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Abstract: In response to the growing demand for economic and social development, there has been a
significant increase in the integration of distributed generation (DG) into distribution networks. This
paper proposes a dynamic risk assessment method for voltage violations in distribution networks with
DG. Firstly, considering the characteristics of random variables such as load and DG, a probability
density function estimation method based on boundary kernel density estimation is proposed. This
method accurately models the probability of random variables under different time and external
environmental conditions, such as wind speed and global horizontal radiation. Secondly, to address
the issue of correlated DG in the same region, an independent transformation method based on the
Rosenblatt inverse transform is proposed, which enhances the accuracy of probabilistic load flow.
Thirdly, a voltage violation severity index based on the utility function is proposed. This index, in
combination with probabilistic load flow results, facilitates the quantitative assessment of voltage
violation risks. Finally, the accuracy of the proposed method is verified on the IEEE-33 system.

Keywords: distributed generation; probabilistic load flow; risk assessment; boundary kernel density
estimation; Rosenblatt inverse transform

1. Introduction

To reduce the consumption of high-carbon-emission fossil fuels, the renewable energy
sector has witnessed rapid growth. Photovoltaics (PVs) and wind turbines (WTs) have been
extensively constructed, and they have been integrated into the distribution network in
the form of distributed generation (DG), gradually transforming the conventional passive
distribution network into a complex active distribution network [1–3].

Due to the significant influence of natural environmental factors such as solar radiation,
PVs exhibit instability, marked by pronounced randomness and fluctuation [4]. Similarly,
WTs are constrained by natural factors like wind speed, resulting in strong randomness
and uncertainty [5]. The substantial integration of DG and the fluctuating loads introduce
various sources of uncertainty into the distribution network system, significantly affecting
its stable operation. This elevates the risk of voltage violations at network nodes, posing a
considerable challenge to voltage control throughout the entire grid.

Hence, scholars have embarked on research pertaining to voltage violation risk as-
sessment in distribution networks with DG [6–8]. However, the majority of these risk
assessment studies primarily rely on historical data of DG to determine “static risks” of
voltage violations at network nodes. They do not take into account load variations at
different times and the influence of external environmental factors on DG. For instance, the
load levels are typically lower during the late night compared to the afternoon, and the DG
output can significantly differ under varying environmental conditions. These factors can
lead to substantial variations in voltage violation risk in the same node at different times on
the same day or at the same time on different days. Consequently, it becomes imperative
to propose a dynamic risk assessment methodology for voltage violations in distribution
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networks with DG which can offer information for the coordination and control of network
node voltages. Given the complex operating conditions in active distribution networks,
deterministic load flow analysis methods often yield imprecise results, necessitating the
use of probabilistic load flow (PLF) for analytical computations.

PLF analysis methods can be broadly categorized into three main types: the Monte
Carlo Simulation (MCS) [9,10], the Point Estimate Method (PEM) [11,12], and analytical
methods [13]. The MCS involves the simulation of numerous random variable samples
through sampling, resulting in high accuracy but consuming a significant amount of time
for calculations. The PEM approximates the moments of the output variables based on the
characteristics of input random variables, but its computational efficiency is closely tied to
the number of variables. Analytical methods rely on relationships among input random
variables to calculate the probability statistical characteristics of output random variables.
The key challenge of analytical methods lies in handling complex convolution calculations.
Given the intricacies of convolution operations, it is possible to enhance computational
efficiency by substituting convolution calculations with cumulant operations.

Currently, there are three main issues with using the probabilistic load flow based
on the cumulant method (PLFCM) for dynamic risk assessment of voltage violations in
distribution networks with DG.

The first issue pertains to the accuracy of the probability models for random variables
such as load and DG, which directly affect the results of load flow calculations. There are
currently two main approaches to describing probability models for random variables:
parameter-based methods [14] and non-parameter-based methods [15]. Parameter-based
methods begin by assuming that the research subject follows a certain probability distri-
bution based on empirical observations. Then, they calculate the relevant parameter from
actual samples to obtain a complete probability density function (pdf). However, due to the
randomness of DG and the volatility of load, common probability density forms such as
the Beta distribution and Weibull distribution often fail to accurately reflect the actual prob-
ability distribution, leading to significant errors. Non-parameter-based methods, on the
other hand, do not require prior assumptions about the underlying probability distribution
model or prior knowledge. Instead, they directly analyze the probability distribution based
on actual data. Kernel density estimation (KDE) is the most widely used non-parameter
method [16]. However, a notable characteristic of random variables like load and DG is
that they are bounded. Traditional KDE methods, when applied to bounded data, can
exhibit boundary effects that subsequently impact the results of probabilistic load flow.
Additionally, another prominent feature of DG is its susceptibility to external environmen-
tal factors. As is well known, wind speed and global horizontal radiation are the most
important factors affecting the output of WT and PV, respectively. How to achieve dynamic
probity density estimation for DG remains an unresolved challenge under the influence
of both.

