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Abstract: Addressing the challenges posed by the complexity of the structure and the multitude of 

sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis 

method based on an improved D-S evidence theory. The method first employs the Gaussian affilia-

tion function to convert the information acquired by sensors into BPA functions. Subsequently, it 

utilizes a pignistic probability transformation to convert the multiple subset focal elements into sin-

gle subset focal elements. Finally, it comprehensively evaluates the credibility and uncertainty fac-

tors between evidences, introducing Bray–Curtis dissimilarity and belief entropy to achieve the fu-

sion of conflicting evidence. The proposed method is initially validated on the classic Iris dataset, 

demonstrating its reliability. Furthermore, when applied to fault diagnosis in space application fluid 

circuit loop pumps, the results indicate that the method can effectively fuse multiple sensors and 

accurately identify faults. 

Keywords: fluid loop system for space applications; fault diagnosis; D-S evidence theory;  

Gaussian distribution; information fusion 

 

1. Introduction 

With the comprehensive completion of the Chinese Space Station in 2022, the station 

has entered a phase of application and development lasting more than ten years. During 

this phase, astronauts will reside continuously on the Space Station, utilizing the currently 

equipped space application system payloads to conduct nearly a thousand scientific re-

search and application projects across multiple professional fields. Additionally, large-

scale space science experiments and technological trials will be conducted, including re-

search in space life sciences and human physiology, microgravity physics, astronomy, 

and earth sciences, as well as space new technologies and applications, aiming to promote 

the comprehensive development of China’s space science, technology, and applications 

[1–6]. 

The fluid loop system for space applications serves as a crucial mechanism within a 

space station for controlling and regulating the temperature of application system pay-

loads. It primarily comprises a fluid loop host and key payload elements such as single-

unit cold plate branches and thermal control drawer branches for scientific experiment 

cabinets. By employing a variety of active and passive thermal control measures, this sys-

tem fulfills two primary functions. Firstly, it collects the heat generated by scientific pay-

load equipment and associated support systems, transporting this thermal energy 

through the system’s fluid loop to the space station’s thermal control system. Ultimately, 

the heat is dissipated into the external environment via the station’s external radiator 

through radiative heat exchange. Secondly, through the operation of internal pumps and 

valve adjustments, the system maintains the temperatures of scientific payload equipment 
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and support systems within permissible ranges, ensuring the normal operation and func-

tionality of space application payloads. 

The thermal control loop of the space station, serving as the thermal management 

system for space station application systems, holds significant importance for the success 

or failure of space scientific experiments and even the safety of spacecraft and astronauts 

[7]. The complex structure of the thermal control loop system, along with its diverse types 

of state-characteristic parameters, presents challenges. Among the core components of the 

thermal control fluid loop system, the circulation pump plays a critical role by providing 

pressure to the working medium. Any cessation of the circulation pump’s operation re-

sults in the stagnation of the working medium within the circulation pipeline, leading to 

a loss of temperature control capability within the fluid loop. Hence, there exists an urgent 

demand for enhanced fault diagnosis capabilities concerning the circulation pump within 

the thermal control loop. In the field of fault detection, compared to the limitations of 

single sensors, multi-sensor data fusion techniques [8–14] comprehensively consider in-

formation collected from multiple sensors. By analyzing the correlated decisions made by 

different sensors, comprehensive and reliable information can be obtained to accurately 

diagnose equipment faults. Therefore, it has been favored by experts and scholars both 

domestically and internationally. A related adaptive weighting method is proposed in ref-

erence [15], utilizing 1D-CNN for feature extraction, feature layer fusion, and fault classi-

fication of motor heterogeneous sensor information to achieve motor fault diagnosis. Ref-

erence [16] proposes a MICN, which processes signals from the same or different types of 

sensors, performs data fusion, and is used for bearing fault diagnosis. A multi-sensor data 

fusion method based on the D-S evidence theory is proposed in reference [17] for diag-

nosing faults in railway tracks. 

