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Abstract: Low-light image enhancement (LLIE) aims to improve the visual quality of images taken
under complex low-light conditions. Recent works focus on carefully designing Retinex-based
methods or end-to-end networks based on deep learning for LLIE. However, these works usually
utilize pixel-level error functions to optimize models and have difficulty effectively modeling the
real visual errors between the enhanced images and the normally exposed images. In this paper, we
propose an adaptive dual aggregation network with normalizing flows (ADANF) for LLIE. First, an
adaptive dual aggregation encoder is built to fully explore the global properties and local details of
the low-light images for extracting illumination-robust features. Next, a reversible normalizing flow
decoder is utilized to model real visual errors between enhanced and normally exposed images by
mapping images into underlying data distributions. Finally, to further improve the quality of the
enhanced images, a gated multi-scale information transmitting module is leveraged to introduce
the multi-scale information from the adaptive dual aggregation encoder into the normalizing flow
decoder. Extensive experiments on paired and unpaired datasets have verified the effectiveness of
the proposed ADANF.

Keywords: low-light image enhancement; normalizing flow; adaptive dual aggregation; deep
learning

1. Introduction

Insufficient light in complex imaging environments can lead to dark brightness, low
contrast, high noise, and poor details in captured images [1,2]. Low-light image enhance-
ment (LLIE) aims to solve the problems of insufficient visibility and low contrast in low-light
images while restoring noise, structures, color distortion, etc. [3]. Low-light image enhance-
ment can effectively improve the performance of methods such as object detection and
scene understanding at night or in low-light conditions [4].

Over the past decades, many low-light image enhancement methods have been pro-
posed [5,6]. Previous methods are usually based on hand-designed features and processing
steps such as histogram equalization [7,8] and gamma transformation [9]. These methods
are simple and fast, but they usually amplify noise while enhancing the image and often
cannot restore the color and details of low-light images well [10]. The widely popular
Retinex theory [11] provides an intuitive and easy-to-understand framework for LLIE
by decomposing the image into reflection and illumination components [12,13]. How-
ever, for complex illumination properties in practice, it is challenging to design priors
and regularizations that are always valid for accurate decomposition of the reflection and
illumination components [14,15]. Improper decomposition can lead to unrealistic details,
undesirable artifacts, and color distortion in enhanced images [16].

Inspired by the successful application of deep learning in object recognition, detection,
etc. [17,18], researchers have focused on building various deep learning frameworks suit-
able for the LLIE task [6,19,20]. In addition, the development of paired datasets [21,22] has
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indeed been a critical step in enabling the application of deep learning to the LLIE task. Re-
cent IILE methods based on deep learning can be roughly divided into deep-Retinex-based
methods and end-to-end methods [5,23,24].

Deep-Retinex-based methods are also based on the human visual system’s Retinex
theory and use neural networks to simulate the process of separating the reflectance and
illumination components [25]. These methods aim to combine the advantages of both
Retinex theory and deep learning, enabling an interpretable low-light image enhancement
paradigm [26,27]. Under low-light conditions, the boundary between the reflectance com-
ponent and the illuminance component can become blurred, making it more difficult to
accurately separate them. Even when using deep learning models for Retinex decomposi-
tion, there is still the problem of being unable to accurately separate the reflectance and
illumination components, which may lead to noise amplification and image stylization
in the enhanced results [28]. In order to solve these problems, researchers are constantly
exploring ways to improve deep learning models, such as by using more complex network
structures or introducing regularization techniques to improve model performance [10,29].

End-to-end methods typically use deep neural networks to directly learn the non-
linear relationships between low-light images and their corresponding normally exposed
images [30,31]. By removing the need for explicit separation of the reflectance and illumina-
tion components, end-to-end methods focus on designing a variety of novel neural network
structures for LLIE [32]. End-to-end methods have the advantage of being less dependent
on physical models and can directly learn the desired mapping between low-light and
normal-light images [33]. However, they may not be as interpretable as deep-Retinex-based
methods due to their black-box nature.

Recent methods based on deep learning have made good progress in LLIE. However,
these methods generally use pixel-level error functions, such as L1 or L2 norm, as the
objective function of deep networks for training [5,10]. Pixel-level error functions cannot
measure the real visual errors between enhanced images and normally exposed images such
as complex structures and textures [34,35]. And pixel-level error functions have difficulty
providing effective regularization for local structures in various complex backgrounds.

To alleviate the above problem, we propose an adaptive dual aggregation network
with normalizing flows (ADANF) for low-light image enhancement. Different from pre-
vious methods that use pixel-level error functions to measure the difference between
enhanced and normally exposed images in the image domain, we adopt a normalizing
flow framework to map enhanced and normally exposed images to the underlying data
distribution, which can effectively express the structural details of complex images [36].
In addition, we use the errors between the data distributions for enhanced and normally
exposed images as the objective function to effectively measure the visual distance.