The second issue pertains to the prerequisite that input variables must be mutually in-
dependent for the application of PLFCM. Due to the consistent characteristics of renewable
energy sources in the same or neighboring areas, unit outputs often exhibit similar trends.
The existence of correlations between input variables makes it impractical to directly em-
ploy this method for probabilistic load flow, necessitating the transformation of correlated
outputs into independent ones. Presently, two widely used methods for achieving this are
the Orthogonal inverse transform [17] and the Nataf inverse transform [18]. The Orthogonal
inverse transform is straightforward and widely applied, while the Nataf inverse transform
uses the correlation coefficient matrix, taking into account changes in equivalent corre-
lation coefficients before and after transformation. However, both of these methods rely
on the Pearson correlation coefficient and cannot capture nonlinear relationships among
DGs. Moreover, they require variables to adhere to specific distribution types to achieve
higher accuracy. Furthermore, the most challenging aspect of the Nataf inverse transform
is determining the equivalent correlation coefficients. Although some scholars [19] have
provided empirical formulas for a certain number of equivalent correlation coefficients
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for the reference of other researchers, they only cover a limited range of common prob-
ability distributions. Addressing how to achieve a more precise and widely applicable
independent transformation for random variables is an issue that requires resolution.

The third issue is the establishment of a reasonable risk assessment framework, which
is a key factor in achieving voltage violation risk assessment in distribution networks
with DG. Risk is a comprehensive measure that combines the probability of an event
occurring with the severity of its consequences [20]. When conducting risk assessments,
both aspects should be taken into consideration. Traditional risk assessments often focus
solely on the probability of a voltage violation occurring, without considering the severity
of its consequences. Voltage violation events with a low probability but significant impact
should receive more attention than those with a higher probability but less significant
consequences. How to accurately portray the severity of losses resulting from risk events is
a currently unresolved issue.

To address the aforementioned issues, this paper proposes a dynamic risk assessment
method for voltage violations in distribution networks with DG. Firstly, a pdf estimation
method is proposed, based on boundary kernel density estimation (BKDE), to overcome the
problem of errors at boundary points when handling bounded data. Moreover, considering
the significant impact of wind speed and global horizontal radiation on DG, conditional
density is introduced to enable the dynamic probability density estimation of DG based on
numerical weather prediction (NWP). Secondly, an independent transformation method
based on the Rosenblatt inverse transform is proposed. This method accurately character-
izes the correlations between DG variables, achieving an independent transformation of
variables, and laying the foundation for subsequent PLFCM. Thirdly, a voltage violation
severity index based on the utility function is proposed. By combining this index, an
integrated risk assessment framework is constructed on the basis of the probability of
voltage violations. This framework quantitatively analyzes the dynamic risk of voltage
violations in distribution networks with DG at both the node and system levels. Finally,
simulation tests on the IEEE-33 system validate the rationality and effectiveness of the
proposed method.

2. Pdf Estimation Based on BKDE

KDE is a data-driven, non-parametric method for estimating pdf and has the advan-
tage of being unaffected by the choice of prior models [21]. It is commonly used for data
fitting when it is challenging to directly obtain the underlying pdf. This method is suitable
for analyzing the probability characteristics of load and DG. Hence, in this paper, the KDE
method is employed for estimation.

Given a set of independently and identically distributed data, X1, ..., XN, with an
unknown density function f (x), the KDE is calculated as follows:

f̂X(x) =
1

Nh

N

∑
i=1

K
(

x − Xi
h

)
(1)

where K(·) represents the kernel function; N represents the sample size; h represents the
bandwidth; x represents the point at which the kernel density estimate is being calculated;
and Xi represents the ith sample.

The choice of the kernel function can indeed influence the results of KDE. Generally,
the direction of the sample Xi from the density point x does not affect the estimation, and
the closer the distance from x, the more weight should be assigned to Xi. Therefore, a
unimodal kernel function centered at 0 is typically chosen. In this paper, the Epanechnikov
kernel function is used:

K(z) =
3
4

(
1 − z2

)
I(|z| ≤ 1) (2)

where I(·) represents the indicator function, which has a value of 1 when z satisfies the
condition and 0 otherwise. Given z = (x − Xi)/h and substituting (2) into (1), we can obtain
the complete formula for the KDE.
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2.1. pdf Estimation for Load

Assuming in the distribution network there are NL load nodes, the load data for the
distribution network at time i, denoted as PL

i , can be expressed as follows:

PL
i =

[
PL

i1 PL
i2 . . . PL

iNL

]
(3)

where PL
ik represents the local load power measurement for node k at time i. Additionally, if

there are historical data for the load power for a total of T time, the historical load data, PL,
can be described as follows:

PL =


PL

11 PL
12 . . . PL

1NL
PL

21 PL
22 . . . PL

2NL
...

...
...

...
PL

T1 PL
T2 . . . PL

TNL

 (4)

In (4), the data for each load column can be decomposed, based on daily patterns,
into two components: the basic data with a daily cycle and the random fluctuation data.
Therefore, when performing PLFCM, the pdf for node k at time t can be calculated using
the power data set for different days at the same time t, denoted as PL,k

t .

PL,k
t = PL

(mTd+t)k, m = 0, 1, . . . ,
T
Td

− 1 (5)

where Td represents the number of monitoring sample points within one day.
However, a significant characteristic of load is that it is bounded, and its power

consumption is always greater than zero. Therefore, when performing KDE, it is necessary
to consider the impact of boundary effects.

