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Abstract: Compound droplets have received increasing attention due to their applications in many 
several areas, including medicine and materials. Previous works mostly focused on compound 
droplets on planar surfaces and, as such, the effects of curved walls have not been studied thor-
oughly. In this paper, the influence of the properties of curved solid wall (including the shape, cur-
vature, and contact angle) on the wetting behavior of compound droplets is explored. The axisym-
metric lattice Boltzmann method, based on the conservative phase field formulation for ternary flu-
ids, was used to numerically study the wetting and spreading of a compound droplet of the Janus 
type on various curved solid walls at large density ratios, focusing on whether the separation of 
compound droplets occurs. Several types of wall geometries were considered, including a planar 
wall, a concave wall with constant curvature, and a convex wall with fixed or variable curvature 
(specifically, a prolate or oblate spheroid). The effects of surface wettability, interfacial angles, and 
the density ratio (of droplet to ambient fluid) on the wetting process were also explored. In general, 
it was found that, under otherwise identical conditions, droplet separation tends to happen more 
likely on more hydrophilic walls, under larger interfacial angles (measured inside the droplet), and 
at larger density ratios. On convex walls, a larger radius of curvature of the surface near the droplet 
was found to be helpful to split the Janus droplet. On concave walls, as the radius of curvature 
increases from a small value, the possibility to observe droplet separation first increases and then 
decreases. Several phase diagrams on whether droplet separation occurs during the spreading pro-
cess were produced for different kinds of walls to illustrate the influences of various factors. 

Keywords: compound droplet; lattice Boltzmann method; droplet separation; wetting; conservative 
phase field; curved wall 
 

1. Introduction 
The movement of compound droplets composed of different components occurs 

commonly in nature and engineering applications. Due to the potential applications in 
manufacturing of inkjet printing [1], drug delivery [2], microfluidic preparation [3], and 
food and cosmetics [4], the research on compound droplets continues to draw significant 
attention. Stone et al. [5] used the boundary integral method with axisymmetric assump-
tion to numerically study the core-shell compound droplet with large deformation in lin-
ear flow; they also studied its rupture in the flow field. Hua et al. [6] used a numerical 
model based on the immersed boundary method to study the effects of droplet radius, 
surface tension ratio, and internal droplet position on the deformation of compound drop-
lets in shear flows in both two and three dimensions and calculated the inclinations of 
internal and external droplets. Xu et al. [7] studied the coalescence kinetics of immiscible 
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droplets through experiments, measured the evolution of the liquid bridge, compared it 
with miscible droplets, and proposed a theoretical model to analyze the influence of im-
miscibility in droplet coalescence. Yang et al. [8] used the phase field model to numerically 
study the dynamics of axisymmetric compound liquid threads and found that a larger 
inner liquid radius would significantly delay the evolution of compound liquid threads. 
They also found that when the inner liquid line radius was larger, the middle compound 
liquid thread would not shrink into droplets, while larger viscosity and surface tension 
ratios could delay the evolution of compound liquid threads. Wöhrwag et al. [9] proposed 
a model to simulate ternary fluid systems by incorporating a new free energy formula into 
the entropic lattice Boltzmann method (LBM). This model allows us to simulate problems 
with large density ratios and large surface tension ratios covering partial and complete 
wetting states. 

All the above studies focused on the motion of compound droplets without a solid 
boundary. The fluid-solid interaction during the spreading of compound droplets on solid 
walls is more complex, and the related numerical work is more challenging. As the solid 
wall may have different shapes, curvatures, and wettabilities, it is worth conducting a lot 
of research in this area. Zhang et al. [10] proposed a geometric wetting condition for sim-
ulating ternary fluid flow by using the weighted contact angle model; they verified this 
model by simulating compound droplets on a substrate. Zhang et al. [11] used a diffuse 
interface method to simulate the morphology transformation of compound droplets on a 
straight wall, determined the irreversible and reversible configuration transformations, 
and verified the final equilibrium morphology of the droplets. Shi and Wang [12] proposed 
a phase field model for the dynamics of three-component immiscible fluids on a solid wall, 
used it to simulate the compound drop dynamics on a plane, and showed how the stability 
and deformation of the compound drop depend on the viscosity ratio of different fluids. 
In addition, they proposed an effective adaptive mesh refinement technique to improve 
the computation speed. Bhopalam et al. [13] combined a phase-field model using the ter-
nary Navier–Stokes–Cahn–Hilliard equations with a neo-Hookean model for the solid, 
and studied the static wetting of a Janus compound droplet on a soft solid. They also sim-
ulated the interesting capillary origami of different compound droplets and the configu-
ration shift of compound droplets on a soft solid under different physical parameters. 
Yang et al. [14] developed a novel diffuse-interface model to describe compound droplets 
in contact with solid. The wetting behavior of compound droplet on flat, inclined, spheri-
cal, and rough substrates was studied to verify the accuracy of their model. Huang [15] 

developed a hybrid lattice-Boltzmann finite-difference method for the simulation of ter-
nary fluids near various immersed solid objects. Li et al. [16] proposed a numerical method 
for simulating three-phase flow with moving contact lines on complex surfaces within the 
framework of the color-gradient LBM. They validated their method through the simula-
tions of a Janus droplet resting on a flat surface, a Janus droplet deposited on a cylinder, 
and the capillary intrusion of ternary fluids for various viscosity ratios. It was then used 
to study the dynamics of a compound droplet passing through an array of cylinders sub-
ject to a uniform incoming flow. Zhang and Huang [17] used the numerical method pro-
posed in [15] to explore the wetting and spreading behavior of compound droplets on a 
two-dimensional wedge. Chowdhury et al. [18] studied the dynamics of capturing bub-
bles at a liquid-liquid interface under axisymmetric conditions by using the ternary Na-
vier–Stokes–Cahn–Hilliard equations. They used a cone with varying wettability and a 
certain cone angle to remove the bubble, and then performed detailed numerical analyses 
of bubble detachment for a wide range of flow configurations. 

There are many studies on three-phase flows, but there are still some insufficiencies in 
the existing works. For example, in Refs. [10–12], the solid walls involved are all planar, and 
the wetting of compound droplets on curved solid walls was not studied. Ref. [13] consid-
ered the challenging fluid-solid interactions, but it only studied two-dimensional problems. 
The test cases in Ref. [14] were mostly two-dimensional (only one was three-dimensional). 
Ref. [15] adopted the phase field theory based on the Cahn–Hilliard equation, and used the 



Entropy 2024, 26, 172 3 of 29 
 

 

finite difference method to solve the phase field equations; it could not handle problems 
with large density ratios. Refs. [16,17] only studied problems with small to intermediate 
density ratios in two dimensions. Unlike most previous works, the numerical method in this 
paper is an axisymmetric LBM based on the conservative Allen–Cahn equations (CACEs) 
and it can simulate more realistic ternary fluid problems with large density ratios under 
axisymmetric conditions. It greatly saves computational resources when compared with full 
three-dimensional simulations. In addition, one major focus of this study is on the influence 
of curved solid wall properties (including the shape, curvature, and contact angle) on the 
wetting behavior of compound droplets, which has been rarely investigated in depth in the 
literature. This study was not only driven by curiosity, but also motivated by the following 
considerations. First, the knowledge on such wetting behavior may be helpful to understand 
the interaction between compound droplets and micro solid particles of various shapes. Sec-
ond, the topological changes of compound droplets during such processes might be useful 
in some industrial processes aiming to separate different fluid components. Third, the di-
verse equilibrium morphologies of compound droplets on different curved surfaces could 
be employed to fabricate certain small components with special shapes (like microlens) in 
future. 

In the remainder of this paper, Section 2 gives the numerical method used in the sim-
ulations, Section 3 presents some verifications of the method and the analyses on the re-
sults of compound droplets spreading on various curved walls, and Section 4 concludes 
this paper. 

2. Numerical Method 
The numerical method includes two parts: (1) the lattice Boltzmann equations (LBEs) 

for the axisymmetric CACEs used for the interface dynamics of a ternary fluid system, 
and (2) the LBEs for the axisymmetric incompressible NSEs to simulate the hydrodynam-
ics with interfacial tension effects. The two parts are coupled with each other through the 
velocity, the physical properties of the fluids (i.e., density and viscosity), and the interfa-
cial tension force. The two components are briefly introduced as follows. 

2.1. Axisymmetric LBEs for the CACEs 
In the conservative phase-field formulation for ternary fluids, the volume fraction 

(order parameter) 𝑐௜ (𝑖 = 1,2,3) is used to identify fluid i and 𝑐௜ and satisfies 0 ≤ 𝑐௜ ≤1 and the relation ∑ 𝑐௜ = 1ଷ௜ୀଵ . At a given point, 𝑐௜ = 1 means that it is completely occu-
pied by fluid i and 𝑐௜ = 0 means that fluid i is totally absent. There exist transition regions 
with 0 < 𝑐௜ < 1 that contain partially fluid i and also one or two of the other fluids. The 
interface is represented by the contour at 𝑐௜ = 0.5. Because ∑ 𝑐௜ = 1ଷ௜ୀଵ , only two volume 
fractions are independent. Without loss of generality, we choose 𝑐ଵ and 𝑐ଶ here. 

The CACEs for 𝑐௜ (i = 1, 2) with convection included are given by [19], 𝜕௧𝑐௜ + 𝑢ሬ⃗ ∙ ∇𝑐௜ = ∇ ∙ [m଴(∇𝑐௜ − (λ୧𝑛ሬ⃗ ௜ − 𝛽௜))], (1)

where 𝑢ሬ⃗  is the fluid velocity, 𝑚଴ is the (constant) mobility, 𝜆௜ is defined as 4𝑐௜(1 − 𝑐௜)/𝑊 
with W being the interface thickness, 𝑛ሬ⃗ ௜ = 𝛻𝑐௜/(|𝛻𝑐௜| + 10ିଵଶ) (10ିଵଶ is added to avoid di-
vision-by-zero) is the unit normal vector of the interface of fluid i, and 𝛽௜ is a Lagrange 
multiplier to enforce the condition ∑ 𝑐௜ = 1ଷ௜ୀଵ , 𝛽௜ = 𝑐௜ ∑ 𝜆௝ଷ௝ୀଵ 𝑛ሬ⃗ ௝. As for incompressible flu-
ids where the velocity field is divergence free, 𝛻 ∙ 𝑢ሬ⃗ = 0, one can rewrite the convective term 
as 𝑢ሬ⃗ ∙ 𝛻𝑐௜ = 𝛻 ∙ (𝑢ሬ⃗ 𝑐௜). In Cartesian coordinates, the CACE for 𝑐௜ may be written as 𝜕௧𝑐௜ + 𝜕ఈ(𝑢ఈ𝑐௜) = 𝜕ఈ(𝑚଴𝜕ఈ𝑐௜) − 𝑚଴𝜕ఈ(𝜆௜𝑛௜,ఈ − 𝛽௜,ఈ), (2)

and in cylindrical coordinates for axisymmetric problems, it reads [19], 𝜕௧𝑐௜ + 𝜕ఈ(𝑢ఈ𝑐௜) + ଵ௥ 𝑐௜𝑢௥ = 𝜕ఈ(𝑚଴𝜕ఈ𝑐௜) + ௠బ௥ [𝜕௥𝑐௜ − (𝜆௜𝑛௜,௥ − 𝛽௜,௥)] − 𝑚଴𝜕ఈ(𝜆௜𝑛௜,ఈ − 𝛽௜,ఈ), (3)
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where r is the coordinate in the radial direction (the other coordinate z is in the axial di-
rection). Note that Equation (3) can be rewritten in conservative form as, 𝜕௧(𝑟𝑐௜) + 𝜕ఈ(𝑟𝑢ఈ𝑐௜ + 𝑚଴𝑐௜𝛿ఈ௥) = 𝜕ఈ[𝑚଴𝜕௥(𝑟𝑐௜) − 𝑚଴𝑟(𝜆௜𝑛௜,ఈ − 𝛽௜,ఈ)]. (4)

