFCFA generated 4 and 25 clusters, respectively, with CAVGs of 10.48 and 1.735. The
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proposed GCAA algorithm improved the ADR error by 70.5% and 0.7% compared to KLT3L
and KFCFA, respectively.

Table 14. The obtained result for a strict privacy scenario in the Facebook dataset.

Metrics GCAA KLT3L KFCFA PSKA FKMC

C 25 4 31 10 43
CAVG 1.735 10.84 1.399 4.33 1.0081
ADR 0.0268 0.091 0.027 0.001 0.001
PKA 0 0 0 0 0
PTC 0 0 0 10 43

Figures 11–13 compare the C, CAVG, and ADR results obtained from the proposed
GCAA, KLT3L, and KFCFA under the strict privacy scenario on three microdata sets. The
proposed approach showed superior performance by generating more balanced clusters on
the Twitter and Google+ datasets, resulting in less error than the other two methods for
CAVG and ADR criteria. Although KFCFA produced more clusters on the Facebook dataset
than the proposed GCAA, the ADR error was not lower because KFCFA significantly
changed the feature values to achieve TC.

Figure 11. Comparison of C for strict privacy scenario.

Figure 12. Comparison of CAVG for strict privacy scenario.



Entropy 2023, 25, 1613 22 of 26

Figure 13. Comparison of ADR for strict privacy scenario.

5.4. Experimental Result for Different Values of Parameter T

To investigate the impact of the parameter t, a set of experiments was carried out
where the parameter t was systematically varied from 0.3 to 0.7, while holding k and l fixed
at 6 and 4, respectively. In this analysis, the Google+ microdata set was used to observe the
effect of changing t on the C, CAVG, and ADR criteria. Since decreasing t complicates the
problem of achieving the TC constraint, it is expected to increase various error rates. As a
result, with a decrease in t, CAVG increases, indicating the appearance of larger clusters.

Figures 14 and 15 show that the proposed GCAA performs better than KLT3L and
KFCFA in terms of C and CAVG metrics, especially in scenarios where privacy is very
important. However, as seen in Figure 16, ADR increases for all methods as t decreases.
Despite its shortcomings, the proposed GCAA still outperforms KLT3L and KFCFA in strict
privacy settings.

Figure 14. Comparison of the C for different values of T in the Google+ dataset.

Figure 15. Comparison of the CAVG for different values of T in the Google+ dataset.
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Figure 16. Comparison of the ADR for different values of T in the Google+ dataset.

5.5. Discussion

In terms of privacy, the proposed GCAA strategy along with KLT3L and KFCFA fully
addresses the risks of identity and attribute disclosure attacks by satisfying both the KA
and TC requirements. The PSKA and FKMC methods only partially mitigate these risks,
as they do not perfectly satisfy TC. However, the resistance of GCAA and some other
algorithms to similarity attacks could be improved. Specifically, they currently lack a
criterion for determining the semantic similarity of attribute values during clustering. For
example, in a medical context, the algorithms have no way to judge that diseases like colon
cancer and liver cancer should be considered highly similar rather than diverse, for the
purpose of TC. Not accounting for such attribute-relatedness weakens protections against
similarity attacks.

In terms of data utility, FKMC and PSKA methods had the lowest amount of IL, as
measured by ADR, and therefore the best data utility. The proposed method and KFCFA
performed similarly well, but the KLT method lost a significant amount of IL. This suggests
that the proposed method is effective at preserving the usefulness of anonymized data for
future knowledge extraction.

In terms of computational efficiency, the clustering phase has a time complexity of
O(n2 × d2 × log n), where d is the size of the attribute’s domain and n is the number of
records. However, if n >> d, it can be concluded that the time complexity is O(n2 × log n).
The proposed adjustment phase for splitting and merging clusters has a time complexity
of O(n2).