In the proposed ADANF, an adaptive dual aggregation encoder is firstly exploited to
extract illumination-robust features by fully exploring the global properties and local details
of the low-light images. Next, a reversible normalizing flow decoder is leveraged to recover
normally exposed images from the illumination-robust features. Here, we exploit the
inverse process capabilities of the normalized stream decoder to reconstruct brighter, more
detailed images. Finally, to further improve the quality of image enhancement, a gated
multi-scale information transmitting module is designed to introduce the multi-scale
features from the adaptive dual aggregation encoder into the normalizing flow decoder.
Extensive experiments on paired and unpaired datasets verify the effectiveness of the
proposed ADANF.

The contributions of this paper mainly include:

• An adaptive dual aggregation encoder is leveraged to fully capture the global proper-
ties and local details of low-light images for extracting illumination-robust features
from low-light images.

• To measure real visual errors between enhanced and normally exposed images, a re-
versible normalizing flow decoder is used to map enhanced and normally exposed
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images to potential distributions, and the difference between the distributions is used
as the objective function for training.

• A gated multi-scale information transmitting module is designed to introduce the
multi-scale features from the adaptive dual aggregation encoder into the normalizing
flow decoder to further improve the quality of enhanced images.

The rest of the manuscript is organized as follows. Recent related works are intro-
duced in Section 2. Section 3 gives the details of the proposed ADANF. Section 4 reports
experimental results. Finally, the conclusion is provided in Section 5.

2. Related Work
2.1. Traditional Methods

Previous methods usually study hand-designed features for LLIE. Histogram equal-
ization is one of the most classic low-light image enhancement methods [37]. Reza [38]
designed a block-based histogram equalization method to model lighting changes in local
areas. Lee et al. [39] calculated the 2D histogram by considering the relationship between
neighboring pixels within local regions. They utilized the layered difference approach
for enhancing contrast. In addition, some researchers attempted to combine image qual-
ity assessment with histogram equalization to improve performance. Gu et al. [40] used
subjective and objective evaluation guidance to improve the histogram to correct image
brightness and contrast to the level of normal exposure.

Retinex theory is also very popular in low-light image enhancement, and researchers
have carefully designed many decomposition methods based on the Retinex theory. Kim-
mel et al. [41] proposed to introduce the lighting component gradient into a variational
framework for LLIE. Ren et al. [12] designed a low-rank prior regularized Retinex de-
composition model to alleviate the noise amplification problem. Gu et al. [13] proposed a
fractional-order variational structure that regularizes both the reflectance and illumination
components. Liang et al. [42] combined nonlinear diffusion techniques and Retinex decom-
position to estimate lighting components to improve estimation results. These methods are
sensitive to illumination changes. In low-light environments, illumination changes may
lead to inaccurate feature extraction and affect the enhancement effect.

2.2. Deep-Learning-Based Methods

Recent methods mainly study the design of deep learning frameworks for LLIE, in-
cluding deep-Retinex-based methods and end-to-end methods [5,10]. Deep-Retinex-based
methods combine the advantages of Retinex theory and deep learning to provide an inter-
pretable solution for low-light image enhancement. Wei et al. [21] proposed a Retinex-Net
including Decom-Net and Enhance-Net. Decom-Net is responsible for decomposing the in-
put low-light image into reflection and illumination parts, while Enhance-Net is responsible
for enhancing the illumination part to obtain normally exposed images. Zhang et al. [43]
proposed a KinD network to utilize images under different exposure conditions for training.
Fan et al. [29] introduced a semantic segmentation sub-network into the Retinex model to
use semantic priors to guide image enhancement. Liu et al. [27] employed unrolling and
adjustment to exploit global and local brightness of images for LLIE.

End-to-end methods focus on carefully designing different networks to learn the
mapping between low-light and normally exposed images. Lore et al. [20] designed the
first deep network LLNet for LLIE, which is a sparse denoising autoencoder structure.
Yang et al. [33] proposed to exploit a transformer-based network to extract the global
information of low-light images. Ren et al. [44] utilized an encoder–decoder network to
extract global content and a recurrent neural network to preserve edge details. Xu et al. [45]
proposed a frequency-based model that uses low-frequency layers to restore content and
high-frequency layers to restore image details. Xu et al. [31] considered that the information
amounts in different areas are different and designed a signal-to-noise-ratio-aware trans-
former for LLIE. However, recent deep-learning-based methods usually employ pixel-level
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L1 or L2 norm as the objective function to optimize deep networks, which cannot effectively
measure the real visual errors between the enhanced image and the normal exposure image.