In space application fluid circuit systems, temperature sensors, pressure sensors, and 

flow sensors are distributed in key areas, enabling real-time monitoring of temperature, 

pressure, and flow of applied fluid circuits. Through multi-sensor information fusion 

technology, equipment condition monitoring and fault diagnosis are achieved. As one of 

the methods of multi-sensor data fusion, the D-S evidence theory can effectively describe 

and express uncertain information without prior probabilities, making it widely applied 

in fault diagnosis [18–24], state assessment [25–27], and classification [28,29]. However, 

the evidence theory tends to fail when fusing conflicting evidence [30], and numerous 

studies have proposed improvements. Reference [31] proposes a conflict evidence fusion 

method based on evidence averaging weighting, but it assigns the same weight to each 

piece of evidence without considering their correlation, leading to poor accuracy of fusion 

results. Reference [32] proposes an evidence fusion method based on Mahalanobis dis-

tance; however, the calculation process of Mahalanobis distance is complex and not suit-

able for handling large-scale data. Reference [33] proposes a conflict evidence fusion 

method based on Jousselme distance, but Jousselme distance is influenced by the disper-

sion of evidence’s basic belief assignment functions, resulting in contradictory results 

when measuring evidence conflicts. Therefore, this paper proposes a conflict evidence fu-

sion method based on Bray–Curtis dissimilarity and belief entropy [34], which weights 

evidence based on both the degree of evidence conflict and the amount of information, 

fully considering factors such as evidence credibility and uncertainty, thus better handling 

evidence conflicts and quickly and effectively identifying faults. 

Furthermore, when reasoning based on the D-S evidence theory, the representation 

of uncertain information is a crucial issue to address. Specifically, converting the meas-

ured information from sensors into Basic Probability Assignment (BPA) functions poses a 

significant challenge in the practical application of the DS evidence theory. Currently, 

there is no universal rule for constructing BPA, and methods for their construction are 

mainly determined based on specific circumstances. Scholars have proposed various BPA 

generation methods from different perspectives. One approach, proposed in reference 

[35], is based on clustering principles, utilizing the K-means method to construct a model 

for generating basic probability assignments and subsequently determining the BPA 
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function based on this model. Another method, presented in reference [36], utilizes the 

distance between triangular membership functions and test data to obtain BPA functions, 

defining a distance formula between two triangular membership functions. Additionally, 

reference [37] suggests a method for obtaining BPA functions based on normal distribu-

tions, where the evidence’s normal distribution model is established using training data 

and the relationship between test data and the normal distribution model is used to obtain 

the evidence’s BPA function. In a different approach, reference [38] proposes a BPA acqui-

sition method based on the Adaboost algorithm, where multiple strong classifiers are gen-

erated for each attribute model using training data to determine the BPA of a single subset 

of focal elements. Lastly, reference [39] introduces a method to obtain basic probability 

assignments by constructing a BP neural network, leveraging the powerful self-learning 

and nonlinear mapping capabilities of BP neural networks to normalize output values and 

derive basic probability assignments. 

Therefore, this paper proposes a fault detection method for spatially applied fluid 

circuits based on an improved D-S evidence theory. The method initially transforms sen-

sor-acquired parameters into BPA functions using Gaussian affiliation functions. Subse-

quently, the BPA functions of multi-subset focal elements are converted into those of sin-

gle-subset focal elements through pignistic probabilistic functions. Additionally, Bray–

Curtis dissimilarity and belief entropy are employed to weigh and adjust the acquired 

BPA functions, effectively mitigating the influence of conflicting evidence. Finally, the fu-

sion and identification of evidence are executed. 

2. Preliminaries 

Definition 1. The Frame of Discernment: In the D-S evidence theory [40–43], the totality of the 

research object is called identification frame 𝛩, and the elements in 𝛩 are mutually exclusive. 𝛩 = 

{𝐴1, 𝐴2,⋯ , 𝐴𝑖} denotes the set of all possible events, in which 𝐴𝑖 is a subset of the identification 

frame 𝛩. 2𝛩 denotes the set consisting of all subsets. 

2Θ = {∅, {𝐴1},⋯ , {𝐴𝑛}, {𝐴1, 𝐴2},⋯ , {𝐴1, 𝐴2, 𝐴3},⋯ , Θ}  (1) 

Here, ∅ signifies the empty set, {𝐴1, 𝐴2} represents {𝐴1 ∩ 𝐴2}. 

Definition 2. Basic Probability Assignment: For any proposition 𝐴 in 2𝛩, define the mapping 

𝑚: 2𝛩 → [0, 1] to be a BPA function, 𝑚 satisfying the following conditions. 

 

{
 
 

 
 𝑚(∅) = 0

0 ≤ 𝑚(𝐴) ≤ 1

∑ 𝑚(𝐴)

𝐴⊆2Θ

= 1
 (2) 

𝑚(𝐴) is the BPA function of proposition A, also known as the mass function. Proposition A 

is said to be a focal element if 𝑚(𝐴) > 0. When the focal elements are all singleton sets, such a focal 

element is called single-subset focal element evidence. Correspondingly, when the focal elements 

are multi-subsets, it is denoted as multi-subset focal element evidence. 