The expression for the bias of the KDE is as follows:

Bias
[

f̂ (x)
]
=

h2σ2
k f ′′ (x)

2
+ O

(
h4
)

(6)

where σ2
k =
∫

u2K(u)du, and K(u) is the kernel function as shown in (2).
It can be observed that this bias diminishes as the bandwidth h decreases, approaching

0 at a rate of h2. However, when the pdf has a boundary at 0, the above expression is no
longer applicable. Instead, it is replaced by:

E
[

f̂K(x)
]
= a0(x) f (x)− ha1(x) f ′(x) + O

(
h2
)

(7)

where ai(x) =
∫ x/h
−1 uiK(u)du. It can be observed that when x ≥ h, a0(x) = 1 and a1(x) = 0,

leading to no difference in bias from (6). However, when 0 ≤ x < h, both a0(x) and a1(x) are
non-zero, implying that bias is always present at the boundary.

In this case, when another kernel function L(x) is used to estimate f (x) once again,
there is as follows:

E
[

f̂L(x)
]
= b0(x) f (x)− hb1(x) f ′(x) + O

(
h2
)

(8)

where b0 and b1 are similar to a0 and a1 from (7), except that (8) is specific to L(x). By
performing a linear combination of (7) and (8), we can obtain:

b1(x) ∗ E
[

f̂K(x)
]
− a1(x) ∗ E

[
f̂L(x)

]
= [b1(x)a0(x)− a1(x)b0(x)] f (x) + O

(
h2
)

(9)
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Equation (9) can be equivalently viewed as an estimation of f (x) using a new kernel
function. This new kernel function is as follows:

KB(x) =
b1(x)K(x)− a1(x)L(x)
b1(x)a0(x)− a1(x)b0(x)

(10)

In particular, if L(x) is taken as x*K(x), KB(x) will have a simple form:

KB(x) =
(a2(x)− a1(x)x)K(x)

a0(x)a2(x)− a2
1(x)

(11)

When x ≥ h, the new kernel function KB(x) is the same as K(x), but when 0 ≤ x < h (i.e.,
at the boundary), it adjusts the original kernel function. When x < 0, the estimated value is
taken as 0.

Based on (1), (2), and (11), we can derive the calculation formula for BKDE by substi-
tuting (5), which provides the pdf for node k at time t.

Taking an exponential distribution with a parameter of 1 as an example, the per-
formance of BKDE is tested. One thousand random numbers are generated from this
exponential distribution, and pdf estimation is performed using both KDE and BKDE.
Figure 1 shows the results of these two estimation methods compared to the actual pdf.
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Observing Figure 1, it can be seen that, compared to the true density function, the
results obtained by KDE exhibit a noticeable decrease at the boundary. In contrast, the
results obtained by BKDE closely match the real situation, and the bias issues near the
boundary have been significantly improved.

2.2. Conditional pdf Estimation for DG

For DG, its generated power is constrained between 0 and its maximum capacity. After
normalization to the maximum capacity, its double boundary is [0, 1]. Therefore, when
calculating the kernel function as shown in (11), the parameters ai(x) are:

ai(x) =
∫ x/h

(x−1)/h
uiK(u)du (12)

In addition to its bounded nature, another significant characteristic of DG is its strong
correlation with external factors. For instance, PVs might exhibit significant variations in
power data at different times of one day due to differences in radiation. Therefore, the
probability model for DG at time t can be characterized jointly by the conditional pdf and
the predicted values of conditional variables at time t.

The conditional pdf for DG at time t can be represented as:

f̂P(pt|Y = yt ) =
f̂P,Y(pt, yt)

f̂Y(yt)
(13)
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where pt is the DG output at time t, yt is the predicted value of the conditional variable at
time t, f̂P is the conditional pdf for DG, f̂Y is the pdf for the conditional variable, and f̂P,Y
is the joint pdf.

Based on Equations (1), (2), and (11), the conditional pdf for DG can be represented as:

f̂P(pt|Y = yt ) =

1
Nh1h2

∑N
i=1 KB

1

(
pt−Pi

h1

)
KB

2

(
yt−Yi

h2

)
1

Nh2
∑N

i=1 KB
2

(
yt−Yi

h2

) (14)

where Pi represents historical samples of DG, Yi represents corresponding historical samples
of conditional variables, h1 and h2 are bandwidth parameters, and KB

1 (·) and KB
2 (·) are kernel

functions.
Different types of DG correspond to different conditional variables. In this paper, the

conditional variable for PVs is global horizontal radiation, while for WTs, it is wind speed.

3. PLFCM Based on the Rosenblatt Inverter Transform
3.1. Independent Transform Based on Rosenblatt Inverter Transformation
3.1.1. Joint pdf for DG

Due to the characteristics of wind and solar energy sources, DGs located in close
geographical proximity exhibit some level of similarity in their output, showing spatial
correlation. The higher the spatial correlation among DGs, the stronger the synchronization
between different DGs, making PLFCM more challenging. Therefore, in order to establish
a foundation for subsequent Rosenblatt inverse transform and PLFCM, it is essential to
accurately characterize the joint pdf of DG.