3. Methods

LLIE aims at generating the normally exposed image Xn ∈ RH×W×3 from a low-
light image Xl ∈ RH×W×3, where W and H represent the width and height, respectively.
Previous methods focus on studying different networks, directly utilizing MSE [20], L1 [46],
or color loss [47] as objective functions to perform supervised training under paired training
samples {Xl , Xgt}, where Xgt ∈ RH×W×3 is the ground truth normally exposed image.
However, there are two problems with previous methods. First, it is difficult for these
methods to fully adaptively utilize the global and local information of the image Xl to
improve visual effect and suppress noise. On the other hand, the loss functions of these
methods focus on pixel level or local errors, and it is difficult to fully utilize the visual
properties to measure the real visual errors between the generated image Xn and the ground
truth Xgt [35].

To alleviate the above two problems, an adaptive dual aggregation network with
normalizing flows (ADANF) is proposed for LLIE. The overall structures of the ADANF are
shown in Figure 1. First, an adaptive dual aggregation encoder is employed to fully exploit
the global properties and local details of the image Xl to extract illumination-robust features.
Then, an invertible normalizing flow decoder is used to recover the normally exposed
image Xn from the illumination-robust features. Finally, a gated multi-scale information
transmitting module is designed to introduce the multi-scale features of the adaptive dual
aggregation encoder into the normalizing flow decoder to further improve the quality of
image enhancement.

Figure 1. Detailed structures of ADANF. In the testing phase, a low-light image is first fed to the
adaptive dual aggregation encoder to fully exploit the global properties and local details for extracting
illumination-robust features. Then, a gated multi-scale information transmitting module is designed
to introduce the multi-scale features of the adaptive dual aggregation encoder into the normalizing
flow decoder. Finally, an invertible normalizing flow decoder is used to recover the normally exposed
image from the illumination-robust features.
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3.1. Adaptive Dual Aggregation Encoder
3.1.1. Preprocessing

Low-light images often have local or global dark areas, resulting in poor contrast
and unclear detail. In addition, insufficient light may also cause problems such as noise
and artifacts. If the original low-light images are input directly into the model, the model
may have difficulty distinguishing low-contrast areas and noisy areas. By performing
histogram equalization on Xl , we can redistribute the pixel intensities of an image Xl
so that they occupy the entire possible intensity range. The histogram-equalized image
h(Xl) ∈ RH×W×3 will have higher contrast and the model can more easily identify and
perceive different areas in the image. In addition, we use color map c(Xl) ∈ RH×W×3 to
enhance the contrast and visibility of low-light images Xl , highlighting details in dark areas,
where c(Xl) = Xl/meanp(Xl), and meanp(Xl) represents the calculation of the mean value
of each pixel in Xl . Finally, we use the gradient map g(Xl) ∈ RH×W×3 to explicitly capture
the noisy areas in low-light images Xl , where g(Xl) = max(|∇x(c(Xl))|,

∣∣∇y(c(Xl))
∣∣), ∇x,

and ∇y are the gradients in the x and y directions, respectively. To improve the model’s
sensitivity to noisy areas in low-contrast and dark areas, h(Xl), c(Xl), g(Xl), and Xl are
stacked by channel as the input Xin = [h(Xl), c(Xl), g(Xl), Xl ] of the subsequent network.

3.1.2. Global–Local Adaptive Aggregation Module

In the adaptive dual aggregation encoder, two 3 × 3 convolutions are first used to
transform the image Xin into the feature space to obtain the shallow feature Fs ∈ RH×W×Cs ,
where Cs is the channel number. Then, global–local adaptive aggregation blocks are used to
extract illumination-robust feature Fi ∈ RH×W×Ci . The global–local adaptive aggregation
block is the key module of the adaptive dual aggregation encoder, and we take a global–
local adaptive aggregation block as an example to introduce its details.

First, spatial-window self-attention [48,49] is utilized to explore the global information
of the image. We generate query features Q ∈ RH×W×Ci , key features K ∈ RH×W×Ci , and
value features V ∈ RH×W×Ci from the shallow feature Fs by using convolutions.

Q = WQFi, K = WKFi, V = WV Fi, (1)

where WQ, WK, WV ∈ R1×1×Ci are the weights of a 1× 1 convolution, and biases are omitted.
Since performing self-attention directly on the global image will introduce a huge amount
of calculation, we follow SwinTransformer [50] to perform the spatial-window self-attention
to reduce the amount of calculation. Q, K, and V are divided into non-overlapping spatial
windows Qj

sw, K j
sw, and V j

sw ∈ RHsw×Wsw×Ci , respectively. Hsw × Wsw is the size of the
spatial window. We can calculate the features of each spatial window using Equation (2).