We first present the axisymmetric LBEs using the multiple-relaxation-time (MRT) col-
lision model [20] to solve the axisymmetric CACEs. Two sets of distribution functions 
(DFs), 𝑔௟ and ℎ௟, are used for the volume fractions 𝑐ଵ and 𝑐ଶ, respectively. Here we only 
give the details on 𝑔௟ for 𝑐ଵ (the formulations on ℎ௟ for 𝑐ଶ are similar and omitted for 
brevity). Inspired by [19] and [20], we adopt the following MRT version of the LBEs on 𝑔௟ 
for the axisymmetric CACE for 𝑐ଵ, 𝑔௟(𝑥⃗ + 𝑒௟𝛿௧, 𝑡 + 𝛿௧) − 𝑔௟(𝑥⃗, 𝑡) = −(𝑀ିଵ𝑆௚𝑀)௟௠[𝑔௠(𝑥⃗, 𝑡) − 𝑔௠௘௤(𝑥⃗, 𝑡)] + 𝛿௧𝐺௟(𝑥⃗, 𝑡),  (5)

where 𝑒௟ is the lattice velocity along the direction 𝑙 (𝑙 = 0,1, ⋯ , 8 for the D2Q9 velocity 
model adopted here), 𝛿௧ is the time step, and 𝑀 is a matrix that transforms the vector of 
DFs into a vector of moments [21]. The volume fraction 𝑐ଵ is obtained from the DFs 𝑔௟ as 𝑐ଵ = ଵ௥ ∑ 𝑔௟௟   (6)

For brevity, the details of the MRT collision model, the boundary conditions near the 
solid wall, and the calculation of the spatial derivatives are given in Appendix A. 

2.2. Axisymmetric LBEs for the NSEs 
The axisymmetric LBEs for the NSEs are quite similar to those in [22] except for a few 

changes related to the extension from binary to ternary fluids. For completeness, it is 
briefly introduced as follows. In LBM, the incompressible NSEs for ternary fluid flows 
with variable fluid properties are usually approximated by [23], డ௣డ௧ + 𝜌(𝑐ଵ, 𝑐ଶ)𝑐௦ଶ𝛻 ∙ 𝑢ሬ⃗ = 0, (7)

𝜌(𝑐ଵ, 𝑐ଶ)(డ௨ሬሬ⃗డ௧ + 𝑢ሬ⃗ ∙ 𝛻𝑢ሬ⃗ ) = −𝛻𝑝 + 𝐹⃗ௌ் + 𝛻 ∙ [𝜂(𝑐ଵ, 𝑐ଶ)(𝛻𝑢ሬ⃗ + (𝛻𝑢ሬ⃗ )்)], (8)

where p is the hydrodynamic pressure, 𝜌(𝑐ଵ, 𝑐ଶ) is the density linearly interpolated from 
the volume fractions 𝑐ଵ and 𝑐ଶ as 𝜌(𝑐ଵ, 𝑐ଶ) = 𝜌ଵ𝑐ଵ + 𝜌ଶ𝑐ଶ + 𝜌ଷ(1 − 𝑐ଵ − 𝑐ଶ) (𝜌௜ is the den-
sity of the i-th fluid), and 𝜂(𝑐ଵ, 𝑐ଶ) = 𝜌(𝑐ଵ, 𝑐ଶ)𝜐(𝑐ଵ, 𝑐ଶ)  is the dynamic viscosity with υ(cଵ, cଶ)  being the kinematic viscosity found from those of fluid  i (i = 1, 2, 3)  as [𝜐(𝑐ଵ, 𝑐ଶ)]ିଵ = 𝑐ଵ𝜐ଵି ଵ + 𝑐ଶ𝜐ଶି ଵ + (1 − 𝑐ଵ − 𝑐ଶ)𝜐ଷି ଵ  [23]. The dynamic viscosity of fluid i  is 𝜂௜ = 𝜌௜𝜐௜, and 𝐹⃗ௌ் is the interfacial tension force; its expression is given in Appendix A. 

In Cartesian coordinates, the LBEs using the single-relaxation-time (SRT) collision 
model to recover Equations (7) and (8) read [24], 𝑓௟(𝑥⃗ + 𝑒௟𝛿௟, 𝑡 + 𝛿௟) − 𝑓௟(𝑥⃗, 𝑡) = − ଵఛ೑ (𝑓௟ − 𝑓௟௘௤) + (1 − ଵଶఛ೑)(𝑒௟ − 𝑢ሬ⃗ ) ⋅ [𝛻𝜌𝑐௦ଶ(𝛤௟ − 𝛤௟(0)) + 𝐹⃗ௌ்𝛤௟]𝛿௧,  (9)

where 𝑓௟ and 𝑓௟௘௤ are the DFs and equilibrium DFs for the hydrodynamic variables. 𝑓௟௘௤ 
is given by, 𝑓௟௘௤ = 𝑤௟[𝑝 + 𝜌𝑐௦ଶ( ଵ௖ೞమ 𝑒௟ఈ𝑢ఈ + ଵଶ௖ೞర (𝑒௟ఈ𝑒௟ఉ − 𝑐௦ଶ𝛿ఈఉ)𝑢ఈ𝑢ఉ)],  (10)

and the relaxation parameter 𝜏௙ is related to the kinematic viscosity as 𝜐 = 𝑐௦ଶ(𝜏௙ − 0.5)𝛿௧. 𝛤௟  is the dimensionless DFs given by: 𝛤௟ =  𝑤௟(1 + ଵ௖ೞమ 𝑒௟ఈ𝑢ఈ + ଵଶ௖ೞర 𝑒௟ఈ𝑢ఈ𝑒௟ఉ𝑢ఉ − ଵଶ௖ೞమ 𝑢ఈ𝑢ఈ) . 
The fluid pressure and momentum are calculated as, 𝑝 = ∑ 𝑓௟ + ଵଶ 𝛿௧(𝑢ሬ⃗ ∙ 𝛻𝜌𝑐௦ଶ)௟ ,  (11)

𝜌𝑢ሬ⃗ = ଵ௖ೞమ ∑ 𝑓௟𝑒௟ + ଵଶ 𝛿௧𝐹⃗ௌ்௟ ,  (12)
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To simulate axisymmetric three-phase flows, the equations must be properly 
changed to account for axisymmetric effects. Specifically, the axisymmetric formulation 
used here is modified from that in [22]. When azimuthal flows are absent, the target ax-
isymmetric NSEs to be recovered by the axisymmetric LBEs are ଵ௖ೞమ డ௣డ௧ + డడೣೌ (𝜌𝑢௔) = − ఘ௨ೝ௥ , (13)

𝜌(డ௨ഀడ௧ + 𝑢ఉ డ௨ഀడ௫ഁ) = − డ௣డ௫ഀ + 𝐹ௌ்,,ఈ + డడ௫ഁ [𝜂(డ௨ഀడ௫ഁ + డ௨ഁడ௫ഀ)] + 𝐹௔௫௜௦௬௠,ఈ − ଵ௥ 𝜌𝑢௥𝑢ఈ,   (14)

where the additional force due to axisymmetric effects 𝐹௔௫௜௦௬௠,ఈ is given by, 𝐹௔௫௜௦௬௠,ఈ = ఎ௥ (డ௨ഀడ௥ + డ௨ೝడ௫ഀ), (15)

As compared with the expression in [25], Equation (14) is more simplified because a 
different form of interfacial tension force is used here. 

The axisymmetric LBEs for Equations (13) and (14) read [25], 𝑓௟(𝑥⃗ + 𝑒௟𝛿௧, 𝑡 + 𝛿௧) − 𝑓௟(𝑥⃗, 𝑡) = − ଵఛ೑ (𝑓௟ − 𝑓௟௘௤) + (1 − ଵଶఛ೑)[𝑆௟ + 𝑆௟ᇱ + 𝑆௟ᇱᇱ]𝛿௧,  (16)

where 𝑆௟ = (𝑒௟ሬሬሬ⃗ − 𝑢ሬ⃗ ) ∙ [𝛻𝜌𝑐௦ଶ(𝛤௟ − 𝛤௟(0)) + 𝐹⃗ௌ்𝛤௟] is a source term having the same form as 
in Equation (9), 𝑆௟ᇱ and 𝑆௟ᇱᇱ are another two source terms added due to the axisymmetric 
effects [25], 𝑆௟ᇱ = 𝑤௟𝑐௦ଶ(− ఘ௨ೝ௥ ), 𝑆௟ᇱᇱ = (𝑒௟ − 𝑢ሬ⃗ ) ∙ (𝐹⃗௔௫௜௦௬௠ − ఘ௨ೝ௨ሬሬ⃗௥ )𝛤௟,  (17)

The fluid pressure and momentum in the axisymmetric formulation are computed 
from 𝑝 = ∑ 𝑓௟ + ଵଶ 𝛿௧௟ (𝑢ሬ⃗ ∙ 𝛻𝜌𝑐௦ଶ − 𝜌𝑐௦ଶ ௨ೝ௥ ),  (18)

𝜌𝑢ሬ⃗ = ଵ௖ೞమ ∑ 𝑓௟𝑒௟ + ଵଶ 𝛿௧(𝐹⃗ௌ் + 𝐹⃗௔௫௜௦௬௠ − ఘ௨ೝ௨ሬሬ⃗௥ )௟ ,   (19)

It is noted that the new pressure and velocity are computed in an iterative manner as 
the above two equations are coupled with each other. The velocity gradient terms in Equa-
tion (15) are evaluated by the 2nd −order central difference schemes. For conciseness, the 
MRT model [21] and the Lax–Wendroff streaming scheme used to suppress the chequer-
board effect are described in detail in Appendix A. 