Definition 3. D-S Theory Synthesis Rules: For the identification frame 𝛩, there are two inde-

pendent sources of evidence, and the BPA functions are 𝑚1 and 𝑚2. The combination rule for the 

D-S theory of evidence is follows: 

𝑚(𝐴) = 𝑚1(𝐴𝑖) ⊕ 𝑚2(𝐴𝑗) = {
0, 𝐴 = ∅

∑ 𝑚1(𝐴𝑖)𝑚2(𝐴𝑗)𝐴𝑖∩𝐴𝑗=𝐴

1−𝑘
, 𝐴 ≠ ∅

  (3) 

where 𝑘 = ∑ 𝑚1(𝐴𝑖)𝑚2(𝐴𝑗)𝐴𝑖∩𝐴𝑗=∅
, called the conflict coefficient, indicates the degree of conflict 

between two pieces of evidence, and 𝑘 ∈ [0, 1]. 
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3. Materials and Methods 

In order to gain a better understanding of fault diagnosis on space application fluid 

loop circulation pumps using an improved evidence theory, this section will introduce the 

method of BPA generation based on Gaussian affiliation function, pignistic transfor-

mation, and the evidence weighting method based on Bray–Curtis dissimilarity and belief 

entropy. These methodologies serve as theoretical foundations for subsequent applica-

tions in fluid loop systems. 

3.1. Method for BPA Generation Based on Gaussian Affiliation Function 

In practical applications, the sensor measurement environment undergoes real-time 

changes, leading to a degree of fuzziness in the measurement data. Therefore, the fuzzy 

set affiliation function is chosen to construct the BPA function. The Gaussian distribution 

offers several advantages, such as stability, symmetry, universality, and positive function 

value. Based on the Gaussian distribution, the Gaussian affiliation function directly re-

flects the relative probability that the sample belongs to the Gaussian function, thus re-

taining the many advantages of the Gaussian distribution. Consequently, this paper pro-

poses a method based on the Gaussian affiliation function to obtain the BPA function. 

In constructing the model utilizing Gaussian distributions [44], the raw dataset col-

lected from multiple sensor measurements needs to be divided into training datasets and 

testing datasets. Within the training dataset, Gaussian models corresponding to different 

attributes’ data distributions can be obtained by computing the Gaussian affiliation func-

tion for each attribute. Subsequently, by matching the testing samples with the Gaussian 

models, the degree of match for each attribute can be determined, accurately depicting the 

sample’s characteristics across various attributes. Following this, normalization is applied 

to all match values, transforming them into BPA functions. 

Assuming there are a total of n categories in the original dataset, forming the recog-

nition framework θ, where θ = { 𝐴1, 𝐴2, ⋯ , 𝐴𝑛}, each category contains samples with k at-

tributes. 

(1) Selection of training and testing samples: 

Initially, extract m samples from the original dataset as training samples and use 

these samples to construct models based on the membership distribution of each attribute. 

Subsequently, designate the remaining data as testing samples, match them with the es-

tablished models, and ultimately compute the samples’ BPA values. 

(2) Construction of Gaussian models on each attribute: 

During the data processing stage, Gaussian affiliation functions are employed to es-

tablish Gaussian models for the training samples across different attributes. This approach 

enables a more precise description of the range of attribute feature values, thereby enhanc-

ing the accuracy and reliability of the model. The Gaussian membership function expres-

sion is as follows: 

         𝜇(𝑥): 𝑋 → [0,1], 𝑥𝜖𝑋  (4) 

The mean 𝑋𝑖𝑗̅̅ ̅̅  and sample standard deviation 𝜎𝑖𝑗 of different categories 𝑖 on differ-

ent attributes 𝑗 are calculated as follows: 

    𝑋𝑖𝑗̅̅ ̅̅ =  
1

𝑞
∑𝑥𝑖𝑗

𝑙

𝑞

𝑙=1

 (5) 

      𝜎𝑖𝑗 = √
1

𝑞 − 1
∑(𝑥𝑖𝑗

𝑙 − 𝑋𝑖𝑗̅̅ ̅̅ )
2

𝑞

𝑙=1

 (6) 

where 𝑖 = 1,2,⋯ 𝑛; 𝑗 = 1,2,⋯ , 𝑘;𝑥𝑖𝑗
𝑙  denotes the value of the lth training sample in cate-

gory 𝑖 on the 𝑗th attribute. 
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The Gaussian-type membership function for category 𝑖 on the 𝑗th attribute is given 

by: 

𝑢𝑖
𝑗(𝑥) = 𝑒

−(𝑥−𝑋𝑖𝑗̅̅ ̅̅ ̅)
2

2𝜎𝑖𝑗
2

  
(7) 

where −3𝜎𝑖𝑗 ≤ 𝑥 ≤ 3𝜎𝑖𝑗 , 𝑖 = 1,2,⋯ , 𝑛, 𝑗 = 1,2,⋯ , 𝑘. 