Fj
g = softmax(Qj

sw(K
j
sw)

T/
√

Ci + Pj)V j
sw, (2)

where Pj is relative position encoding of the j-th spatial window. The outputs of spatial-
window self-attention are Fg = [F1

g , F2
g , ·, Fn

g ], where n = (H/Hsw)2 is the number of spatial
windows and Fg ∈ RH×W×Ci . In addition, shift window operations [50] are utilized to
extract the global spatial feature of the image.

Second, to capture details and textures in images of LLIE, a local branch uses depth-
wise convolution (DWC) operations to extract local features Fl = DWC(V) ∈ RH×W×Ci

from the value features V from Equation (1).
Third, to fully utilize the global and local information of the image Xl to generate

illumination-robust features, an adaptive interaction aggregation (AIA) module is designed.
Since Fg is the global information of the image and Fl is the local features of the image,
Fg and Fl are misaligned features. In this case, simple feature weighted combination
or concatenation operations cannot fully integrate global and local information. In the
AIA module, we first use the information of local features Fl to refine the texture detail
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information of global features Fg by exploiting the attention mechanism. The spatial
attention map S(Fl) ∈ RH×W×1 of the local features is calculated as

S(Fl) = φ(Wsa2σ(Wsa1Fl)), (3)

where φ is the sigmoid activation, σ is the RELU activation, Wsa1, Wsa2 ∈ R1×1×Ci are
weights of the 1 × 1 convolutions, Wsa1 contains Ci kernels, and Wsa2 contains a kernel.
Then, we can obtain the refined global feature F̂g = Fg ⊙ S(Fl), where ⊙ is the Hadamard
product, F̂g ∈ RH×W×Ci . Then, the AIA module utilizes the rich channel information of
global features Fg to suppress redundant channels of local features Fl . The channel attention
map C(Fg) ∈ R1×1×Ci of Fg is

C(Fg) = φ
(
Wca2σ

(
Wca1GAP

(
Fg
)))

, (4)

Then, we can obtain the refined local feature F̂l = Fl ⊙ C(Fg), F̂l ∈ RH×W×Ci .
Finally, the refined global and local features F̂g and F̂l are aggregated by element-wise

addition as the output. Multiple global–local adaptive aggregation blocks are repeated to
generate illumination-robust feature Fi.

3.2. Normalizing Flow Decoder

During real imaging, changes in lighting conditions (e.g., different time, weather,
or light sources) can cause even the same scene to look completely different in low-light
images. That is, a normally exposed image will correspond to many different low-light
images. A good LLIE method should be able to adapt to changes in lighting conditions. In
this paper, we propose to exploit a normalizing flow decoder to recover normally exposed
images from illumination-robust feature Fi.

In the proposed ADANF, the normalizing flow decoder is an invertible network, whose
purpose is to learn a one-to-many mapping relationship for LLIE. In the training phase,
the normalizing flow decoder aims to learn the mapping of normally exposed images to the
feature Fi of low-light images [51,52]. The normalizing flow network can adapt to various
characteristics of the same scene under different lighting conditions. During the testing
phase, the inverse of the learned mapping can be exploited to generate normally exposed
images from low-light image features Fi.

The structures of the normalizing flow decoder has three levels, with a squeeze layer
and 12 flow steps at each level. A squeeze layer is a type of layer that reduces the spatial
resolution of the input data, which can help with reducing the computational complexity of
the network. The flow steps are the main part of the invertible network, where the invertible
mapping from normally exposed images to the feature of low-light images is learned.

As shown in Figure 1, a flow step is composed of an activation normalization (Act-
Norm) layer, an invertible 1 × 1 convolution, and an affine coupling component. The
ActNorm layer is similar to batch normalization, using the scale µ ∈ R1×1×Ci and bias
σ ∈ R1×1×Ci parameters of each channel of the input data to perform a transformation
Yi =

Fi−µ
σ ∈ RH×W×Ci as preprocessing, whose purpose is to make the input data Fi have

zero mean and unit variance. The scale µ and bias σ parameters of the ActNorm layer are
learnable and initialized using the mean and variance of batch features.

After the ActNorm layer, an invertible 1 × 1 convolution is used to increase the infor-
mation interaction between the feature channels of Yi to obtain Ȳi ∈ RH×W×Ci . In invertible
1× 1 convolutions, given the output data and convolution kernel, we can accurately recover
the original input data. In this way, we can reconstruct the normally exposed image from
the feature Fi based on the inverse of the learned mapping. In order to make the traditional
1 × 1 convolution invertible, we need to set its weight matrix to a random orthogonal
matrix [51].