Assuming that the multivariate data PD
i1 , ..., PD

id (i = 1, ..., N) are historical data from d
different DGs (PD

1 , ..., PD
d ), their joint density function can be calculated through KDE using

the following equation:

f̂PD
1 ...PD

d

(
pD

1 , . . . , pD
d

)
=

1
Nh1 . . . hd

N

∑
i=1

d

∏
j=1

Kj

(
pD

j − PD
ij

hj

)
(15)

where h1, ..., hd are bandwidth parameters, and Kj(·) are kernel functions corresponding to
the variable PD

j (j = 1, ..., d).
Taking into account the boundary characteristics of DG and external conditional

factors, the joint pdf for DG at time t can be represented as follows:

f̂PD
1 ,...,PD

d

(
pD

1t, . . . , pD
dt|Y1 = y1t, . . . , Yd = ydt

)
=

1
Nhp

1 ...hp
d hy

1 ...hy
d

N
∑

i=1

d
∏
j=1

KB
j

(
pD

jt −PD
ij

hp
j

)
d

∏
k=1

KB
k

(
ykt−Yij

hy
k

)
1

Nhy
1 ...hy

d

N
∑

i=1

d
∏

k=1
KB

k

(
ykt−Yij

hy
k

) (16)

3.1.2. Independent Transform

The Rosenblatt transform can directly convert a set of correlated non-normal variables
UC = (UC

1 , UC
2 , ..., UC

N)T into independent standard normal variables UI = (U I
1,U I

2,...,Un
I )T.

According to the principle of equiprobability marginal transformation, it can be expressed
as follows: 

Φ
(
uI

1
)
= F1

(
uC

1
)

Φ
(
uI

2
)
= F2|1

(
uC

2

∣∣uC
1
)

. . .
Φ
(
uI

n
)
= Fn|1,2,...,n−1

(
uC

n
∣∣uC

1 , uC
2 , . . . , uC

n−1
) (17)

where Φ(·) represents a cumulative distribution function (CDF) of normal distribution, and
F(·) represents a conditional CDF.
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Taking the inverse of (17) will yield the independent standard normal variables UI,
which can be expressed as:

uI
1 = Φ−1[F1

(
uC

1
)]

uI
2 = Φ−1

[
F2|1
(
uC

2

∣∣uC
1
)]

. . .
uI

n = Φ−1
[

Fn|1,2,...,n−1
(
uC

n
∣∣uC

1 , uC
2 , . . . , uC

n−1
)] (18)

Equation (18) is known as the Rosenblatt transform. It is not influenced by the
distribution type or the correlation type and is considered a precise transformation method.
The conditional CDF can be obtained by integrating the joint PDF derived from (16).

Through its inverse transform, standard normal variables can be transformed into
independent samples of DG, and the basic steps are as follows:

(1) Generate m samples that follow the standard normal distribution functions U I
1,

U I
2, ..., U I

n.
(2) Use (18) to obtain:

uC
1 = F−1

1

[
Φ
(

uI
1

)]
(19)

From (19), it can obtain m samples of one of the DG, denoted as uC
1 .

(3) Extend to n DG, the following is applicable:

uC
n = F−1

n|1,2,...,n−1

[
Φ
(

uI
n

)∣∣∣uC
1 , uC

2 , . . . , uC
n−1

]
(20)

3.2. PLFCM
3.2.1. Linearized Load Flow Model

Considering the random variation in node injection power, the polar form of the
system power flow equation is Taylor-expanded at the base operating point, retaining only
the first-order term, yielding as follows:{

∆X = J−1
0 ∆W = S0∆W

∆Z = G0 J−1
0 ∆W = T0∆W

(21)

where ∆X, ∆W, and ∆Z represent the perturbations in node state variables, node injection
power variables, and branch power variables, respectively. S0 and T0 are sensitivity
matrices. J0 is the Jacobian matrix obtained in the last iteration of the power flow calculation.
G0 = (∂Z/∂X)|X=X0.

3.2.2. Cumulant Computation

Cumulants can be calculated based on origin moments that do not exceed their order,
and in this paper, only the first eight orders are considered. The relationship between
various orders of cumulants and origin moments, as well as the specific derivation process,
can be found in [22].

For load, the origin moments of all orders can be calculated using the density function
obtained from its historical data based on BKDE.

αv =
∫ +∞

−∞
xv f̂ (x)dx (22)

where αv represents the vth order origin moment.
For DG variables with correlation, it is necessary to first generate mutually indepen-

dent samples following the standard normal distribution. Then, using the Rosenblatt
inverse transform, independent samples of the DG variables can be obtained. Based on
this, the cumulants of that variable can be calculated using the relationship between origin
moments and cumulants.
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Once the cumulants of the node injection power changes, ∆W, are computed, it can
then determine the cumulants of the node state changes, ∆X, and the cumulants of the
branch power changes, ∆Z, for each order using the following equation: ∆X(k) = S(k)

0

(
∆W(k)

DG + ∆W(k)
L

)
∆Z(k) =

(
G0 J−1

0

)(k)(
∆W(k)

DG + ∆W(k)
L

) (23)

where ∆W(k)
DG and ∆W(k)

L represent the kth order cumulants for changes in DG injection
power and changes in load injection power, respectively.