Thus, the membership distribution of samples across different attributes can be ob-

tained. 

(3) Matching testing samples with Gaussian models 

By matching the samples in the test set with Gaussian models, the degree of similarity 

between them and different categories can be computed, thereby obtaining the matching 

values between samples and models. Normalize the matching values to obtain the BPA 

for each sample. Assuming 𝑄 is a proposition in the recognition framework, the formula 

for matching samples with 𝑄 is as follows: 

  𝐻(𝑄 ← 𝑡) = 𝑢𝑄(𝑋)|𝑥=𝑡  (8) 

where 𝑡 represents the value of the test sample on a specific attribute. The magnitude of 

𝐻(𝑄 ← 𝑡) determines the degree of matching between the test sample and the Gaussian 

model, thus reflecting the accuracy of proposition  𝑄. 

After matching, the required BPA can be obtained from the models. Arrange the val-

ues of the test sample in different categories in descending order as 𝐻1, 𝐻2,⋯ ,𝐻𝑛, then the 

calculation of its BPA is as follows: 

𝑚1,2,⋯,𝑛 =
𝐻𝑛

∑ 𝐻𝑖
𝑛
𝑖=1

  (9) 

3.2. Pignistic Probability Function 

When dealing with the BPA function of multi-subset focal elements, the fusion out-

come might indicate multiple focal elements, leading to less precise fault identification 

results. Hence, this paper employs the pignistic probabilistic transformation method [45] 

to quantify the multi-subset focal elements. This involves converting the BPA function of 

multi-subset focal elements into the probability distribution function of single-subset focal 

elements, thereby facilitating the ultimate fault identification process. The definition of 

the pignistic probabilistic transformation method is described as follows: 

 𝐵𝑒𝑡𝑃𝑚(𝐴𝑖) = ∑
|𝐴𝑖 ∩ 𝐴|

|𝐴|

𝑚(𝐴)

1 − 𝑚(∅)
𝐴𝑖⊆𝛩

 (10) 

where 𝐴 is the subset of the identification frame Θ, | ∙ | denotes the number of focal ele-

ments contained in the subset. 

3.3. Weight Determination Based on Credibility and Uncertainty 

3.3.1. Evidence Similarity Based on the Bray–Curtis Dissimilarity 

The Bray–Curtis dissimilarity was proposed by J. Roger Bray and John T. Curtis in 

1957 to measure the relative abundance of different species in ecology [46–48]. It serves to 

quantify the relative abundance among different species in ecology. This dissimilarity 

metric satisfies nonnegativity, symmetry, and normality criteria. As a nonparametric 

measure, it does not necessitate assumptions about probability distributions or parame-

terization, rendering it suitable for various types of uncertainty distributions. Further-

more, the Bray–Curtis dissimilarity is relatively simple to compute and is well-suited for 

large-scale data processing tasks, making it a viable option for calculating the degree of 

support between evidences. 

Suppose there are two pieces of evidence in the identification frame Θ, the Bray–

Curtis dissimilarity between the two pieces of evidence is: 
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 𝑏(𝑚𝑖 , 𝑚𝑗) =
∑ |𝐵𝑒𝑡𝑃𝑚𝑖

(𝐴𝑘) − 𝐵𝑒𝑡𝑃𝑚𝑗
(𝐴𝑘)|

𝑀
𝑘=1

∑ 𝐵𝑒𝑡𝑃𝑚𝑖
(𝐴𝑘)

𝑀
𝑘=1 + ∑ 𝐵𝑒𝑡𝑃𝑚𝑗

(𝐴𝑘)
𝑀
𝑘=1

 (11) 

where 𝑖, 𝑗 = 1,2,⋯ ,𝑁. 