The affine coupling component is a special reversible transformation component
that can effectively map input data to different feature spaces. It transforms existing
channels through multiplication and addition operations and can effectively facilitate
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the normalizing flow decoder to learn the mapping from normally exposed imgages to
the feature Fi during the training phase. In the affine coupling component, a split op-
eration is first utilized to divide the input data Ȳi into two data, Ȳ1

i ∈ RH×W×Ci/2 and
Ȳ2

i ∈ RH×W×Ci/2 along the channel dimension. Then, we perform an identity transforma-
tion on Ȳ1

i to obtain H1 = Ȳ1
i and perform an affine transformation on Ȳ1

i to obtain H2,

H2 = exp
(

NNs

(
Ȳ1

i

))
⊙ Ȳ2

i + NNb(Ȳ1
i ), (5)

where NNs(Ȳ1
i ) and NNb(Ȳ1

i ) are shadow three-layer convolutional neural networks to
learn the scale and bias from Y1

i for affine transformation. Next, H1 and H2 are concatenated
by channel and input into invertible 1 × 1 convolutions for information interaction among
channels. Similar to recent methods [51,52], the flow step is repeated 12 times to learn
the mapping.

3.3. Mapping Learning Aided by Multi-Scale Features

Due to complex low-light conditions, the detailed information of the image at different
scales will be lost or obscured, or the areas at different scales will be too dark or too
bright [53]. The multi-scale information of the image is important for LLIE, but the above
normalizing flow decoder cannot effectively utilize its multi-scale information. In the
proposed ADANF, a gated multi-scale information transmitting module is used to introduce
the multi-scale features of the adaptive dual aggregation encoder into the normalizing flow
decoder to further improve the quality of image enhancement.

Detailed structures of the gated multi-scale information transmitting module are
shown in Figure 2. Three dilated convolutions with different dilation rates (e.g., [1,2,4]) are
firstly used in parallel to extract the features of different scales [54]. Then, these features are
concatenated and fed to 1× 1 convolutions to generate multi-scale features Fms ∈ RH×W×Ci .
Next, Global Average-Pooling (GAP) and Global Max-Pooling (GMP) operations in the
channel dimension are utilized to extract spatial information GAP(Fms) and GMP(Fms).
Convolution operations with sigmoid activation are used to generate attention weights
from Fms to control the multi-scale information passed to the normalizing flow decoder.
The output of the gated multi-scale information transmitting module is the gated multi-
scale features F̄ms ∈ RH×W×Ci ,

F̄ms = σ(Conv([GAP(Fms), GMP(Fms)]))⊙ Fms. (6)

Figure 2. Detailed structures of the gated multi-scale information transmitting module.

3.4. Loss Function

In the ADANF, we use the normalizing flow decoder to capture the conditional distri-
bution PNFD(Xgt|Xl , θ) of a normally exposed image Xgt under its low-light image condi-
tion Xl , where θ represents the parameters of the normalizing flow decoder. Since the nor-
malizing flow decoder is an invertible network, it can map a normally exposed image Xgt
to a latent variable z = NFDθ(Xgt; Xl) under the low-light image condition Xl and can also
reversibly map the latent variable z to the normally exposed image Xgt = NFD−1

θ (z; Xl). In
ADANF, the latent variable z refers to the illumination-robust feature Fi. Similar to recent
work [36], the latent variable z can be assumed to follow a Gaussian distribution Pz(z).
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According to the change-of-variables theorem, the conditional distribution PNFD(Xgt|Xl , θ)
can be calculated as:

PNFD(Xgt|Xl , θ) = Pz(z)
∣∣∣∣det

∂z
∂Xgt

∣∣∣∣
= Pz

(
NFDθ

(
Xgt; Xl

))∣∣∣∣∣det
∂NFDθ

(
Xgt; Xl

)
∂Xgt

∣∣∣∣∣.
(7)

The normalizing flow decoder NFDθ is sequentially composed of N invertible layers
hn+1 = NFDn

θ (h
n; ADAEn(Xl)), where NFDn

θ is the n-th layer, n = 0, 1, · · · , N − 1, h0 = Xgt,
and hN = z. ADAEn(Xl) is the latent image features from the adaptive dual aggregation
encoder.

According to Equation (7), we can use the negative log-likelihood as a loss function
L to optimize the parameters of the proposed ADANF. By using the chain rule, L is
formulated as:

L =− log Pz
(
NFDθ

(
Xgt; Xl

))
−

N−1

∑
n=0

log
∣∣∣∣det

∂NFDn
θ (h

n; ADAEn(Xl))

∂hn

∣∣∣∣. (8)

Since Pz(z) is assumed to follow a Gaussian distribution, Pz
(
NFDθ

(
Xgt; Xl

))
can be

calculated as:

Pz
(
NFDθ

(
Xgt; Xl

))
=

1√
2π

exp
(
−(z − ADAE(Xl))

2

2

)
. (9)

In the testing phase, low-light images are input to the adaptive dual aggregation
encoder to obtain illumination-robust features, and then these features are input to the
normalizing flow decoder through inverse mapping NFD−1

θ to generate normally ex-
posed images.