3. Results and Discussions 
This work mainly studies the wetting and spreading of compound droplets on dif-

ferent types of solid walls and focuses on whether droplet separation occurs during the 
wetting process. Commonly, compound droplets may take two different configurations 
in the absence of solid walls, namely, the core-shell type and the Janus type. In this work, 
we concentrate exclusively on Janus droplets. For small droplets with relatively large in-
terfacial tension, the effect of gravity can be ignored. In this section, we first present the 
calculation of some important quantities and the physical model, and then verify our nu-
merical method by checking the shape of compound droplets on different walls in equi-
librium state. After that, we will discuss the influence of several factors on the droplet 
separation phenomenon, including the wall type, curvature, contact angle, the interfacial 
angles, and the density ratio. 

In phase field simulations of ternary fluid flows, the free energy functional ℱ is de-
fined by [26] ℱ(𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝛻𝑐ଵ, 𝛻𝑐ଶ, 𝛻𝑐ଷ) = ׬ (ଵଶௐ 𝐹଴(𝑐ଵ, 𝑐ଶ, 𝑐ଷ) + ଷସ 𝑊𝛾ଵ|𝛻𝑐ଵ|ଶ + ଷସ 𝑊𝛾ଶ|𝛻𝑐ଶ|ଶ + ଷସ 𝑊𝛾ଷ|𝛻𝑐ଷ|ଶ)𝑑𝑉௏ , (20)

where the bulk free energy density 𝐹଴ is given by 
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𝐹଴(𝑐ଵ, 𝑐ଶ, 𝑐ଷ) = 𝛾ଵ𝑐ଵଶ(1 − 𝑐ଵ)ଶ + 𝛾ଶ𝑐ଶଶ(1 − 𝑐ଶ)ଶ + 𝛾ଷ𝑐ଷଶ(1 − 𝑐ଷ)ଶ,  (21)

and the latter three terms in Equation (20) represent the interfacial energies associated with 𝑐௜(𝑖 = 1, 2, 3). Note that an additional term in [26] for total spreading cases is omitted be-
cause here we only consider partial spreading cases. With Equation (21), one may separate ℱ 
into three parts as ℱ = ∑ ℱ௜ଷ௜ୀଵ  where ℱ௜ represents the contribution related to 𝑐௜, ℱ௜ = ׬ (ଵଶௐ 𝛾௜𝑐௜ଶ(1 − 𝑐௜)ଶ + ଷସ 𝑊𝛾௜|𝛻𝑐௜|ଶ)𝑑𝑉௏ = ଷఊ೔ସௐ ׬ (16𝑐௜ଶ(1 − 𝑐௜)ଶ + 𝑊ଶ|𝛻𝑐௜|ଶ)𝑑𝑉௏ ,  (22)

In the conservative phase field framework, the free energies mostly come from the 
interfacial regions because they almost vanish in the bulk regions where 𝑐௜ ≈ 0 or 𝑐௜ ≈ 1, |∇c୧| ≈ 0. In actual simulations, ℱ௜ is easily obtained from the fields for the volume frac-
tion 𝑐௜ and its gradient. However, for specific problems, one is usually more interested in 
the interfacial energies associated with an interface, e.g., 𝐸௦,௜௝  between fluids i  and j 
(than in ℱ௜). Fortunately, 𝐸௜௝ can be found from ℱ௜ as 𝐸௦,௜௝ = (𝛾௜ + 𝛾௝)( ℱ೔ఊ೔ +  ℱೕఊೕ −  ℱೖఊೖ ),  (23)

where 𝑖, 𝑗, and 𝑘 are different. The total kinetic energy and the kinetic energy of fluid i 
may be calculated as 𝐸௞,௧ = ׬ ଵଶ 𝜌(𝑐ଵ, 𝑐ଶ)|𝑢ሬ⃗ |ଶ𝑑𝑉௏ , (24)

𝐸௞,௜ = ׬ 𝑁(𝑐௜) ଵଶ 𝜌௜|𝑢ሬ⃗ |ଶ𝑑𝑉௏ ,  (25)

where 𝑁 (𝑐௜)  =  1 for 𝑐௜  >  0.5 and 𝑁 (𝑐௜)  =  0 otherwise. Note that in cylindrical coor-
dinates for axisymmetric problems, ׬ ()𝑑𝑉௏ = ׬ ()(2𝜋𝑟)𝑑𝑧𝑑𝑟௏ . 

3.1. Physical Model and Parameters 
Several kinds of solid walls with different geometries will be considered. To illustrate 

the basic physical settings, we choose the wetting of compound droplets on an ellipsoidal 
wall (corresponding to a prolate spheroid in three dimensions) as an example. As shown in 
Figure 1, the initial compound droplet of the Janus type is composed of two droplets of 
different components (fluid 1 on the left and fluid 2 on the right) that have been fused to-
gether to be in static equilibrium. The volumes of the two droplets are both equal to 4.189 
(about the volume of a sphere with a radius of 𝑅଴ = 1). In other words, we chose the refer-
ence length as 𝐿௥ = 𝑅଴. Note that the initial state may be also realized by placing two spher-
ical droplets of radius 1, one of fluid 1 and the other of fluid 2, in contact and letting the 
system evolve freely under the action of interfacial tension (with dissipation) to equilibrium. 
To circumvent this step, we employed the analytical solution for the final equilibrium con-
figuration under given interfacial angles. The surrounding environment is fluid 3. The an-
gles 𝜑௜(𝑖 = 1, 2, 3) at the triple junction measured in fluid i in Figure 1 are called interfacial 
angles and, for cases other than total spreading, they satisfy ∑ 𝜑௜ = 2𝜋ଷ௜ୀଵ , 𝑠𝑖𝑛𝜑ଷ 𝜎ଵଶ⁄ = 𝑠𝑖𝑛𝜑ଶ 𝜎ଵଷ⁄ = 𝑠𝑖𝑛𝜑ଵ 𝜎ଶଷ⁄ .  (26)

The domain used in our simulations is a rectangle with a size of 𝐿௫ × 𝐿௬. The semi-axis 
lengths in the x-direction, y-direction, and z-direction of the prolate spheroid are 𝑙௫ =1.310, 𝑙௬ = 𝑙௭ = 0.8736 (in order to meet the axisymmetric requirement, it is necessary to 
have 𝑙௬ = 𝑙௭), and its volume of the ellipsoid is 𝑉 = 4𝜋𝑙௫𝑙௬𝑙௭/3 = 4.189 (the same as the 
volume of a unit sphere). For conciseness, in the following only 𝑙௬ is given for a prolate or 
oblate spheroid and 𝑙௭ = 𝑙௬ will be omitted. Note that the x- and y-axes in Figure 1 corre-
spond to the z- and r-axes in the cylindrical coordinate system, respectively. Associated with 
the three kinds of interfaces in a ternary fluid system, there are three different contact angles 
(CAs) on a wall and these CAs are not independent. From the force balance of a compound 
droplet on a wall in equilibrium, they must satisfy the following condition [15] 
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𝑠𝑖𝑛𝜑ଶ𝑐𝑜𝑠𝜃ଵଷ − 𝑠𝑖𝑛𝜑ଷ𝑐𝑜𝑠𝜃ଵଶ − 𝑠𝑖𝑛𝜑ଵ𝑐𝑜𝑠𝜃ଶଷ = 0.  (27)

where 𝜃௜௝  represents the contact angle for the interface between fluids i  and j  on the 
wall measured in fluid i (𝜃௜௝ + 𝜃௝௜ = 𝜋). Periodic boundary conditions are used on the left 
and right sides of the domain. Solid wall boundary conditions are used on the top side, 
and symmetrical boundary conditions are used on the bottom side. For simplicity, the 
density ratio and the kinematic viscosity ratio of fluid 1 to fluid 2 are fixed at 𝑟ఘଵଶ = 1 and 𝑟జଵଶ = 1  (note that the present method can handle other values of r஡ଵଶ  and r஥ଵଶ ). The 
density ratio and the kinematic viscosity ratio of fluid 1 to fluid 3 are 𝑟ఘଵଷ and 𝑟జଵଷ, re-
spectively. 

It is noted that the present setting in Figure 1 is similar to “Configuration L (lens)” in 
[11], which also considered axisymmetric problems. However, they mainly focused on the 
equilibrium states of compound droplets on a planar wall at some fixed interfacial angles. 
In contrast, we will study the dynamic wetting processes on different curved walls at a 
variety of conditions, during which the compound droplet may undergo significant top-
ological changes. In addition, [13,16] also considered a Janus droplet near a wall. How-
ever, the arrangement of the droplets with respect to the wall is different from the present 
one. In their studies, both constituent droplets wetted the wall. The problem studied by 
them was two dimensional and does not actually exist in reality. 

 
Figure 1. Physical model diagram. 

The reference velocity is chosen as 𝑈௥ = 𝜎ଵଶ 𝜂ଵ⁄ , which is derived from the interfacial 
tension 𝜎ଵଶ  and the dynamic viscosity of fluid 1 𝜂ଵ(= 𝜌ଵ𝜈ଵ) , and the reference time is 
derived from 𝐿௥ and 𝑈௥ as 𝑇௥ = ௅ೝ௎ೝ = ௅ೝఎభఙభమ . All length and time quantities are measured in 𝐿௥  and 𝑇௥ , respectively. From these, one can calculate the Reynolds number as 𝑅𝑒 =ఘೝ௎ೝ௅ೝఎೝ = ఘభఙభమ௅ೝఎభమ   and the Weber number as 𝑊𝑒 = ఘೝ௎ೝమ௅ೝఙభమ = 𝑅𝑒 . The capillary number is 

found to be 𝐶𝑎 = ఎೝ௎ೝఙభమ = ௐ௘ோ௘ = 1 and the Ohnesorge number is 𝑂ℎ = ఎభඥఘభఙభమ௅ೝ = ଵ√ோ௘. In the 

simulations, 𝐿௥ was discretized by 𝑁௅ grids and 𝑇௥ was discretized by 𝑁௧ time steps. 
Then, the grid size and time step are obtained as: 𝛿௫ = 𝐿௥/𝑁௅, 𝛿௧ = 𝑇௥/𝑁௧. In phase-field 
simulations, the interface thickness and mobility must be properly set. Regarding the 
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former, 𝑊/𝛿௫ =5 was used as in many phase-field simulations in the literature and 𝑁௅ 
was set to be larger enough to make the Cahn number 𝐶௡ = 𝑊/𝐿௥ = (𝑊/𝛿௫)/𝑁௅ small. 
For the latter, we used the mobility 𝑚଴ = 0.1 (in lattice units) empirically (which pro-
vides reasonable results under most circumstances). In order to ensure the accuracy of the 
simulation, tests on the grid density and domain size were carried out for a typical case 
(see Appendices B and C for details). Based on the grid density tests, to balance the re-
quirements of accuracy and computational overhead, 𝑁௅ = 50 was used in the following. 