The Bray–Curtis dissimilarity between the evidence 𝑚𝑖   and 𝑚𝑗 can be represented 

by the matrix B, which is an N-dimensional matrix: 

 𝐵 =

[
 
 
 
 
 
𝑏11 𝑏12 …
𝑏21 𝑏22 …
⋮ ⋮ ⋱

𝑏1𝑗 … 𝑏1𝑁
𝑏2𝑗 … 𝑏2𝑁
⋮ ⋱ ⋮

𝑏𝑖1 𝑏𝑖2 …
⋮ ⋮ ⋱
𝑏𝑁1 𝑏𝑁2 …

𝑏𝑖𝑗 … 𝑏𝑖𝑁
⋮ ⋱ ⋮
𝑏𝑁𝑗 … 𝑏𝑁𝑁]

 
 
 
 
 

 (12) 

where 𝑏𝑖𝑗   is 𝑏(𝑚𝑖 , 𝑚𝑗) , represents the Bray–Curtis dissimilarity between evidences 

𝑚𝑖 and 𝑚𝑗. When 𝑖 = 𝑗, 𝑏𝑖𝑗=0. The range of Bray–Curtis dissimilarity is between 0 and 1, 

which is negatively correlated with the degree of similarity of the evidence. Thus, the sys-

tem’s support for evidence is defined as follows: 

𝑆𝑈𝑃(𝑚𝑖) =
1

𝑁 − 1
∑

1

𝑏𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

 (13) 

The weight of evidence 𝑚𝑖 can be obtained after normalization as 𝑊𝑅_𝐵(𝑚𝑖)
: 

𝑊𝑅_𝐵(𝑚𝑖)
=

𝑆𝑈𝑃(𝑚𝑖)

∑ 𝑆𝑈𝑃(𝑚𝑗)
𝑁
𝑗=1

 (14) 

where 𝑖 = 1, 2,⋯ ,𝑁. 

3.3.2. Evidence Uncertainty Based on Entropy 

Shannon entropy, proposed by Shannon [49], is a classic method for measuring in-

formation uncertainty, commonly used to describe the amount of information contained 

in the states of a random variable. At the same time, Deng [50] introduced the concept of 

belief entropy as a universal improvement of Shannon entropy and applied it to the D-S 

evidence theory. A lower belief entropy indicates lower uncertainty and higher credibility 

of evidence, while a higher belief entropy signifies greater uncertainty and lower credibil-

ity of evidence. In this paper, belief entropy was introduced to measure the uncertainty 

and credibility of evidence. Hypothesis 𝑚𝑖 is a mass function defined in the identification 

frame Θ, the belief entropy corresponding to evidence is denoted as 𝐻(𝑚𝑖). 

𝐻(𝑚𝑖) = − ∑ 𝑚𝑖(𝐴𝑛)

𝐴𝑛⊆𝛩

𝑙𝑜𝑔2
𝑚𝑖(𝐴𝑛)

2|𝐴𝑛| − 1
 (15) 

where 𝐴𝑛(𝑛 = 1, 2,⋯ ,𝑁) is a proposition in mass function 𝑚𝑖, and |𝐴𝑛| is the cardinal-

ity of 𝐴𝑛. 

To prevent the assignment of zero weight to evidence 𝑚𝑖 in certain circumstances, 

the magnitude of evidence weight is determined by computing the exponential form of 

belief entropy. 

 𝐸𝑖(𝑚𝑖) = 𝑒𝐻(𝑚𝑖) = 𝑒−∑ 𝑚𝑖(𝐴𝑛)𝐴𝑛∈𝛩 𝑙𝑜𝑔2𝑚𝑖(𝐴𝑛) (16) 

After normalization, the uncertainty of evidence 𝑚𝑖 is: 

 𝑊𝑅_𝐸(𝑚𝑖)
=

𝐸𝑖(𝑚𝑖)

∑ 𝐸𝑖(𝑚𝑖)
𝑁
𝑖=1

 (17) 
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3.3.3. Evidence Fusion Based on the Dempster Rule 

By computing the Bray–Curtis dissimilarity and belief entropy between evidences, 

the information effect between evidences can be amplified. For evidence with higher cred-

ibility, higher weights are assigned. Therefore, by cascading the weighting coefficients 

based on Bray–Curtis dissimilarity and belief entropy, the weighted correction coefficients 

for evidence are determined as follows: 

 𝑊𝑖(𝑚𝑖)
= 𝑊𝑅_𝐵(𝑚𝑖)

×𝑊𝑅_𝐸(𝑚𝑖)
 (18) 