4. Experiments
4.1. Datasets and Evaluation Metrics

Paired datasets. LOLv1 [21] is one of the most commonly used datasets in LLIE. This
dataset is collected from real scenes and contains 500 pairs of low-light and normally
exposed images under different lighting conditions. Among them, 485 pairs of images are
used for training and 15 pairs of images are used for testing.

LOLv2 [22] contains two subsets, namely LOLv2-real and LOLv2-synthetic. LOLv2-
real contains image pairs of different brightness in real scenes obtained by adjusting
exposure time and ISO settings. These image pairs are intended to study illumination
changes in real application scenarios. Specifically, LOLv2-real contains 689 image pairs for
training and 100 image pairs for testing. LOLv2-synthetic synthesizes low-light images
from RAW images by analyzing the lighting distribution of low-light images. It contains
1000 image pairs, of which 900 pairs are used for training and 100 pairs are used for testing.

Unpaired datasets. The DICM [55], LIME [3], MEF [56], NPE [57], and VV [46]
(https://sites.google.com/site/vonikakis/datasets, accessed on 4 September 2023) datasets
are real captured images and do not contain normally exposed images as reference images.
Therefore, these datasets cannot be used for training. We tested the performance of the
proposed ADANF on these several datasets.

Evaluation metrics. For paired datasets like LOL and LOL-v2, peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [58] are used as evaluation metrics. PSNR
measures the peak signal-to-noise ratio between the original image and the enhanced
image, while SSIM takes into account the structural and textural information of the image.
In addition, learning perceptual image patch similarity (LPIPS) [59] is also used as an
evaluation index, which uses deep features to measure the perceptual similarity of images.

https://sites.google.com/site/vonikakis/datasets
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This indicator is learned through deep learning methods. Compared with PSNR and SSIM,
LPIPS can more truly reflect the human eye’s perception of image quality.

For unpaired datasets such as DICM, LIME, MEF, NPE, and VV, direct evaluation
using PSNR, SSIM, or LPIPS is not possible because there are no paired normally exposed
images. We use the model parameters trained on LOLv2-synthetic to directly infer the
enhanced image. In this case, the Natural Image Quality Evaluator (NIQE) is employed to
evaluate the results. For PSNR and SSIM, the larger the value, the better the enhancement
quality. For LPIPS and NIQE, the smaller the value, the better the enhancement quality.

4.2. Implement Details

In the proposed ADANF, the number of global–local adaptive aggregation modules in
the adaptive dual aggregation encoder is 24, and the normalizing flow decoder has three
levels with a squeeze layer and 12 flow steps at each level. The batch size on the LOLv1,
LOLv2-real, and LOLv2-synthetic dataset is 8. We train the ADANF for 40,000 iterations
using the Adam optimizer with the initial learning rate set to 0.0005 and multiplying the
learning rate by 0.5 at 20,000, 30,000, 36,000, and 38,000 iterations. The input image size
is set to 160 × 160. For unpaired data, we use the parameters trained on LOLv2-synthetic
to perform inference and obtain results. All experiments are completed on a dual-card
NVIDIA RTX 4090 server.

4.3. Comparisons with the State-of-the-Art Methods on Paired Datasets

In this section, to demonstrate the effectiveness of the proposed ADANF, we com-
pare the ADANF with the state-of-the-art low-light image enhancement methods, such as
LIME [3], Zero-DCE [47], RetinexNet [21], DRBN [60], KinD [43], KinD++ [61], Enlighten-
GAN [62], MIRNet [63], LLFlow [35], LLFormer [16].

The quantitative results of the proposed ADANF and comparison methods on the
paired LOLv1, LOLv2-real, and LOLv2-synthetic datasets are reported in Tables 1–3, re-
spectively. Low-light images often suffer from color distortion and low contrast, which
make it difficult to extract effective features. Previous methods LIME [3], RetinexNet [21],
and KinD [43] usually use classic structures when extracting low-light image features,
which makes it difficult to effectively model their complex distribution when processing
images under different low-light conditions, thus affecting performance. From Tables 1–3,
we can see that our ADANF can be significantly improved under PSNR, SSIM, and LPIPS.
It is worth noting that our ADANF has a greater improvement in the PSNR index, indi-
cating that our proposed ADANF can obtain higher quality enhanced normally exposed
images. Compared with the recent method LLFormer [16], the PSNR of our ADANF
on the LOLv1, LOLv2-real, and LOLv2-synthetic datasets has increased by 0.91%, 1.81%,
and 0.66%, respectively. This may be due to the fact that the adaptive dual aggregation
encoder can effectively extract the global properties and local details from the low-light
images. The proposed gated multi-scale information transmitting module can effectively
transfer the latent features from the input image to the normalizing flow decoder so that
the enhanced image has a more stable quality. The normalizing flow decoder can effectively
model the distribution of normally exposed images to reconstruct high-quality images from
illumination-robust features.