3.2.3. Cornish–Fisher Series Expansion

Series expansion can approximate the cumulants of output variables as probability dis-
tributions. According to [23], the Cornish–Fisher series provides higher accuracy. Therefore,
in this study, the CDF of output variables is obtained using the Cornish–Fisher series.

The approach of the Cornish–Fisher series expansion entails initially selecting a specific
quantile, followed by computing the quantiles of the state variable, and ultimately deriving
the cumulative distribution of that variable. Assuming α represents the quantile of random
variable X, x(α) can be expressed as follows:

x(α) = ζ(α) +
ζ2(α)− 1

6
g3 +

ζ3(α)− 3ζ(α)

24
g4 −

2ζ3(α)− 5ζ(α)

36
g2

3 +
ζ4(α)− 6ζ2(α) + 3

120
g5 + . . . (24)

where ζ(α) = Φ−1(α), and gv represents the vth order normalized cumulant.
By utilizing the relationship x(α) = F−1(α), the CDF F(x) of the output random variable

X can be determined, thereby providing the probability of node voltage violation.

4. The Voltage Violation Risk Assessment Metric Based on the Utility Function

This section provides a comprehensive assessment of node voltage violation risk in
distribution networks with DG by considering both the probability of voltage violation and
the severity of such violation. This approach allows for a quantitative evaluation at both
the node and system levels, serving as the basis for coordinated voltage control.

4.1. The Probability of Voltage Violation

The voltage violation probability refers to the likelihood of nodes deviating from the
permissible voltage range, encompassing both overvoltage and undervoltage conditions. It
can be determined through the previously conducted PLFCM analysis.

r(Vi) =


F
(
Vmin

i
)
, Vi < Vmin

i
0, Vmin

i < Vi < Vmax
i

1 − F
(
Vmax

i
)
, Vi > Vmax

i

(25)

where r(Vi) represents the voltage violation probability for node i, F(Vi) represents the
voltage CDF for node I, and Vmin

i , and Vmax
i represent the lower and upper voltage limits

permissible for node i, respectively.

4.2. The Severity of Voltage Violation

Voltage violation severity reflects the level of severity caused to the system and
equipment when the voltage deviates from permissible values. The traditional voltage
violation severity function, denoted as Se, is represented by linear functions.

Se =


(Vi−Vmax

i )
Vmax

i
, Vi > Vmax

i

(Vmin
i −Vi)
Vmin

i
, Vi < Vmin

i

(26)
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In reality, many electrical devices exhibit more severe consequences as voltage devia-
tion increases. For instance, a slight voltage deviation from the permissible range might
lead to a decrease in product quality in manufacturing equipment, and as the extent of
voltage deviation deepens, it can even impact equipment safety, resulting in significant
consequences such as equipment damage. Therefore, the severity assessment function
should be more sensitive to reflect the consequences when the deviation is severe. This
paper employs the utility function to define the severity function of node voltage violation.

Se(θ(Vi)) =

(
ekθ(Vi) − 1

e − 1

)
(27)

where k represents the risk factor, and a larger value indicates greater sensitivity to risk.
θ(Vi) represents the voltage deviation index, defined as follows:

θ(Vi) =


Vmin

i −Vi
VB

, Vi < Vmin
i

0, Vmin
i < Vi < Vmax

i
Vi−Vmax

i
VB

, Vi > Vmax
i

(28)

4.3. The Comprehensive Assessment of Voltage Violation

Taking into account both voltage violation probability and the severity of such viola-
tions, the comprehensive risk index for voltage violation of node i, Ri, and the system-level
comprehensive risk index Rs, can be defined as follows:

Ri =
∫ Vmin

i

−∞
f (Vi) · Se(θ(Vi))dVi +

∫ +∞

Vmax
i

f (Vi) · Se(θ(Vi))dVi (29)

Rs =
n

∑
i=1

Ri (30)

where n represents the number of system nodes, and f (Vi) represents the voltage pdf of
node i, which can be derived from F(Vi) using numerical differentiation.

5. The Process of the Proposed Method

The method proposed in this paper enables dynamic risk assessment of voltage
violation in distribution networks with DG, which is crucial for coordinated voltage control.
The specific flow chart of the method is depicted in Figure 2 and comprises three main steps:
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Step 1: Probability Density Function Estimation. Accurate pdfs are obtained through
BKDE, utilizing historical data for both load and DG, while also accounting for the influence
of external factors.
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Step 2: Probability Load Flow Calculation. Considering the correlation between DGs,
independent DG variables are obtained through the Rosenblatt inverse transform. Based on
these variables, PLFCM is applied to compute the probability distribution of node voltages.

Step 3: Risk Assessment. The severity of voltage violation at the node is considered
through the application of the utility function, and this, combined with the results of
PLFCM, yields dynamic risk assessment outcomes at both the node and system levels.