The weighted correction coefficients 𝑊𝑖(𝑚𝑖)
 are normalized to obtain evidence fusion 

coefficients 𝑊𝐹𝑈𝑆(𝑚𝑖)
: 

 𝑊𝐹𝑈𝑆(𝑚𝑖)
=

𝑊𝑖(𝑚𝑖)

∑ 𝑊𝑖(𝑚𝑖)
𝑁
𝑖=1

 (19) 

The mass function values of evidence 𝑚𝑖    are each assigned a corresponding 

weighted correction factor to obtain the corrected evidence 𝑚𝑖
′: 

 𝑚𝑖
′ =∑𝑊𝐹𝑈𝑆(𝑚𝑖)

𝑁

𝑖=1

×𝑚𝑖 (20) 

where 𝑖 = 1,2,⋯ , 𝑛. 

𝑁 − 1 fusion of 𝑚𝑖
′ by the Dempster rule produces evidence fusion results in the fol-

lowing: 

 𝑚𝐹𝑈𝑆 = (((𝑚𝑖
′⨁𝑚𝑖

′)1⋯)𝑖⨁𝑚𝑖
′)𝑁−1 (21) 

3.4. The Proposed Fault Diagnosis Method 

The paper proposes a fault diagnosis method based on improved D-S evidence the-

ory. Firstly, it introduces a BPA generation method based on the Gaussian affiliation func-

tion, leveraging fuzzy set theory and Gaussian distribution models, which exhibit good 

reliability and practicality, effectively transforming parameters obtained from sensors into 

BPA functions. Subsequently, it utilizes pignistic probability transformation to convert 

multi-subset focal elements into single-subset focal elements. Moreover, it fully considers 

factors of evidence credibility and uncertainty, presenting a conflict evidence fusion 

method based on Bray–Curtis dissimilarity and belief entropy. This method measures ev-

idence from both dissimilarity and information content aspects, determining the final 

weighted correction coefficients for evidence and facilitating effective data fusion and ul-

timate decision-making. The detailed steps of this method include the following eight 

steps, with the method flowchart depicted in Figure 1. 

(1) Partition the original dataset into training and testing datasets. Select a portion of 

the original dataset as training samples and utilize them for constructing Gaussian mod-

els. 

(2) Compute the mean and standard deviation of the training samples, conduct 

Gaussian model construction, and obtain Gaussian models for each category across dif-

ferent attributes. 

(3) Match the testing samples with Gaussian models to derive the corresponding BPA 

functions. 

(4) Employ pignistic probability transformation to convert multi-subset focal ele-

ments into single-subset focal elements, facilitating accurate fault diagnosis outcomes. 

(5) After obtaining the BPA for each attribute, compute the Bray–Curtis dissimilarity 

between evidences and determine the system’s support and weights for evidence. 

(6) Calculate the belief entropy for each piece of evidence, as well as obtain their re-

spective weights. 
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(7) Determine the weighted correction coefficients for each piece of evidence from the 

perspectives of evidence dissimilarity and uncertainty and conduct weighted correction 

on the evidence. 

(8) Utilize the Dempster combination rule to fuse the corrected BPA functions and 

obtain the final fault diagnosis result. 

 

Figure 1. Flowchart of the proposed method. 

4. Experiments 

To validate the effectiveness of the proposed fault diagnosis method in this paper, 

two sets of cases were selected for validation and analysis. The first set of data is the pub-

licly available Iris flower dataset from UCI [51], while the second set involves real-world 

applications in the space application fluid loop. Through these two case studies, the BPA 

function generation method based on Gaussian affiliation function and the conflict evi-

dence fusion method based on Bray–Curtis dissimilarity and belief entropy are demon-

strated in detail, validating the effectiveness of the proposed method in this paper. 

4.1. Iris Data Set Classification 

In this section, the classical dataset Iris dataset in the UCI Machine Learning Library 

is taken as an example, and the computational process of the BPA generation method 

based on the Gaussian model is given in detail, as well as the process of weighting and 

fusion of the evidence. The validity of the proposed method in this chapter is verified 

through the classification experiments on the Iris dataset. 

The Iris dataset contains three categories of iris flowers: Setosa (S), Versicolor (E), and 

Virginica (V), which constitute a recognition framework θ, where θ = {𝑆, 𝐸, 𝑉}. Each cat-

egory comprises 50 samples, totaling 150 samples. Each sample consists of four feature 

attributes: sepal length (SL/cm), sepal width (SW/cm), petal length (PL/cm), and petal 

width (PW/cm). 