3.2. Numerical Validation 
First, the equilibrium shapes of compound droplets on several types of solid walls 

are calculated by numerical simulations and compared with the corresponding analytical 
solutions based on the equilibrium conditions (see Appendices D and E for the derivation 
of the analytical solutions of the equilibrium state of the compound droplet on different 
walls). The total simulation time in each case is 𝑡 = 600. At this time, the total kinetic en-
ergy of the compound droplet has approached zero. The comparisons between the nu-
merical and analytical results are shown in Figure 2, where the blue dashed lines are the 
interfaces obtained by our simulations and the red solid lines are from the corresponding 
analytical solutions. The common parameters used in the simulations are: 𝜃ଵଷ = 60° , 𝑟ఘଵଶ = 1 , 𝑟ఘଵଷ = 825 , 𝑟జଵଶ = 1 , 𝑟జଵଷ = 0.06 , 𝑅𝑒 = 400  (𝑂ℎ = 0.05 ). Note that the other 
two CAs in Equation (27) are not important here because only the left droplet wets the 
wall. The interfacial angles of Figure 2a,d are: 𝜑ଵ = 150°, 𝜑ଶ = 130°, 𝜑ଷ = 80°. Interfacial 
angles of Figure 2b,c are: 𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ = 70°. The solid wall in Figure 2a is 
concave (i.e., having negative curvature) and its radius of curvature is 𝑅௖ = 4. In other 
words, the droplet wets the inner surface of a sphere. The solid walls in Figure 2b–d are 
all convex (i.e., the droplet wets the outer surface of an ellipsoid or a sphere). In Figure 2b 
the prolate spheroid has semi-axis lengths in the x-direction and y-direction 𝑙௫ = 1.310, 𝑙௬ = 0.8736. In Figure 2c, the oblate spheroid has semi-axis lengths 𝑙௫ = 0.6, 𝑙௬ = 1.291. 
In Figure 2d, the sphere has a radius of 𝑅 = 1. From Figure 2, it is observed that the equi-
librium interface positions by our simulation are close to the theoretical solutions for all 
cases. Thus, our numerical method should be reliable to predict the wetting characteristics 
of Janus droplets on curved walls. It can also be seen from Figure 2 that as the curvature 
of solid wall varies, the shape of droplet 2 changes slightly whereas the shape of droplet 
1 changes more significantly. When the wall curvature decreases with all other conditions 
fixed, the contact area between droplet 1 and the solid wall increases as found through the 
comparison between Figure 2a,d (or through the comparison between Figure 2b,c). 

  
(a) (b) 
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(c) (d) 

Figure 2. Verification of equilibrium shapes of compound droplets on different walls. The black solid 
lines represent the solid walls, the blue dashed lines are the interfaces obtained by our simulations, 
and the red solid lines are from the corresponding analytical solutions. The contact angle on the wall 
(for fluids 1 and 3) is 𝜃ଵଷ = 60°. The interfacial angles are (a,d):  𝜑ଵ = 150°, 𝜑ଶ = 130°, 𝜑ଷ = 80°; 
(b,c):  𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ = 70°. 

3.3. Wetting of Compound Droplets on Three Types of Solid Walls 
In this section, three types of solid walls are considered: a concave spherical surface 

with a radius of curvature 𝑅௖ = 4 , a plane, and a prolate spheroid with the semi-axis 
lengths 𝑙௫ = 1.310, 𝑙௬ = 0.8736. The purpose is to explore the effect of wall shape on the 
dynamic behavior of a Janus droplet during its spreading on the wall. Figure 3 shows the 
wetting processes on the three kinds of walls. The common parameters used in the simu-
lations are: 𝜑ଵ = 150° , 𝜑ଶ = 130° , 𝜑ଷ = 80° , 𝜃ଵଷ = 60° , 𝑟ఘଵଶ = 1 , 𝑟ఘଵଷ = 825 , 𝑟జଵଶ = 1 , 𝑟జଵଷ = 0.06, 𝑅𝑒 = 400 (𝑂ℎ = 0.05). It is noted that the Reynolds number and the physical 
properties of the fluids (including the density and viscosity ratios) in this section are also 
used in all subsequent sections (unless specified otherwise). 

It can be seen from Figure 3 that the motions of the compound droplet for all cases 
follow a similar sequence. First, the left droplet spreads on the wall. This initiates a capil-
lary wave propagating from the contact line along the interface between fluids 1 and 3. 
After some time, the wave reaches the three-phase point (where the three fluids meet) and 
continues in two directions: one along the interface between the two drops (i.e., fluids 1 
and 2) and the other along that between fluids 2 and 3. During its propagation, the capil-
lary wave is damped to some extent due to viscous dissipation. It also takes some time for 
it to arrive at the three-phase point and subsequently affect the right droplet. As the right 
droplet has no direct contact with the wall, it is only affected by the interfacial tension of 
the interface between the two droplets (for convenience, called “fusion interface” below). 
Thus, its deformation and motion are lagging the left. When the intrinsic contact angle is 
the same, the concave wall “bends” the interface between fluid 1 and 3 more heavily than 
the planar and convex walls because the initial shape of the left droplet deviates from its 
(imagined) equilibrium configuration on the concave wall most severely (in other words, 
for the concave wall case the system initially has the largest interfacial energy potential). 
This causes the left droplet to spread the fastest and deform the most violently on the 
concave wall. During this process, the left droplet disconnects with the right droplet the 
earliest (see the snapshot at 𝑡 = 50 in Figure 3a). For the planar wall case, the initial po-
tential to drive the left droplet is not as large as the concave wall case but is still enough 
to split the Janus droplet at a later time (see the snapshot at 𝑡 = 90 in Figure 3b). For the 
convex wall, the driving potential is the smallest and is insufficient to split the compound 
droplet (as see in Figure 3c). From Figure 3, it is also observed that, in the end, the two 
droplets remain in the form of a compound droplet for all three cases. On both the concave 
and planar walls, after the separation occurs, the left droplet slows down whereas the 
right droplet keeps moving towards the left because it was accelerated to obtain a certain 
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momentum by the interfacial tension force from the left droplet. After some time, the right 
droplet touches the left one again and they merge to form a different Janus droplet on the 
wall that eventually reaches static equilibrium. Thus, the observed splitting of Janus drop-
let is only transient. Making use of this splitting stage to permanently separate the two 
fluids is beyond the scope of this work. Here we simply focus on the events of topological 
changes during the wetting process, which are of interest on their own. 

 

 

Figure 3. Flow field evolutions of compound droplets wetting a solid wall with different shapes: (a) 
a concave wall with a radius of curvature 𝑅௖ = 4; (b) a planar wall; (c) a prolate spheroid with 𝑙௫ =1.310, 𝑙௬ = 0.8736. 

Here it is helpful to examine the changes in the energy of the whole system (including 
the wall) between the initial state and the final equilibrium state for the three cases. In 
these two states, the velocity is zero everywhere, and therefore the system energy only 
consists of the interfacial energies. Denote the total area of the solid surface as 𝐴௦ and the 
area of the surface wetted by the left droplet (of fluid 1) as 𝐴௪. The area of the interface 
between fluids i and j is 𝐴௜௝. The interfacial tension between the solid wall and fluid i is 𝜎௜௦ . In the initial state (labelled with a superscript ଴ ), the system energy may be ex-
pressed as 𝐸௧଴ = 𝜎ଵଶ𝐴ଵଶ଴ + 𝜎ଵଷ𝐴ଵଷ଴ + 𝜎ଶଷ𝐴ଶଷ଴ + 𝜎ଷ௦𝐴௦. In the final state (labelled with a super-
script ୤ ), it becomes 𝐸௧௙ = 𝜎ଵଶ𝐴ଵଶ௙ + 𝜎ଵଷ𝐴ଵଷ௙ + 𝜎ଶଷ𝐴ଶଷ௙ + 𝜎ଵ௦𝐴௪ + 𝜎ଷ௦(𝐴௦ − 𝐴௪) . Thus, the 
energy change from the initial state to the final state is Δ𝐸௧଴→௙ = 𝐸௧଴ − 𝐸௧௙ = 𝜎ଵଶ൫𝐴ଵଶ଴ −𝐴ଵଶ௙ ൯ + 𝜎ଵଷ(𝐴ଵଷ଴ − 𝐴ଵଷ௙ ) + 𝜎ଶଷ(𝐴ଶଷ଴ − 𝐴ଶଷ௙ ) + (𝜎ଷ௦ − 𝜎ଵ௦)𝐴௪ . From Young�s equation on the 
contact angle, one has 𝜎ଷ௦ = 𝜎ଵ௦ + 𝜎ଵଷ𝑐𝑜𝑠 𝜃ଵଷ . Then, one has 𝛥𝐸௧଴→௙ = 𝜎ଵଶ𝛥𝐴ଵଶ +𝜎ଵଷ𝛥𝐴ଵଷ + 𝜎ଶଷ𝛥𝐴ଶଷ + 𝜎ଵଷ𝑐𝑜𝑠 𝜃ଵଷ𝐴௪ where 𝛥𝐴௜௝ = 𝐴௜௝଴ − 𝐴௜௝௙ . Without loss of generality, we 
consider the energy change scaled by the interfacial tension between fluids 1 and 2, Δ𝐸௧଴→௙/𝜎ଵଶ. The initial areas 𝐴௜௝଴  are all given. The final areas 𝐴௜௝௙  and the wetted area 𝐴௪ 
are obtained from the analytical solutions. In the end, the energy changes are found to be 
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𝛥𝐸௧଴→௙/𝜎ଵଶ = 2.887  for the case on the concave wall, 𝛥𝐸௧଴→௙/𝜎ଵଶ = 2.864  for the planar 
wall, and 𝛥𝐸௧଴→௙/𝜎ଵଶ = 1.792 for the ellipsoidal wall. These results provide quantitative 
evidence for the above discussions on the driving potential. 

For this problem, we monitored the centroid velocities and positions of the droplets 
along the x-direction 𝑢௜ and 𝑥௜ (i = 1 for the left droplet and i = 2 for the right droplet). 
Take the left droplet as an example. Its centroid velocity 𝑢ଵ was calculated by, 𝑢ଵ = ׬ ௬௨(௫,௬)ௗ௫ௗ௬ಲ|೎భಭబ.ఱ׬ ௬ௗ௫ௗ௬ಲ|೎భಭబ.ఱ ,  (28)

where 𝐴|𝑐ଵ > 0.5 represents the region where 𝑐ଵ > 0.5. Figure 4 shows the evolutions of 
the relative velocity and position between the left and right droplets� centroids along the 
x-axis, 𝑢ଵ − 𝑢ଶ and 𝑥ଵ − 𝑥ଶ, respectively, for the three cases in Figure 3. It can be seen 
from Figure 4a that in the early stage (𝑡 < 80), the relative velocities are negative for all 
cases, and its magnitude first increases and then decreases. During this stage, the maxi-
mum magnitude of the relative velocity (abbreviated as MMRV for brevity below) for the 
third case (the ellipsoidal wall) is the largest, the MMRV for the planar wall is the smallest, 
and that for the concave wall is in between. Interestingly, although the MMRV is larger 
on the concave wall than that on the ellipsoidal wall, the maximum distance between the 
two droplets� centroids is smaller on the ellipsoidal wall during the early stage, as seen 
from Figure 4b. This is because the change in distance is determined by the integration of 
the relatively velocity in time, not by the MMRV. It can also be seen in Figure 4b that the 
maximum distance is the largest for the flat wall. From Figures 3 and 4, it seems that 
whether the Janus droplet splits is more related with the MMRV than with the maximum 
distance between the two droplets. 
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(b) 

Figure 4. Evolutions of (a) the relative velocity and (b) the relative position along the axial direction 
between the two droplets� centroids on the concave, planar and ellipsoidal walls. 