6. Case Study

Due to the confidentiality requirement, real grid data are difficult to obtain, so the case
study in this paper is conducted using an improved IEEE-33 system, as depicted in Figure 3.
A WT with a capacity of 600 kW is connected to node 26, while two PVs are connected
to node 33 and node 15 with capacities of 500 kW and 450 kW, respectively. The daytime
DG penetration rate is approximately 30%. The output data for WTs and PVs is real and
derived from a WT and PVs located in a specific region in northwest China, along with
historical weather records providing the corresponding wind speed and global horizontal
radiation data. To better simulate the probability density of the 24 h base load, the ratio of
the load for each hour relative to the maximum load of that node is defined according to
the solid line in Figure 4. In accordance with daily patterns, the load can be decomposed
into two components: periodic base data and random fluctuation data. To reflect the load’s
volatility, the standard deviation of the load is set to 20%. Following the three-sigma rule, it
can be considered that the load ratios at each time fall within the shaded area of Figure 4.
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In this section, the accuracy of pdf modeling under real data using BKDE and KDE is
compared. Subsequently, the effectiveness of the proposed method for risk assessment is
validated through simulations in two cases: when there is abundant radiation and high
wind speed resulting in higher DG output during the daytime, and when there is no
radiation at night coupled with low wind speed leading to reduced DG output.

6.1. The Performance of pdf Modeling

Section 2.1 compares the pdf modeling results of BKDE and KDE with simulation data
through a simple example. Here, the accuracy of the modeling of the two is compared
again through real DG data. Since the real pdf of the DG data is unknown, the relative error
between the mean and variance of the modeled pdf and the mean and variance of the real
measured data is used as the criterion for comparison. When using the measured data for
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PV, the data for the time when the PV is not producing power at night were removed. The
results are presented in Table 1. Figures 5–7 show histograms of the DG real data as well as
the pdfs calculated by BKDE and KDE.

Table 1. The relative errors of BKDE and KDE.

BKDE KDE

RE of Mean (%) RE of Variance (%) RE of Mean (%) RE of Variance (%)

WT 5.35 10.20 15.55 27.43
PV1 0.070 2.42 0.23 7.96
PV2 0.051 2.98 0.18 8.07
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The results from Figures 5–7 reveal that KDE exhibits a segment of density curve near
the boundary points that markedly contradicts the actual histogram trend, whereas BKDE
yields results consistent with the actual trend. It can be affirmed that the results from BKDE
are more in line with the actual data-based histogram compared to KDE.

RE =
|Valuec − Valuer|

Valuer
× 100% (31)
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where Valuec represents the mean or variance of the modeled pdf, and Valuer represents the
mean or variance of the real measured data.

6.2. Case 1: High DG Output

Assuming that, based on NWP, the wind speed forecast for WT at 11 a.m. on a certain
day is 10 m/s, and the global horizontal radiation at PV1 is 850 W/m2, while at PV2, it is
900 W/m2. Based on the BKDE, the pdfs and CDFs of WT, PV1, and PV2 can be obtained,
as shown in Figure 8, along with the joint pdf and joint CDF between these variables, as
illustrated in Figures 9–11.
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From the above figures, it is evident that the variables WT, PV1, and PV2 do not satisfy
the condition of mutual independence between them. Therefore, it is not possible to directly
perform PLFCM, and an independent transformation is required.

After performing the Rosenblatt inverse transformation, the correlated DG variables
were transformed to become independent samples. Tables 2 and 3 present the Pearson
correlation coefficient, Kendall correlation coefficient, and Spearman correlation coefficient
between WT, PV1, and PV2 before and after the transformation. The results indicate that
after the transformation, the absolute values of the correlation coefficients between DG
variables were largely reduced to below 0.1, significantly decreasing their correlations and
rendering them nearly independent.

Table 2. Correlation coefficients before transformation.

Pearson Kendall Spearman

WT/PV1 −0.2913 −0.2144 −0.2922
WT/PV2 −0.2882 −0.2126 −0.2896
PV1/PV2 0.9926 0.9511 0.9937

Table 3. Correlation coefficients after transformation.

Pearson Kendall Spearman

WT/PV1 −0.0873 −0.1193 −0.0800
WT/PV2 −0.0925 −0.0625 −0.0929
PV1/PV2 0.1256 0.0795 0.1004

In this paper, the accuracy of the proposed method is validated through the MCS
method for PLF. Additionally, a method based on Orthogonal inverse transform is em-
ployed to calculate PLF for comparative purposes. To account for the correlation, the MCS
method used DG data that originally had correlations before the independence transforma-
tion. It employed random sampling based on the joint pdf of the DG variables obtained
previously.

In total, the MCS method conducted 20,000 random samples, performed deterministic
load flow, and obtained the pdf of node voltages. Figure 12 illustrates the voltage pdf of
three DG-connected nodes and the last node 18.
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Due to space limitations, it is difficult to plot the pdf of all nodes under the three
different methods. Therefore, in this paper, the results of the MCS method are used as the
standard to calculate the relative errors of the mean and variance obtained by both the
PLFCM with Rosenblatt inverse transform and PLFCM with Orthogonal inverse transform.
The results are shown in Table 4.