Original dataset

Training datasets Testing datasets

Construct Gaussian

models

Match with 

Gaussian model
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Final BPA

Calculating weights 
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Curtis dissimilarity

Calculate weights 

based on belief 
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Fusion results
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From each of the three iris categories (S, E, and V), 30 random samples are selected 

to form the training set, with the remaining 20 samples forming the test set. The mean and 

standard deviation of the 30 training samples on the four attributes SL, SW, PL, and PW 

are calculated, respectively, using Equations (5) and (6). The specific calculation results 

are presented in Table 1. 

Table 1. Mean value and standard deviation of the training samples. 

Category  (𝑿𝑺𝑳,̅̅ ̅̅ ̅  𝝈𝑺𝑳) (𝑿𝑺𝑾,̅̅ ̅̅ ̅̅  𝝈𝑺𝑾) (𝑿𝑷𝑳,̅̅ ̅̅ ̅̅  𝝈𝑷𝑳) (𝑿𝑷𝑾,̅̅ ̅̅ ̅̅ ̅  𝝈𝑷𝑾) 

S (5.0267, 0.3660) (3.4500, 0.3442) (1.4733, 0.1825) (0.2467, 0.0991) 

E (6.0700, 0.5367) (2.7900, 0.3229) (4.3333, 0.4519) (1.3533, 0.2077) 

V (6.5833, 0.6773) (2.9333, 0.3290) (5.6033, 0.6162) (2.0067, 0.2516) 

Based on the mean and standard deviation, the Gaussian models are constructed for 

the training samples of each category on each attribute. The Gaussian models are shown 

in Figure 2 below. 

  
(a) Gaussian Model for Attribute SL (b) Gaussian Model for Attribute SW 

  
(c) Gaussian Model for Attribute PL (d) Gaussian Model for Attribute PW 

Figure 2. Gaussian models for four attributes. 

For the attribute SL, the membership functions 𝑢𝑆(𝑥), 𝑢𝐸(𝑥), 𝑢𝑉(𝑥)  represent the 

categories S, E, and V, respectively. The membership function 𝑢𝑆𝐸(𝑥) represents that the 

attribute model can be classified as both category S and category E. The membership func-

tion 𝑢𝑆𝐸𝑉(𝑥) represents that the attribute model can be classified as category S, category 

E, and category V. Their mathematical expressions are as follows: 

𝑢𝑆𝐸(𝑥) = 𝑚𝑖𝑛[𝑢𝑆(𝑥), 𝑢𝐸(𝑥)]  

𝑢𝑆𝐸𝑉(𝑥) = 𝑚𝑖𝑛[𝑢𝑆(𝑥), 𝑢𝐸(𝑥), 𝑢𝑉(𝑥)]  
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By matching the testing samples with the Gaussian models corresponding to each 

category, we obtain the degree of match between the testing samples and each category. 

Then, by normalization, we obtain the BPA. 

Taking class S as an example, randomly select a sample 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [4.8, 3.1, 

1.6, 0.2], from the test set, where 𝑥1, 𝑥2, 𝑥3, 𝑥4 represent the feature values of this sample 

on the four attributes SL, SW, PL, and PW. By matching the sample 𝑥 with the Gaussian 

models of each category, we obtain the degree of match between the sample x and each 

Gaussian model, as shown in Figure 3 below. 

  
(a) Gaussian Model for Attribute SL (b) Gaussian Model for Attribute SW 

  
(c) Gaussian Model for Attribute PL (d) Gaussian Model for Attribute PW 

Figure 3. Matching degree between testing sample and Gaussian models. 

Finally, we obtained four sets of BPA values for the testing sample based on the four 

attributes SL, SW, PL, and PW. The specific numerical values are shown in Table 2 below. 

Table 2. BPA Functions for the testing sample on each attribute. 

Category 𝒎({𝑺}) 𝒎({𝑬}) 𝒎({𝑽}) 𝒎({𝑺, 𝑬}) 𝒎({𝑺, 𝑽}) 𝒎({𝑬, 𝑽}) 𝒎({𝑺, 𝑬, 𝑽}) 

𝑚1(𝐵𝑃𝐴𝑆𝐿) 0.9320 0.0000 0.0000 0.2219 0.0000 0.0000 0.0950 

𝑚2(𝐵𝑃𝐴𝑆𝑊) 0.0000 0.0000 0.9606 0.0000 0.0000 0.8596 0.8391 

𝑚3(𝐵𝑃𝐴𝑃𝐿) 0.9569 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 

𝑚4(𝐵𝑃𝐴𝑃𝑊) 0.9887 0.0000 0.0000 0.0412 0.0000 0.0000 0.0003 

The current BPA functions belong to high-conflict evidence with multiple subset focal 

elements. Directly fusing the BPA functions at this stage will yield incorrect identification 

information. Firstly, utilize pignistic probability transformation to convert the current 

BPA functions into single-subset focal elements. The transformation results are shown in 

Table 3 below. 
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Table 3. BPA functions after pignistic probability transformation. 