For convenience, in subsequent discussions we set the flat wall as a baseline. The 
concave wall extends towards the upper and right side (in regions not far away from the 
axis, predominantly towards the upper side for 𝑅௖ = 4) on the right of the baseline. This 
limits the leftwards motion of the left droplet to some extent. At the same time, the inter-
facial tension force near the contact line gives the most violent pull to the left droplet to-
wards the upper and right side, somehow tearing the left droplet off after a certain time. 
As we consider axisymmetric problems here, the upper direction is the radial direction, 
and the contact line corresponds to a circle in three dimensions. When the contact line 
moves further away from the axis, the perimeter of the circle (along which the tugging 
force acts) increases (proportional to the radial coordinate). In contrast, the ellipsoidal wall 
extends towards the left and upper side. For the specific prolate spheroid considered here, 
the direction is predominantly towards the left. Therefore, the increase in the perimeter of 
the contact line during wetting is less significant than that in the first case. In addition, the 
tugging force on the contact line is smaller in the third case. The differences in these two 
factors partially explain why the Janus droplet splits in the first case but not in the third. 
Intuitively, one can imagine two extreme scenarios (corresponding to two types of mech-
anisms) for the separation to occur. The first is the “relative motion induced separation”, 
in which the left droplet is accelerated leftwards extremely fast and the right droplet al-
most stays in its original place due to inertia. The second is the “deformation induced 
separation”, in which the left droplet deforms (to become relatively flat) very quickly and 
breaks the connection with the right droplet. Of course, in reality, both mechanisms may 
play some role concurrently. For the above three cases, the second mechanism seems to 
be more effective than the first one; as seen in Figure 3, the left droplet experiences signif-
icant deformations on the flat and the concave walls and separation occurs in these two 
cases. The situation on the convex wall is the opposite. 

Figure 5 shows the evolution of the interfacial energy of the fusion interface between 
the two droplets with time for the three cases on different walls. The expression of this 
interfacial energy is given by Equation (23) with 𝑖 = 1, 𝑗 = 2. Because, during the period 
of droplet separation, the fuse interface disappears and the interfacial energy 𝐸௦,ଵଶ be-
comes zero, it is straightforward to determine from Figure 5 when the compound droplet 
splits and at what time the left and right droplets contact each other again. As seen in 
Figure 5, initially the interfacial energy decreases the fastest on the concave wall and the 
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slowest on the ellipsoid. The change of 𝐸௦,ଵଶ on the planar wall looks close to that on the 
concave wall in the initial stage, during which 𝐸௦,ଵଶ vanishes for a certain time. In con-
trast, 𝐸௦,ଵଶ always remains positive on the ellipsoid, indicating that droplet separation 
never occurs. These results are consistent with the previous findings. Through the com-
parison of the interfacial energy in the late stage when the system approaches equilibrium 
on the three kinds of solid walls, it can also be found that 𝐸௦,ଵଶ on the concave wall is the 
largest and that on the ellipsoid is the smallest. 

 
Figure 5. Evolution of the interfacial energy of the fusion interface between the two droplets with 
time during the wetting on three types of walls. Note that the values of the vertical coordinate have 
been multiplied by the Weber number (𝑊𝑒 = 400). 

The evolution of the kinetic energy of the two droplets was also monitored, as shown 
in Figure 6. From this figure, it is found that the maximum kinetic energy of the left droplet 
(observed during the initial stage when it wets the surface) on the ellipsoid is much 
smaller than those on the concave and planar surfaces. This is not only because the attrac-
tion of the ellipsoidal wall to the droplet is the weakest (due to its particular shape), but 
also because the interaction between the two droplets on the ellipsoid has always been 
relatively large (as no separation occurs), and the left droplet is retarded by the right drop-
let the most. On the other hand, the maximum kinetic energy of the right droplet (ob-
served after the initial stage) on the ellipsoid is the largest and occurs the earliest among 
all three cases. The reason is as follows. Because the compound droplet on the ellipsoid 
does not split, the right droplet is always in an accelerated state in the early stage of the 
wetting process. In contrast, for the planar and concave walls, the right droplet accelerates 
first, then decelerates after separation, and then accelerates again after the two droplets 
reconnect. For all three walls, the kinetic energies of both droplets become very low after 
a long time (e.g., t > 400), as seen in Figure 6. 
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Figure 6. Evolution of the kinetic energy of the two droplets with time during wetting on three types 
of walls. 

As seen from the above, it is more difficult to make the compound droplet separate 
on an ellipsoidal wall than on a concave wall or a planar wall. Next, we further explore 
the wetting of a Janus droplet on ellipsoidal walls with different curvatures. Three differ-
ent ellipsoids with the same volume (4.189) were studied. The first is an oblate spheroid 
with 𝑙௫ = 0.6, 𝑙௬ = 1.291. The second is a unit sphere. The third is the prolate spheroid 
just studied previously. The interfacial angles are slightly different from those in the 
above: 𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ = 70°. The other parameters are the same as those in 
Figure 3c. The flow field evolutions for the three cases are shown in Figure 7. 
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Figure 7. Evolution of the flow field of compound droplets spreading on ellipsoids with different 
curvatures, (a) 𝑙௫ = 0.6, 𝑙௬ = 1.291; (b) 𝑙௫ = 𝑙௬ = 1; (c) 𝑙௫ = 1.310, 𝑙௬ = 0.8736. 

As seen in Figure 7, droplet separation only occurs near the oblate spheroid. During 
its spreading on the unit sphere and on the prolate spheroid, the left droplet is always 
connected with the right one. On the unit sphere, the interfacial area between the two 
droplets shrinks to a quite small value, from t = 70 to t = 90, approaching the critical 
state of droplet separation. However, at that critical moment, the distance between the 
two droplets reaches its maximum and the deformations of the interfaces also reach the 
largest degree. Thus, there is no further bending or distortion of the interface between the 
two droplets to make them disconnect. The situation on the prolate spheroid is similar to 
that in the above. These observations further confirm the importance of the second mech-
anism (the deformation induced separation). The oblate spheroid extends away from the 
axis the most among all three solid objects of the same volume and provides the largest 
area for the left droplet to spread upwards, leading to sufficiently large distortion of the 
left droplet in a short enough time. These are key to breaking up the Janus droplet. 

3.4. Effects of the Radius of Curvature and Contact Angle of the Wall on Droplet Separation 
This section explores the effects of the radius of curvature of the wall together with 

its wettability on the separation behavior of compound droplets over a wider parameter 
range. Both an ellipsoidal wall with variable positive curvature and a concave wall with a 
constant negative curvature were considered. The ellipsoid volume is fixed at 4.189. Sev-
eral lengths of the semi-axis in the x-direction 𝑙௫ = 0.7 , 0.8 , 0.9 , 1 , 1.1 , 1.2 , 1.3  were 
tested. The corresponding values of 𝑙௬ are 𝑙௬ = 1.195, 1.118, 1.054, 1, 0.9535, 0.9129, 
and 0.8771 , respectively. The contact angle 𝜃ଵଷ  varies from 50°  to 75° . Other parameters are the same as those used in Figure 7 in Section 3.3. Figure 8 shows the 
phase diagram of the separation state on ellipsoids with different 𝑙௫ and 𝜃ଵଷ. In this fig-
ure, the cross symbol means no separation occurs and the filled circle means the contrary. 
With the decrease of 𝑙௫ (concurrently the increase of 𝑙௬), the radius of curvature of the 
ellipsoid near the axis (𝑟௖ ) increases. The corresponding values of 𝑟௖  are rୡ = 2.040 , 1.562, 1.234, 1, 0.8265, 0.6945, and 0.5918, respectively. From Figure 8 it can be seen 
that smaller contact angles are conducive to droplet separation. This is because more hy-
drophilic walls have a stronger attraction force on the left droplet, making its acceleration 
and deformation during the wetting process larger. In addition, at each contact angle, to 
decrease 𝑙௫ facilitates the occurrence of droplet separation. As the contact angle increases, 
the critical 𝑙௫ for droplet separation decreases. It means that to observe droplet separation 
during the spreading on a less hydrophilic ellipsoid, one must increase the radius of cur-
vature. All these agree with previous findings and analyses. 
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Figure 8. Phase diagram on whether a compound droplet separates during wetting and spreading 
on an ellipsoid having different shapes and contact angles. 

In addition to ellipsoidal walls, we also varied the radius of curvature for a concave 
wall having a constant curvature. Based on previous results, droplet separation is more 
likely to occur on a concave wall. To encompass a broader range of parameters, the inter-
facial angles in this part are chosen as  𝜑ଵ = 150°, 𝜑ଶ = 130°, and 𝜑ଷ = 80°. The contact 
angle varies from 50° to 75°. The radius of curvature changes from 1.32 to 64. Other pa-
rameters are not altered. The phase diagram of the separation state on a concave wall un-
der different combinations of 𝑅௖ and 𝜃ଵଷ are shown in Figure 9. Note that the increments 
in 𝑅௖ are nonuniform and the horizontal coordinates are not to scale. As found from this 
figure, when the wall is not so hydrophilic (e.g., 𝜃ଵଷ = 65° and 70°) and the radius of 
curvature is large (e.g., 𝑅௖ > 2), one can see a transition from “no separation” to “separa-
tion” by properly reducing the radius of curvature. However, this effect of reducing Rୡ 
fails to work when 𝑅௖ ≤ 1.4. At relatively small 𝑅௖, the volume enclosed by the concave 
wall is also small, and there is not enough space to accommodate the left droplet spread-
ing outwards (i.e., away from the axis). When the left droplet does not have enough de-
formation, its connection with the right droplet is hard to break. Therefore, if one wants 
to change the radius of curvature of a concave wall to promote the separation of Janus 
droplets, a moderate value for 𝑅௖ should be taken. 
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Figure 9. Phase diagram on whether a compound droplet separates during wetting and spreading 
on concave walls having different radii of curvature and contact angles. 