Table 4. The relative errors of PLFCM with Rosenblatt inverse transform and PLFCM with Orthogonal
inverse transform.

Node No.
PLFCM with Rosenblatt Inverse Transform PLFCM with Orthogonal Inverse Transform

RE of Mean (%) RE of Variance (%) RE of Mean (%) RE of Variance (%)

2 6.1626 × 10−5 0.8711 0.0012 22.0573
3 3.3372 × 10−4 1.1296 0.0078 23.3937
4 0.0016 0.5352 0.0159 30.5238
5 0.0027 0.3139 0.0247 34.2327
6 0.0047 0.2804 0.0404 32.7683
7 0.0043 0.2230 0.0329 34.4186
8 0.0042 0.4460 0.0119 33.8826
9 0.0039 0.5258 0.0118 30.8185
10 0.0039 0.5358 0.0288 37.4144
11 0.0038 0.5457 0.0311 30.5229
12 0.0038 0.5538 0.0350 36.3805
13 0.0040 0.5333 0.0437 36.2802
14 0.0045 0.4495 0.0448 32.3938
15 0.0052 0.4262 0.0406 32.8715
16 0.0058 0.3688 0.0447 37.9928
17 0.006 0.3173 0.0509 33.5184
18 0.0072 0.3027 0.0531 31.7283



Entropy 2023, 25, 1662 15 of 20

Table 4. Cont.

Node No.
PLFCM with Rosenblatt Inverse Transform PLFCM with Orthogonal Inverse Transform

RE of Mean (%) RE of Variance (%) RE of Mean (%) RE of Variance (%)

19 1.2526 × 10−4 1.1032 0.0012 18.1156
20 8.4721 × 10−4 2.6008 0.0018 6.5230
21 8.8285 × 10−4 2.4950 0.0019 5.9387
22 8.6273 × 10−4 2.8694 0.0018 4.9922
23 6.0421 × 10−4 2.2021 0.0059 14.0596
24 0.0024 2.9833 0.0040 7.3964
25 0.0039 2.8185 0.0025 5.7725
26 0.0053 0.1665 0.0525 31.4057
27 0.0058 0.3903 0.0744 30.1177
28 0.0065 1.2671 0.1548 22.8691
29 0.0065 1.6573 0.2179 19.4942
30 0.0070 1.6806 0.2693 18.1796
31 0.0080 1.1913 0.4310 7.4600
32 0.0082 1.0459 0.4991 1.9288
33 0.0083 0.9570 0.5981 22.9691

Observing Figure 12, it can be noted that the results obtained from the PLFCM based
on BKDE and Rosenblatt inverse transformation are in good agreement with the outcomes
of the MCS method. Node 26 is located in the middle of the radial distribution network and
has a WT connection, which is why its voltage remains within the allowable range without
violations. However, nodes 33, 15, and 18 are situated at the endpoints of the distribution
network. Despite having DG support at these nodes or in their vicinity, voltage violations
below the lower limit still occur due to the impedance losses in the transmission lines.

Moreover, as can be seen from Table 4, the error of PLFCM based on the Orthogonal
inverse transform is significantly larger than that of PLFCM based on the Rosenblatt
inverse transform proposed in this paper. This is due to the fact that the Orthogonal inverse
transform is unable to characterize the nonlinear relationship that exists between the DG
variables.

The time used for the calculation of the three methods is shown in Table 5.

Table 5. Computation time of three methods.

Method MCS of 20,000 Times PLFCM with Rosenblatt
Inverse Transform

PLFCM with Orthogonal
Inverse Transform

Time (s) 305.46 2.15 2.06

By comparing the computation times in Table 5, it can be found that the computation
time of PLFCM with Rosenblatt inverse transform and PLFCM with Orthogonal inverse
transform is greatly reduced and the computation efficiency is improved compared with the
MCS method. Through the above analysis, in general, the method proposed in this paper
has high accuracy and prediction precision, and the calculation time is greatly reduced.

The corresponding risk indexes can be calculated based on the node voltage violation
probability combined with the severity of the violation. A risk factor of three is assigned
to regular nodes, while a risk factor of four is assigned to DG-connected nodes. Table 6
presents the voltage violation probability and risk indexes for each node. Nodes with
risk indexes above 0.01 are considered high risk, while those between 0.0001 and 0.01 are
categorized as medium risk, values below 0.0001 are classified as low risk, and a risk index
of 0 indicates no risk. Figure 13 illustrates the risk zones of the system at different levels at
11 a.m.
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Table 6. The voltage violation probability and risk indexes for the nodes in case 1.