Table 1. Quantitative results of the proposed ADANF and the state-of-the-art methods for the LOLv1
datasets. ↑/↓ means that the larger/smaller the index value, the better/lower the quality. GFLOPs
represents the Giga Floating Point Operations. Params represents the number of weight parameters.

Method
LOLv1 Complexity

PSNR↑ SSIM↑ LPIPS↓ GFLOPs Params/M

LIME [3] 16.76 0.560 0.350 - -
Zero-DCE [47] 14.86 0.562 0.335 - 0.33
RetinexNet [21] 16.77 0.462 0.474 587.47 0.84
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Table 1. Cont.

Method
LOLv1 Complexity

PSNR↑ SSIM↑ LPIPS↓ GFLOPs Params/M

DRBN [60] 19.86 0.834 0.155 48.61 5.27
KinD [43] 20.87 0.799 0.207 34.99 8.02
KinD++ [61] 21.30 0.823 0.175 - 9.63
EnlightenGAN [62] 17.48 0.652 0.322 61.01 114.35
MIRNet [63] 24.14 0.842 0.131 785 31.76
LLFlow [35] 25.13 0.872 0.117 - 37.68
LLFormer [16] 25.76 0.823 0.167 - 24.55
Diff-Retinex [64] 21.98 0.863 0.048 - -
Transformer-GAN [65] 23.50 0.851 - - -
Restormer [66] 22.43 0.823 - 144.25 26.13
SNR-Aware [31] 26.72 0.851 0.152 26.35 4.01

ADANF (ours) 26.67 0.873 0.120 252.39 117.59

Table 2. Quantitative results of the proposed ADANF and the state-of-the-art methods for the LOLv2-
real datasets. ↑/↓ means that the larger/smaller the index value, the better/lower the quality. GFLOPs
represents the Giga Floating Point Operations. Params represents the number of weight parameters.

Method
LOLv2-Real Complexity

PSNR↑ SSIM↑ LPIPS↓ GFLOPs Params

LIME [3] 15.24 0.470 0.415 - -
Zero-DCE [47] 18.06 0.580 0.313 - 0.33
RetinexNet [21] 18.37 0.723 0.365 587.47 0.84
DRBN [60] 20.13 0.830 0.147 48.61 5.27
KinD [43] 17.54 0.669 0.375 34.99 8.02
KinD++ [61] 19.09 0.817 0.180 - 9.63
EnlightenGAN [62] 18.64 0.677 0.309 61.01 114.35
MIRNet [63] 20.36 0.782 0.317 785 31.76
LLFlow [35] 26.20 0.888 0.137 - 37.68
LLFormer [16] 26.20 0.819 0.209 - 24.55
Restormer [66] 19.94 0.827 - 144.25 26.13
SNR-Aware [31] 27.21 0.871 0.157 26.35 4.01

ADANF(ours) 28.01 0.891 0.134 252.39 117.59

Table 3. Quantitative results of the proposed ADANF and the state-of-the-art methods for the
LOLv2-synthetic datasets. ↑/↓ means that the larger/smaller the index value, the better/lower the
quality. GFLOPs represents the Giga Floating Point Operations. Params represents the number of
weight parameters.

Method
LOLv2-Synthetic Complexity

PSNR↑ SSIM↑ LPIPS↓ FLOPs Params

LIME [3] 16.88 0.776 0.675 - -
RetinexNet [21] 17.13 0.798 0.754 587.47 0.84
DRBN [60] 23.22 0.927 - 48.61 5.27
KinD [43] 16.26 0.591 0.435 34.99 8.02
KinD++ [61] - - - - 9.63
EnlightenGAN [62] 16.57 0.734 - 61.01 114.35
MIRNet [63] 21.94 0.846 - 785 31.76
LLFlow [35] 24.81 0.919 0.067 - 37.68
LLFormer [16] 28.01 0.927 0.061 - 24.55
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Table 3. Cont.

Method
LOLv2-Synthetic Complexity

PSNR↑ SSIM↑ LPIPS↓ FLOPs Params

Restormer [66] 21.41 0.830 - 144.25 26.13
SNR-Aware [31] 27.79 0.941 0.054 26.35 4.01

ADANF(ours) 28.67 0.953 0.040 252.39 117.59

4.4. Comparisons with the State-of-the-Art Methods on Unpaired Datasets

In this section, we also conduct experiments on unpaired datasets. Due to the lack of
reference images for comparison, we mainly used the NIQE to quantify the performance
of each method and used the visual results for qualitative analysis. In terms of the NIQE
indicator, the quantitative results for different datasets are shown in Table 4. The proposed
ADANF shows better performance on the LIME, MEF, and VV datasets than other methods.
On the DICM and NPE datasets, the proposed ADANF also has comparable performance.