In terms of average execution time, the proposed method outperforms KFCFA but
underperforms other methods. KFCFA is slow, unscalable, and computationally expensive
due to its evolutionary nature. The proposed method is also slower than other methods due
to its time complexity. Because it provides a high level of privacy protection and data utility,
the proposed method is suitable for anonymizing publishable data in inactive mode, where
the data owner publishes the entire anonymized dataset after making some modifications
to the original data [36]. In this case, the data owner prioritizes the level of privacy and
utility of anonymized data.

These findings are consistent with the results of other experiments, highlighting
the effectiveness of the proposed GCAA approach in achieving high privacy protection
while minimizing the distortion of the original data. A brief review of the above, key
findings emerge:

1. As privacy protection increases, the data becomes more distorted, which reduces its
usefulness. This is consistent with Figure 1.

2. The proposed GCAA method, as well as the KLT3L and KFCFA methods, can protect
data from identity and attribute disclosure attacks by meeting both KA and TC.

3. The KLT3L algorithm has higher error measures (CAVG and ADR) than the proposed
methods because it needs to merge more clusters and make more errors to meet the
TC constraint.
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4. The proposed GCAA outperforms the KFCFA method in some cases, while the
KFCFA method produces better results in other cases. However, changing the values
of sensitive features to meet the TC constraint can reduce the usefulness of the data.

5. The results demonstrate the effectiveness of the proposed GCAA algorithm. The
main reasons are: (1) It considers the diversity of sensitive feature values and the
similarity of quasi-identifier values simultaneously during clustering (2) It generates
evenly sized clusters that are consistent with the KA and TC constraints. (3) It uses an
adjustment algorithm to produce an anonymized dataset with maximum data utility.

6. Conclusions and Future Works

The proposed Greedy Clustering-based Anonymization Algorithm (GCAA) provides
a novel contribution to the field of data privacy. It uses information theory concepts and
performs bottom-up hierarchical clustering to form clusters with similar quasi-identifier
values and diverse sensitive attribute values. The algorithm iteratively merges pairs of
clusters with the minimum loss of mutual information and reduces the EMD criterion.
Clusters with a cardinality between k and k + β removed from the clustering process to
ensure that balanced clusters satisfying the KA and TC constraints are formed.

In the adjustment phase, the GCAA algorithm enforces the KA and TC constraints by
splitting and merging clusters that do not meet these requirements while reducing the EMD.
We evaluated GCAA’s performance based on the CAVG and ADR criteria and compared it
with four other methods: KLT3L, KFCFA, PSKA, and FFKMC. Our experimental results
demonstrate that GCAA efficiently forms balanced clusters while providing robust privacy
protection and preserving data quality. GCAA is a faster method than KFCFA that provides
similar levels of privacy protection and IL. However, the proposed algorithm may require
a longer execution time than some other methods due to its time complexity.

The proposed algorithm exhibits several limitations. Firstly, it is tailored for non-
numeric data, rendering it unsuitable for numerical data anonymization. Secondly, the
algorithm is confined to single-sensitive attribute scenarios. Finally, the algorithm is
restricted to tabular data and is ill-suited for graphical or structural data analysis. GCAA
has practical applications in anonymizing scalable microdata where privacy preservation is
crucial while retaining useful information for data mining purposes.

The primary objectives of our future research to enhance the proposed method include:

• Defining a criterion to evaluate the similarity between attribute values based on the
proposed structure, thereby reinforcing the algorithm against similarity attacks.

• Extending the proposed method to handle datasets with multiple sensitive attributes.
• Expanding the algorithm to anonymize numerical data in addition to non-numerical data.
• Other suitable clustering methods for categorical data could also be considered, such

as partitioning around medoids using the Gower coefficient [37]. This method is
well-suited for datasets containing binary values, similar to the data used in our
experiments. Evaluating the performance of partition around medoids and comparing
it to the proposed approach may provide additional insights.

• Reducing the time complexity of the algorithm.
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