Node No. Probability (%) Indexes Node No. Probability (%) Indexes

2 0 0 19 0 0
3 0 0 20 0 0
4 0 0 21 0 0
5 0 0 22 0 0
6 0 0 23 0 0
7 0 0 24 0 0
8 0 0 25 0 0
9 0.001 3.412 × 10−9 26 0 0
10 0.0512 3.342 × 10−7 27 0 0
11 0.087 6.445 × 10−7 28 0.072 4.723 × 10−7

12 0.185 1.705 × 10−6 29 10.888 3.293 × 10−4

13 2.199 3.892 × 10−5 30 25.763 1.094 × 10−3

14 4.307 9.117 × 10−5 31 39.445 2.087 × 10−3

15 4.263 1.236 × 10−4 32 40.484 2.195 × 10−3

16 9.208 2.405 × 10−4 33 35.688 2.451 × 10−3

17 22.188 7.548 × 10−4 system \ 0.0104
18 27.372 1.010 × 10−3
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6.3. Case 2: Low DG Output

Assuming that, based on NWP, the wind speed forecast for WT at 9 p.m. on a certain
day is 6 m/s. Since it is night-time, the global horizontal radiation is zero, resulting in no
power output from PV1 and PV2. Utilizing the BKDE, the pdf and CDF for WT can be
obtained, as shown in Figure 14.
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As there is only one DG generating power at this moment, there is no correlation
among multiple DGs. Hence, the PLFCM can be performed directly as there is no need for
independent transformation. So in this section, only two methods are used for calculating
the pdf of voltage, which are PLFCM and MCS. The sampling number of the MCS is still
20,000 times. The pdf of voltage at the WT-connected node and the last node 18 are shown
in Figure 15. Table 7 illustrates the relative errors of the mean and variance of each node.
Table 8 demonstrates the computation time for both methods.
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Table 7. The relative errors of PLFCM.

Node No. RE of Mean (%) RE of Variance (%) Node No. RE of Mean (%) RE of Variance (%)

2 4.7903 × 10−4 1.5650 18 1.2851 × 10−4 2.1548
3 0.0030 1.7234 19 5.5308 × 10−4 1.5532
4 0.0029 2.8588 20 1.3169 × 10−4 2.8045
5 0.0029 1.9286 21 3.2046 × 10−4 2.9817
6 0.0014 2.3425 22 3.7397 × 10−4 3.1784
7 0.0014 3.1850 23 0.0055 1.7064
8 0.0013 2.6184 24 0.0109 1.8469
9 8.6506 × 10−4 2.5399 25 0.0148 2.3036

10 5.2550 × 10−4 1.4705 26 0.0012 2.4474
11 5.0435 × 10−4 2.4533 27 0.0011 2.5679
12 4.6079 × 10−4 2.3993 28 0.0014 2.1355
13 7.9488 × 10−4 3.2392 29 0.0042 2.3226
14 0.0013 3.2261 30 0.0049 1.3542
15 9.9030 × 10−4 2.2084 31 0.0033 2.1923
16 6.5868 × 10−4 3.1785 32 0.0031 2.1712
17 3.5136 × 10−4 2.1632 33 0.0031 2.1663

Table 8. Computation time of two methods.

Method MCS of 20,000 Times PLFCM

Time (s) 133.66 2.07

From Figure 15, it can be observed that despite the relatively low WT output, node
26, due to its location and reduced load, maintains its voltage within the normal range.
However, the end-node 18 experiences consistently low voltage levels during the night due
to the lack of nearby PV power support. The voltage violation probability and risk indexes
for each node at this time are presented in Table 9. Figure 16 illustrates the risk levels of the
system at 9 p.m.
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Table 9. The voltage violation probability and risk indexes for the nodes in case 2.

Node No. Probability (%) Indexes Node No. Probability (%) Indexes

2 0 0 19 0 0
3 0 0 20 0 0
4 0 0 21 0 0
5 0 0 22 0 0
6 0 0 23 0 0
7 0.0004 1.945 × 10−9 24 0 0
8 0.1 1.075 × 10−5 25 0 0
9 56.672 1.819 × 10−3 26 0 0
10 98.612 0.0101 27 0.009 4.600 × 10−8

11 99.3316 0.0103 28 68.155 3.263 × 10−3

12 99.831 0.0121 29 99.300 0.0139
13 100 0.0209 30 99.916 0.0190
14 100 0.0241 31 99.997 0.0250
15 100 0.0352 32 100 0.0263
16 100 0.0281 33 100 0.0359
17 100 0.0311 system \ 0.329
18 100 0.0320
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7. Conclusions

A dynamic risk assessment method for voltage violation in distribution networks with
DG is proposed in this paper, which mainly contributes to the following three points.

Firstly, a pdf modeling method based on BKDE and conditional density is proposed.
This method provides a more accurate representation of stochastic variables with boundary
constraints, such as load and DG. Simulation results on actual DG data indicate that the
relative errors of mean and variance using this method are approximately one-third of
those obtained with KDE.

Secondly, to address the correlation between DG variables within the same region,
an independent transformation method based on the Rosenblatt inverter transformation
is proposed. This method has the capability to reduce the absolute values of correlation
coefficients between random variables to below 0.1, laying the foundation for accurate
PLFCM. Compared to the PLFCM based on the Orthogonal inverse transform, the proposed
method demonstrates a reduction of one to two orders of magnitude in the relative errors
of mean and variance, with comparable computational times.

Finally, an index for the severity of voltage violation, based on a utility function, is
proposed. This index, combined with the voltage violation probability, quantitatively
characterizes the risk of voltage violation at nodes and provides essential information for
coordinated voltage control.
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