Table 4. Quantitative results of the proposed ADANF and the state-of-the-art methods for unpaired
DICM, LIME, MEF, NPE, and VV datasets. The evaluation index is NIQE.

Methods DICM LIME MEF NPE VV

Zero-DCE [47] 4.58 5.82 4.93 4.53 4.81
EnlightenGAN [62] 4.06 4.59 4.70 3.99 4.04

RetinexNet [21] 4.33 5.75 4.93 4.95 4.32
KinD [43] 3.95 4.42 4.45 3.92 3.72

KinD++ [61] 3.89 4.90 4.55 3.91 3.82
DCC-Net [67] 3.70 4.42 4.59 3.70 3.28

ADANF(ours) 3.90 3.78 3.59 4.24 3.14

4.5. Visualization

Visual results of different image enhancement methods on paired datasets. In order
to verify that this method can generate better quality illumination-enhanced images, we
compared some of the images generated by this method with the results generated by other
low-light image enhancement algorithms. As shown in Figure 3, it can be seen that our
ADANF can obtain a more realistic restoration effect. Compared with some methods, it
has pictures with lower noise and more realistic colors. In addition, it has clearer details
at the intersection of light and dark. These results can show that the module designed by
this method is more complete and sufficient in extracting the features of the original image,
promoting the final enhancement result to show more details in the transition area, thereby
obtaining better enhancement results.

Visual results of different image enhancement methods on unpaired datasets. As can
be seen from Figure 4, our method has better color performance in different scenarios.
Compared with other methods, the image color obtained by this method is more realistic. It
is neither too dark to see the details nor too bright to make the image color unrealistic. These
visual results can show that the proposed method is effective not only in scenarios with
paired datasets but also in complex scenarios with only unpaired datasets. Experimental
results on multiple unpaired DICM, LIME, MEF, NPE, and VV datasets show that the
proposed ADANF has good generalization ability.
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Figure 3. Some visualization results of the proposed ADANF and the recent state-of-the-art methods
for the LOLv1, LOLv2-real, and LOLv2-synthetic datasets.

OursInput Zero-DCE KinD EnlightenGAN LLFlow
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MEF
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VV

Figure 4. Some visualization results of the proposed ADANF and the recent state-of-the-art methods
for the DICM, LIME, MEF, NPE, and VV datasets.

4.6. Ablation Study

In order to verify the effectiveness of the different modules designed by this method,
we conducted ablation experiments on the LOLv1 dataset to test the effects of the introduced
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adaptive dual aggregation encoder (ADAE) and gated multi-scale information transmitting
module (GMITM). We replaced the ADAE in the proposed ADANF with multi-layer
convolutions and removed the GMITM method as a baseline method. Then, the ADAE and
GMITM modules are respectively added to the baseline method to conduct experiments.
The experimental results are shown in Table 5. Compared with the baseline method,
the introduction of the ADAE and GMITM alone can bring about improvements in the
three evaluation indicators. The improvement brought by the introduction of the ADAE is
that this module can fully utilize the potential features of the input image in both global
and local aspects. The improvement obtained by further combining the GMITM and ADAE
is because the image features extracted by ADAE are better transferred to the normalizing
flow decoder to assist in image enhancement.

Table 5. Ablation studies of the proposed ADANF on the LOLv1 dataset. ↑/↓ means that the
larger/smaller the index value, the better/lower the quality.

ADAE GMITM PSNR↑ SSIM↑ LPIPS↓
24.83 0.819 0.157√
26.05 0.822 0.134√
25.91 0.845 0.126√ √
26.67 0.873 0.120

5. Conclusions

In this paper, we propose an adaptive dual aggregation network with normalizing
flows for low-light image enhancement. First, an adaptive dual aggregation encoder is used
to fully exploit the global properties and local details of the image to extract illumination-
robust features. Next, after illumination-robust features are extracted, a reversible normal-
izing flow decoder is used to recover normally exposed images from these features. This
step takes advantage of the inverse process capabilities of the normalizing flow decoder to
reconstruct brighter, more detailed images from low-light images. Finally, a gated multi-
scale information transmitting module is designed to introduce the multi-scale features of
the adaptive dual aggregation encoder into the normalizing flow decoder. This step aims
to further improve the quality of image enhancement by introducing multi-scale features.
Extensive experiments on paired and unpaired datasets verify the effectiveness of the
proposed ADANF. In the future, we will study lightweight low-light image enhancement
networks to meet the needs of real-time low-light image processing applications.
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