3.5. Effects of the Interfacial Angles and Wall Contact Angle on Droplet Separation 
In addition to the geometrical factors and wettability of the wall, the interfacial angles 

may also influence the droplet separation behavior. Figure 10a,b shows two typical wet-
ting and spreading processes on a prolate spheroid with  𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ = 70° 
and  𝜑ଵ = 135° , 𝜑ଶ = 115° , 𝜑ଷ = 110° . The contact angle 𝜃ଵଷ  is fixed at 𝜃ଵଷ = 50°  for 
these two cases. In Figure 10c, the contact angle 𝜃ଵଷ is 𝜃ଵଷ = 60°, and the interfacial an-
gles are the same as in Figure 10a. All other parameters are the same as in Figure 3c. As 
found in Figure 10a, when  𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ = 70°, the two droplets separated 
for a period of time. In Figure 10b, when 𝜑ଵ = 135°, 𝜑ଶ = 115°, 𝜑ଷ = 110°, the two drop-
lets are always tightly connected throughout the wetting process. The significance of the 
interfacial angles may be demonstrated through the energy difference between two static 
states: one is the initial state and the other is an imaginary state (labelled with a superscript ୱୣ୮) in which the left and right droplets are two separate free spheres. For the time being, 
we assume that no wall is present. Then, the system energy for the former state is 𝐸௧଴ =𝜎ଵଶ𝐴ଵଶ଴ + 𝜎ଵଷ𝐴ଵଷ଴ + 𝜎ଶଷ𝐴ଶଷ଴  and that for the latter is 𝐸௧௦௘௣ = 𝜎ଵଷ𝐴ଵଷ௦௘௣ + 𝜎ଶଷ𝐴ଶଷ௦௘௣ with 𝐴ଵଷ௦௘௣ =𝐴ଶଷ௦௘௣ = 4𝜋𝑅଴ଶ . The scaled energy difference is found to be Δ𝐸௧଴→௦௘௣/𝜎ଵଶ = −0.1091  for  𝜑ଵ = 155° , 𝜑ଶ = 135° , 𝜑ଷ = 70°  and Δ𝐸௧଴→௦௘௣/𝜎ଵଶ = −0.8599  for  𝜑ଵ = 135° , 𝜑ଶ =115°, 𝜑ଷ = 110°. From the energy perspective, the minimum energy required to split the 
Janus droplet for 𝜑ଵ = 155° , 𝜑ଶ = 135° , 𝜑ଷ = 70°  is much smaller than that for 𝜑ଵ =135°, 𝜑ଶ = 115°, 𝜑ଷ = 110°. This explains the differences between Figure 10a,b. By com-
paring Figure 10a,c, it can be found that the wetting behavior at θଵଷ = 50° is obviously 
different from that under the same interfacial angles at θଵଷ = 60°. This is due to the more 
hydrophilic wall�s stronger attraction, as stated before. 
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Figure 10. Evolution of the flow field of a compound droplet spreading on an ellipsoid under dif-
ferent interfacial angles: (a)  𝜑ଵ = 155° , 𝜑ଶ = 135° , 𝜑ଷ = 70° , 𝜃ଵଷ = 50° ; (b)  𝜑ଵ = 135° , 𝜑ଶ =115°, 𝜑ଷ = 110°, 𝜃ଵଷ = 50°; (c)  𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ = 70°, 𝜃ଵଷ = 60°. 

To know the effects of the interfacial angles and wall wettability on droplet separa-
tion in a broader parameter regime, a number of simulations on compound droplet wet-
ting on the above prolate spheroid under different interfacial angles and contact angles 
were carried out. The interfacial angle 𝜑ଵ varies from 150° to 164°, and the contact an-
gle 𝜃ଵଷ varies from 45° to 70°. Note that the difference between the first two interfacial 
angles (𝜑ଵ − 𝜑ଶ ) is fixed at 20° . Other parameters are the same as those given before. 
Based on the simulation outcome, a phase diagram on whether droplet separation occurs 
during the wetting process is established in Figure 11. As shown in Figure 11, in general 
when the interfacial angle 𝜑ଵ increases, the critical contact angle for separation increases. 
For instance, at 𝜑ଵ = 154°, the critical contact angle is between 50° and 55° and at 𝜑ଵ =158° it is between 60° and 65°. These results indicate that, at a larger interfacial angle 𝜑ଵ, the bond between the left and right droplets weakens and may be broken by the wet-
ting on a less hydrophilic wall. Besides, the different variation ranges of the interfacial 
angle and contact angle in Figure 11 suggest that the interfacial angle has greater impact 
on the droplet separation phenomenon than the contact angle. While the separation phe-
nomenon depends on both the intrinsic properties of both a Janus droplet, like the inter-
facial angles, and external factors, like the wall wettability, it seems that the former plays 
a more influential role than the latter. 
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Figure 11. Phase diagram on whether a compound droplet separates during wetting and spreading 
on an ellipsoid at different interfacial angles and contact angles. 

In addition to a prolate spheroid, we also performed similar investigations for a con-
cave wall with a radius of curvature Rୡ = 4 and generated a phase diagram in the 𝜑ଵ −𝜃ଵଷ plane under the same physical conditions, as shown in Figure 12. Like Figure 11, the 
range of variation for the contact angle is also from 45° to 70°. As found from Figures 11 
and 12, when other parameters are equal, the interfacial angle 𝜑ଵ required for the sepa-
ration of compound droplets on the concave wall is smaller than that on the prolate sphe-
roid. As mentioned above, a smaller interfacial angle 𝜑ଵ corresponds to a stronger bond 
between the two droplets. This indicates that under the same wall wettability, the concave 
surface drags and deforms the left droplet more severely than the convex surface (such as 
the ellipsoid). This agrees with previous analyses in Section 3.3. By comparing the varia-
tion ranges of the interfacial angle in Figures 11 and 12, it can be seen that the influence of 
the interfacial angle on droplet separation is even more significant on the concave surface 
than on the ellipsoid. For example, on the concave surface at 𝜑ଵ = 146°, the critical contact 
angle for droplet separation is between 50° and 55° and at 𝜑ଵ = 148° it is between 60° 
and 65°. Roughly speaking, to have a ~10° change in the critical contact angle, it takes 
only a ~2° change in 𝜑ଵ on the concave surface, whereas it requires a ~4° change in 𝜑ଵ 
on the ellipsoid. These findings indicate that the influence of the interfacial angle 𝜑ଵ is 
amplified to some extent by the concave surface. In other words, the geometry of the wall 
not only affects whether droplet separation happens under the same wettability, but also 
affects the sensitivity of this phenomenon to the interfacial angle 𝜑ଵ. The stronger sensi-
tivity to the interfacial angle 𝜑ଵ on the concave wall can be understood from the follow-
ing perspective. Because in the early state the left droplet experiences more extensive 
spreading and larger deformation on the concave wall, the interfacial area between the 
two droplets shrinks quickly to a low value (e.g., see Figure 3a in Section 3.3). Under such 
circumstances, even a seemingly minor change in the interfacial angle 𝜑ଵ can determine 
whether it will further shrink to zero or not. 

The above findings from Figure 12 may also be understood from the other side. That 
is, given the same change in the interfacial angle, the influence of the contact angle is 
smaller on the concave surface than on the ellipsoidal wall. This is because the wetting 
effect of the concave solid wall itself on the droplets has been relatively good, and the 
influence of continuing to enhance its wetting effect on the separation of droplets will not 
be too great. On the other hand, it can be seen from Figure 3a in Section 3.3 that when the 
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droplets on the concave surface are separated, droplet 1 has been wetted on the wall to a 
considerable extent. The possibility of separation mainly depends on whether the liquid 
bridge between two droplets will break when droplet 1 spreads to the maximum on the 
solid wall; this condition is closely related to the interfacial angle, so the interfacial angle 
is the most influential factor in the process of droplet separation on the concave surface 
whose Rୡ = 4. 

 
Figure 12. Phase diagram on whether a compound droplet separates during wetting and spreading 
on a concave surface at different interfacial angles and contact angles. 

3.6. Effect of the Density Ratio of Droplet to Ambient Fluid on Droplet Separation 
In addition to the wall properties and interfacial angles, the density ratio may also 

have certain impacts on the wetting behavior of a compound droplet. This section explores 
the influence of the density ratio of droplet to ambient fluid (r஡ଵଷ) on the separation be-
havior of Janus droplets. The interfacial angles are fixed at 𝜑ଵ = 155°, 𝜑ଶ = 135°, 𝜑ଷ =70°. The same prolate spheroid as above is used. In addition to r஡ଵଷ, the contact angle 𝜃ଵଷ 
is also varied. Other parameters are the same as those given in Section 3.3. Note that the 
kinematic viscosity ratio r஥ଵଷ is fixed at 0.06. Thus, as the density ratio r஡ଵଷ changes, the 
dynamic viscosity of the ambient fluid varies. Based on the simulation results using dif-
ferent combinations of r஡ଵଷ and 𝜃ଵଷ, another phase diagram on droplet separation on an 
ellipsoidal wall is established in Figure 13. From this figure, one can see that, in general, a 
larger density ratio r஡ଵଷ is favorable for droplet separation at a given contact angle 𝜃ଵଷ. 
A larger density ratio r஡ଵଷ corresponds to a lighter ambient fluid. The dynamic viscosity 
of the ambient fluid is also smaller at a higher r஡ଵଷ (with r஥ଵଷ being the same). These two 
factors reduce the obstruction of the ambient fluid to the motion of the compound droplet, 
making droplet separation easier. From the results at θଵଷ = 55°, it is observed that when 
the contact angle is not small enough, droplet separation will not occur even if the density 
ratio is very large. 
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Figure 13. Phase diagram on whether a compound droplet separates during wetting and spreading 
on a prolate spheroid at different density ratios and contact angles. 

4. Conclusions 
To conclude, the wetting and spreading behavior of a Janus droplet on solid walls of 

various shapes and wettabilities was investigated by axisymmetric LBM simulations, 
mostly at high density ratios. The evolutions of the interfaces and interfacial energies were 
examined to determine whether the two constituent droplets separate during the wetting 
process. The main factors found to promote the occurrence of droplet separation include 
(a) a concave wall with moderate radius of curvature, (b) a convex wall with large radius 
of curvature, (c) a small contact angle for the droplet near the wall, (d) large interfacial 
angles in the droplets, and (e) a large density ratio of the droplet to ambient fluid. 

Comparisons between the wetting processes on three types of walls suggest that the 
moderately outward extending concave wall has better apparent wettability and enhances 
the spreading speed of the wetting droplet, leading to its large deformation and large ve-
locity difference between the two constituent droplets. In the study of solid walls of vari-
ous spheroid shapes, it was found that the larger the radius of curvature near the wetting 
droplet is, the faster its contact line moves on the wall, and the two droplets are more 
likely to separate. The influence of curvature for concave walls is non-monotonic. Only 
when the curvature is small, droplet separation is more likely to occur with its increase. 
When the curvature increases to a certain extent, the small radius of curvature limits the 
spreading of the wetting droplet and prevents droplet separation. When the contact angle 
of the wetting droplet is smaller, it experiences stronger attraction forces towards the wall 
and the distance between the two droplets increases more rapidly. As the interfacial an-
gles in the constituent droplets increase, less energy is needed to split the compound drop-
let. When the density of the ambient fluid decreases, the compound droplet is less hin-
dered, and the wetting droplet is allowed to move faster during its spreading. The five 
phase diagrams on droplet separation state, based on numerous simulations at different 
conditions, clearly show the influence of various factors for different walls. These results 
and findings may be helpful to future studies of Janus droplets near solid walls and could 
also advance the understanding of the interaction between compound droplets and solid 
microparticles. In addition, the study of the equilibrium morphology of compound drop-
lets on curved surfaces might find applications in microfabrication of certain small com-
ponents with special shapes (e.g., microlens). 
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Finally, the present work has some limitations. First, this study only discussed the 
wetting and spreading of compound droplets on curved surfaces under axisymmetric set-
tings. To capture the behavior of compound droplets in many real situations, full three-
dimensional simulations may be necessary. Second, the droplet separation reported in this 
work is only transient. It requires further investigations on how to sustain the separation 
of two constituent fluids. 
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Appendix A. Some Details of the Numerical Method 
Appendix A.1. Some Details for the Axisymmetric LBEs for the CACEs 

In Equation (5), the matrix M is given by 

M =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

1 1 1 1 1 1 1 1 1−4 −1 −1 −1 −1 2 2 2 24 −2 −2 −2 −2 1 1 1 10 1 0 −1 0 1 −1 −1 10 −2 0 − 0 1 −1 −1 10 0 1 0 −1 1 1 −1 −10 0 −2 0 2 1 1 −1 −10 1 −1 1 −1 0 0 0 00 0 0 0 0 1 −1 1 −1⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
  (A1)

𝑀ିଵ  is its inverse that transforms the moments back into the DFs, 𝑆௚ =𝑑𝑖𝑎𝑔(1, 1, 1, 𝑠௚, 𝑠௚, 𝑠௚,  𝑠௚, 1, 1) is the diagonal relaxation matrix with 𝑠௚ = 1 𝜏௚⁄  and 𝜏௚ =0.5 + 𝑚଴ (𝑐௦ଶ𝛿௧)⁄  and 𝐺௟(𝑥⃗, 𝑡) is a source term which can be expressed as, 𝐺௟ = [𝑀ିଵ(𝐼 − 0.5𝑆௚)𝑀]௟௠𝑅௠,  (A2)

with I  being the unit matrix and 𝑅௠ = ଵ௖ೞమ 𝑤௠𝑒௠ఈ[𝜕௧(𝑟𝑐ଵ𝑢ఈ + 𝑚଴𝑐ଵ𝛿ఈ௥) + 𝑐௦ଶ𝑟(𝜆ଵ𝑛ଵ,ఈ −𝛽ଵ,ఈ)]. Here 𝑐௦ is the “speed of sound” in LBM and for the D2Q9 velocity model 𝑐௦ = ௖√ଷ 

(𝑐 = ఋೣఋ೟  is the lattice velocity and 𝛿௫ is the grid size). The moments of the source term 𝑅௠ 
is found to be [0, 0, 0,  𝑞ଵ, −𝑞ଵ, 𝑞ଶ, −𝑞ଶ, 0, 0]் where the terms 𝑞ଵ and 𝑞ଶ are given by 𝑞ଵ =𝜕௧(𝑟𝑐ଵ𝑢௭)+𝑐௦ଶ𝑟(𝜆ଵ𝑛ଵ,௭ − 𝛽ଵ,௭)  and 𝑞ଶ = 𝜕௧(𝑟𝑐ଵ𝑢௥ + 𝑚଴𝑐ଵ)+𝑐௦ଶ𝑟(𝜆ଵ𝑛ଵ,௥ − 𝛽ଵ,௥) . The equilib-
rium moments for 𝑔௠௘௤  are given by [𝑟𝑐ଵ, −2𝑟𝑐ଵ, 𝑟𝑐ଵ, 𝑟𝑐ଵ𝑢௭, −𝑟𝑐ଵ𝑢௭, 𝑟𝑐ଵ𝑢௥ +𝑚଴𝑐ଵ, −(𝑟𝑐ଵ𝑢௥ + 𝑚଴𝑐ଵ), 0, 0]். 

The boundary conditions for the volume fractions near solid walls inside the domain 
are implemented in the same way as in [22]. The 1st− and 2nd−order spatial derivatives 
of the volume fractions are evaluated by the 4th−order isotropic schemes at bulk nodes 
(i.e., computational nodes away from the solid boundary) [27], 𝜕ఈ𝑐௜ = ଵ଺௖ೞమఋ೟ ∑ 𝑤௟𝑒௟ఈ[8𝑐௜(𝑥⃗ + 𝑒௟𝛿௧) − 𝑐௜(𝑥⃗ + 2𝑒௟𝛿௧)]௟଼ୀଵ , (A3)

డమ௖೔డ௫మ + డమ௖೔డ௬మ = ଵ଺௖ೞమఋ೟మ ∑ 𝑤௟[16𝑐௜(𝑥⃗ + 𝑒௟𝛿௧) − 𝑐௜(𝑥⃗ + 2𝑒௟𝛿௧) − 15𝑐௜(𝑥⃗)]௟଼ୀଵ ,   (A4)
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and by the 2nd− order isotropic schemes based on the D2Q9 lattice velocity model at 
boundary nodes (i.e., computational nodes near the solid boundary). Here 𝑤௟  is the 
weight for the direction along 𝑒௟. Besides, the halfway bounce-back boundary condition 
is applied for 𝑔௟ and ℎ௟ near all solid walls to ensure the conservation of volume frac-
tions [28]. 

Appendix A.2. Some Details for the Axisymmetric LBEs for the NSEs 
To improve stability, the MRT collision model [21] was also used for the axisymmet-

ric LBEs for the NSEs. The MRT model in the LBM for the NSEs is overall similar to that 
for the CACEs. There are some differences in the diagonal relaxation matrix which is 
changed to 𝑆௙ = 𝑑𝑖𝑎𝑔(𝑠଴, 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସ, 𝑠ହ, 𝑠଺, 𝑠଻, 𝑠଼)  with 𝑠଻ =  𝑠଼  = 𝑠௙  =  1/𝜏௙  (to control 
the shear viscosity) and 𝑠ଵ being a tunable parameter related to the bulk viscosity (𝑠ଵ = 1 
was used to enhance the damping of undesirable acoustic waves and help alleviate the 
chequerboard effects) [21,29]. The remaining relaxation parameters only affect the simu-
lation results marginally and may be set to unity. On an immersed solid boundary of any 
shape, the interpolated bounce-back method is applied for 𝑓௟ according to [30]. To sup-
press the chequerboard effect, in the streaming step the Lax-Wendroff streaming [31] is 
used for 𝑓௟, 𝑓௟(𝑥⃗, 𝑡 + 𝛿௧) = 𝛼଴𝑓௟′(𝑥⃗, 𝑡) + 𝛼ଵ𝑓௟′(𝑥⃗ + 𝑒௟𝛿௧, 𝑡) + 𝛼ିଵ𝑓௟′(𝑥⃗ − 𝑒௟𝛿௧, 𝑡),  (A5)

where 𝑓௟′ denotes the post-collision DF, and the coefficients are given by  𝑎଴ = 1 − 𝐴ଶ, 𝛼ିଵ = 𝐴(𝐴 + 1)/2, 𝛼ଵ = 𝐴(𝐴 − 1)/2. (𝐴 = 0.999 was used in our simulation). It is noted 
that to apply the Lax-Wendroff streaming only for 𝑓௟ is sufficient to suppress the cheq-
uerboard effect for most cases and the streaming of the DFs 𝑔௟ and ℎ௟ (for the CACEs) is 
not changed (e.g., 𝑔௟(𝑥⃗, 𝑡 + 𝛿௧) = 𝑔௟′(𝑥⃗ − 𝑒௟𝛿௧, 𝑡) . It is also noted that the Lax-Wendroff 
streaming is used for 𝑓௟ at the bulk nodes only and the basic streaming is still used at the 
boundary nodes. 

Appendix A.3. The Chemical Potential and Interfacial Tension Force 
In the above, it is seen that the CACEs do not involve the chemical potentials, but the 

interfacial tension force requires them. The chemical potential used in the calculation of 
the interfacial tension force 𝑢௖೔,ௌ் is given by [22] and [32], 𝜇௖೔,ௌ் = ସ଼ఊ೔ௐ 𝑐௜(𝑐௜ − 1)(𝑐௜ − 0.5) − ଷଶ 𝛾௜𝑊𝛻ଶ𝑐௜,  (A6)

where the phase specific interfacial tensions 𝛾௜ (𝑖 = 1,2,3)  are given by 𝛾ଵ = ଵଶ (𝜎ଵଶ +𝜎ଵଷ − 𝜎ଶଷ), 𝛾ଶ = ଵଶ (𝜎ଵଶ + 𝜎ଶଷ − 𝜎ଵଷ) and 𝛾ଷ = ଵଶ (𝜎ଵଷ + 𝜎ଶଷ − 𝜎ଵଶ) [10]. For convenience, we 
actually calculated a scaled chemical potential, 𝜇෤௖೔,ௌ் = ఓ೎೔,ೄ೅ఊ೔ = ସௐ଼ 𝑐௜(𝑐௜ − 1)(𝑐௜ − 0.5) − ଷଶ 𝑊𝛻ଶ𝑐௜,   (A7)

Then, the interfacial tension force for ternary fluids can be calculated as, 𝐹⃗ௌ் = ∑ 𝜇௖೔,ௌ்𝛻𝑐௜ଷ௜ୀଵ = ∑ 𝛾௜𝜇෤௖೔,ௌ்𝛻𝑐௜ଷ௜ୀଵ ,  (A8)

It is noted that in the axisymmetric formulation the Laplacian of 𝑐௜ in Equation (A6) 
must be modified as, 𝛻௔௫௜௦௬௠ଶ 𝑐௜ = డమ௖೔డ௭మ + డమ௖೔డ௥మ + ଵ௥ డ௖೔డ௥ .  (A9)

Appendix B. Tests on Grid Density 
The influence of grid density on the simulation results was investigated for one case 

of compound droplet spreading on a prolate spheroid. The common parameters used in 
the simulations are: 𝜃ଵଷ = 60°, 𝑟ఘଵଶ = 1, 𝑟ఘଵଷ = 825, 𝑟జଵଶ = 1, 𝑟జଵଷ = 0.06, 𝑅𝑒 = 400. The 
interfacial angles are: 𝜑ଵ = 135°, 𝜑ଶ = 115°, 𝜑ଷ = 110°. The prolate spheroid has semi-
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axis lengths in the x-direction and y-direction 𝑙௫ = 1.310, 𝑙௬ = 0.8736. The domain size is 
selected 𝐿௫ × 𝐿௬ = 8 × 3 . The following spatial discretization parameters were tested: 𝑁௅ = 30 , 40 , 50 , 70 , 100 . The corresponding temporal discretization parameters were 𝑁௧ = 120 , 214 , 332 , 655 , 1332 , respectively. The final equilibrium shapes of the com-
pound droplet under different grid densities are shown in Figure A1. It can be seen from 
the figure that overall the results in equilibrium state obtained by using different grid 
densities are close and some small differences exit mainly near the three-phase point. Be-
sides, the evolutions of the velocity of the two droplets� centroids along the x- direction 
are shown in Figure A2. It can be found that the dynamic results obtained under different 
grids are overall similar as well. The evolutions of the droplets� average velocity at 𝑁௅ =30, 40 look slightly different from those at 𝑁௅ = 50, 70, 100 (mainly near the valleys in 
Figure A2). More careful examinations reveal that the maximum difference in the maxi-
mum magnitude of the centroid velocity of the left droplet between 𝑁௅ = 50 and 𝑁௅ =100 is about 0.36%. Considering that the high grid density consumes a lot of computing 
resources and such difference occurs only over a short period of time, in the end 𝑁௅ = 50 
was selected for the case studies in the main text. 

 
Figure A1. Equilibrium shapes of a compound droplet on a prolate spheroid obtained under differ-
ent grid densities. 

  

Figure A2. The evolutions of the velocity of the centroids of the two droplets along the x-axis under 
different grid densities: (a) the centroid velocity of the left droplet 𝑢ଵ; (b) the centroid velocity of 
the right droplet 𝑢ଶ. 
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For the dynamic problem of compound droplets spreading on a surface, the size of 
the simulation domain may affect the results. The influence of the computational domain 
on the results was investigated for the same case in Appendix B with 𝑁௅ = 50. Six differ-
ent domain sizes were tested: 𝐿௫ × 𝐿௬ = 8 × 3 , 𝐿௫ × 𝐿௬ = 8 × 6 , 𝐿௫ × 𝐿௬ = 12 × 3 , 𝐿௫ ×𝐿௬ = 12 × 6 , 𝐿௫ × 𝐿௬ = 16 × 3 , 𝐿௫ × 𝐿௬ = 16 × 6 . The corresponding grid numbers are: 𝑁௫ × 𝑁௬ = 400 × 150 , 𝑁௫ × 𝑁௬ = 400 × 300 , 𝑁௫ × 𝑁௬ = 600 × 150 , 𝑁௫ × 𝑁௬ = 600 × 300 , 𝑁௫ × 𝑁௬ = 800 × 150, 𝑁௫ × 𝑁௬ = 800 × 300. Figure A3 shows the equilibrium shapes of 
the compound droplet obtained by using the above six domains. As observed from this 
figure, the results by using different domains almost overlap. Figure A4 shows the evolu-
tions of the centroidal velocity along the x-axis of the two droplets during the wetting and 
spreading process. It can be seen that the dynamic results by simulations with different 
domains are also nearly the same. Thus, 𝐿௫ × 𝐿௬ = 8 × 3 was used in all simulations in 
the main text. 

 
Figure A3. Equilibrium shapes of the compound droplet obtained by using different computational 
domains. 

  
Figure A4. The evolutions of the velocity of the centroids of the two droplets along the x-axis ob-
tained by using different computational domains: (a) the centroid velocity of the left droplet 𝑢ଵ; (b) 
the centroid velocity of the right droplet 𝑢ଶ. 
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Appendix D. Analytical Solution for the Shape of Compound Droplets on a Negative 
Curved Concave Surface 

Figure A5 shows the equilibrium configuration of an axisymmetric compound drop-
let on a concave surface with a constant negative curvature with the relevant quantities 
illustrated. In the figure, the black solid line is the curved solid wall, the red solid lines are 
the droplet interfaces, the red dashed line is the extension of the interface between fluid 1 
and fluid 3, and the black dashed lines perpendicular to the x-axis are drawn through two 
different pairs of three-phase points as auxiliary lines. The following parameters are al-
ready known: 
1. The radius of curvature of the concave wall: 𝑅ସ; 
2. The initial volume of the two droplets: ସଷ 𝜋𝑅଴ଷ; 
3. The interfacial angles: 𝜑ଵ, 𝜑ଶ, 𝜑ଷ; 
4. The contact angle of the left droplet on the wall: 𝜃ଵଷ; 

There are eight unknowns in total. The first three are the radius of curvature of the 
interface between the left droplet and the ambient fluid (𝑅ଵ), the radius of curvature of the 
interface between the right droplet and the ambient fluid (𝑅ଶ), and the radius of curvature 
of the interface between the two droplets (𝑅ଷ). In addition, there are five angles formed by 
the two auxiliary lines and several tangent lines passing through the two different three-
phase points (as illustrated in Figure A5): 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ, 𝛽ହ. Eight independent equations are 
employed to solve for them. The first two equations are obtained from the interfacial angles, 𝜑ଵ = 𝛽ଵ − 𝛽ଷ,  (A10)𝜑ଶ = 𝛽ଶ + 𝛽ଷ,   (A11)

Then according to the geometric relationship between each two adjacent interfaces, 
one has, 𝑅ଵ𝑠𝑖𝑛𝛽ଵ = 𝑅ଶ𝑠𝑖𝑛𝛽ଶ,  (A12)𝑅ଵ𝑠𝑖𝑛𝛽ଵ = 𝑅ଷ𝑠𝑖𝑛𝛽ଷ,  (A13)𝑅ଵ𝑠𝑖𝑛𝛽ହ = 𝑅ସ𝑠𝑖𝑛𝛽ସ,  (A14)

From the contact angle condition, one has, 𝜃ଵଷ = 𝜋 + 𝛽4 − 𝛽5,  (A15)

Finally, from the volume conservation conditions for the two droplets, one can ob-
tain: 𝜋𝑅ଵଷ(2 − 3𝑐𝑜𝑠𝛽ଵ + 𝑐𝑜𝑠𝛽ଵଷ)/3 − 𝜋𝑅ଷଷ(2 − 3𝑐𝑜𝑠𝛽ଷ + 𝑐𝑜𝑠𝛽ଷଷ)/3 + 𝜋𝑅ସଷ(2 − 3𝑐𝑜𝑠𝛽ସ + 𝑐𝑜𝑠𝛽ସଷ)/3 − 𝜋𝑅ଵଷ(2 − 3𝑐𝑜𝑠𝛽ହ +𝑐𝑜𝑠𝛽ହଷ)/3 = 4𝜋𝑅଴ଷ/3,  (A16)

𝜋𝑅ଶଷ(2 − 3𝑐𝑜𝑠𝛽ଶ + 𝑐𝑜𝑠𝛽ଶଷ)/3 + 𝜋𝑅ଷଷ(2 − 3𝑐𝑜𝑠𝛽ଷ + 𝑐𝑜𝑠𝛽ଷଷ)/3 = 4𝜋𝑅଴ଷ/3,  (A17)

The analytical solution of this problem can be obtained by solving the above eight 
equations using Newton�s method (for brevity the details are omitted). 
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Figure A5. Equilibrium configuration of a compound droplet on a concave surface with negative 
curvature. 

Appendix E. Analytical Solution for the Shape of Compound Droplets on an  
Oblate Spheroid 

Figure A6 shows the equilibrium configuration of an axisymmetric compound drop-
let on an oblate spheroid with the relevant quantities illustrated. The lines are shown in a 
way similar to that in Appendix D. The known parameters are almost the same as those 
in Appendix D except that for the oblate spheroid the semi-axis lengths (𝑙௫ and 𝑙௬) are 
given. For convenience, introduce an auxiliary variable 𝑚 = ඥ𝑙௫ଶ − 𝑙௫ଶℎଶ/𝑙௬ଶ, where h is the 
distance from the contact line of the left droplet on the wall to the axis. With h and m 
included, there are ten unknowns in total (the other eight are the same as those in Appen-
dix D). The solutions of them require ten independent equations. First, since the contact 
line is on the oblate spheroid, one can find two relations for h, m and the angle 𝛽ହ from 
the equation for the oblate spheroid as, 𝑚 = ඥ𝑙௫ଶ − 𝑙௫ଶℎଶ/𝑙௬ଶ,  (A18)(ோర௫ோర௬)ଶ ௛௠ = 𝑡𝑎𝑛𝛽ହ,  (A19)

Then the remaining eight equations are similar to those in Appendix D: 𝜑ଵ = 𝛽ଵ + 𝛽ଷ,  (A20) 𝜑ଶ = 𝛽ଶ − 𝛽ଷ,  (A21) 𝑅ଵ𝑠𝑖𝑛𝛽ଵ = 𝑅ଶ𝑠𝑖𝑛𝛽ଶ,  (A22) 𝑅ଵ𝑠𝑖𝑛𝛽ଵ = 𝑅ଷ𝑠𝑖𝑛𝛽ଷ,  (A23) ℎ = 𝑅ଵ𝑠𝑖𝑛𝛽ସ,  (A24) 
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𝜃ଵଷ = 𝜋 − 𝛽4 − 𝛽5,   (A25) 

𝜋𝑅ଵଷ(2 − 3𝑐𝑜𝑠𝛽ଵ + 𝑐𝑜𝑠𝛽ଵଷ)/3 + 𝜋𝑅ଷଷ(2 − 3𝑐𝑜𝑠𝛽ଷ + 𝑐𝑜𝑠𝛽ଷଷ)/3 − 𝜋𝑅ଵଷ(2 − 3𝑐𝑜𝑠𝛽ସ + 𝑐𝑜𝑠𝛽ସଷ)/3 − ଶగଷ 𝑅ସ𝑥ଶ(𝑅ସ𝑥 − 𝑚) = 4𝜋𝑅଴ଷ/3,  (A26) 𝜋𝑅ଶଷ(2 − 3𝑐𝑜𝑠𝛽ଶ + 𝑐𝑜𝑠𝛽ଶଷ)/3 − 𝜋𝑅ଷଷ(2 − 3𝑐𝑜𝑠𝛽ଷ + 𝑐𝑜𝑠𝛽ଷଷ)/3 = 4𝜋𝑅଴ଷ/3,  (A27) 

Note that Equations (A20), (A21), (A26) and (A27) are slightly different from those in 
Appendix D because the definition of βଷ is different (the direction for positive βଷ is the 
opposite to the above). In Equation (A26) the last term on the left side represents the vol-
ume of the part of the oblate spheroid on the right side of the contact line. Finally, the 
analytical solution of this problem is obtained by solving the above ten equations using 
Newton�s method. 

 
Figure A6. Equilibrium configuration of a compound droplet on an oblate spheroid. 
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