Category  𝒎({𝑺}) 𝒎({𝑬}) 𝒎({𝑽}) 

𝑚1
′ (𝐵𝑃𝐴𝑆𝐿) 0.8601 0.1145 0.0254 

𝑚2
′ (𝐵𝑃𝐴𝑆𝑊) 0.1052 0.2668 0.6280 

𝑚3
′ (𝐵𝑃𝐴𝑃𝐿) 0.9998 0.0001 0.0001 

𝑚4
′ (𝐵𝑃𝐴𝑃𝑊) 0.9798 0.0201 0.0001 

The Bray–Curtis dissimilarity matrix is derived from Equations (11) and (12) as fol-

lows: 

𝐵 = [

0 0.7549
0.7549 0

0.1397 0.1197
0.8946 0.8746

0.1397 0.8946
0.1197 0.8746

0 0.0200
0.0200 0

]  

Applying Equation (13), the evidence support based on the Bray–Curtis dissimilarity 

matrix is determined as follows: 

𝑆𝑈𝑃(𝑚𝑖
′) = {4.2093,0.8965,14.5690,14.8744}  

Utilizing Equation (14) for normalization, the support coefficients become as follows: 

𝑊𝑅_𝐵(𝑚𝑖
′) = {0.1218,0.0259,0.4217,0.4305}  

Applying Equations (15) and (16), the entropy of each piece of evidence is calculated 

as follows: 

𝐸𝑖(𝑚𝑖
′) = {1.9731,3.5674,1.0030,1.1543}  

Normalization of the evidence uncertainty coefficient according to Equation (17) 

yields the following: 

𝑊𝑅_𝐸(𝑚𝑖
′) = {0.2563,0.4634,0.1303,0.1500}  

According to Equations (18) and (19), the normalized evidence weighted correction 

coefficient is calculated as follows: 

𝑊𝐹𝑈𝑆(𝑚𝑖
′)
= {0.1918,0.0737,0.3376,0.3968}  

Applying Equation (20), a corresponding correction coefficient is assigned to each 

piece of evidence, resulting in the final mass function value: 

𝑚𝑖
′ = {0.8991,0.0496,0.0512}  

Evidence fusion is executed according to Equation (21), and the final fusion results 

are presented in Table 4. The fusion result successfully identifies the sample category as 

class S. 

Table 4. Final fusion results. 

Fusion Results 𝒎({𝑺}) 𝒎({𝑬}) 𝒎({𝑽}) 

𝑚1
′⨁𝑚2

′  0.9938 0.0030 0.0032 

𝑚1
′⨁𝑚2

′⨁𝑚3
′  0.9996 0.0002 0.0002 

𝑚1
′⨁𝑚2

′⨁𝑚3
′⨁𝑚4

′  1.0000 0.0000 0.0000 

Testing on the remaining 59 training samples from classes S, E, and V yielded an 

overall recognition rate of 98.45%, confirming the effectiveness of the proposed method. 
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4.2. Application in Fault Diagnosis of Fluid Circuit Loop Pumps 

In this section, the computational process of the BPA generation method based on the 

Gaussian affiliation function is given in detail by applying the telemetry data of fluid loop 

circulation pumps as an example, and the improved DS evidence theory method proposed 

in this paper is used for fault diagnosis, which verifies the practical application effect of 

the method proposed in this paper. 

The application fluid circuit system consists of essential components such as a circu-

lation pump, measuring sensors, energy storage unit, filter, gas-liquid separator, self-lock-

ing valve, filling and draining valve, one-way valve, electric flow control valve, and so on. 

The system configuration and sensor positioning are illustrated in Figure 4 below. 

 

Figure 4. System configuration and sensor positioning. 

The application fluid circuit loop pump serves as the core power equipment for space 

application fluid circuits. Its main functions include providing pressure to the working 

medium of the driving components, driving the medium circulation, and achieving self-

sealing functionality. Once the circulation pump fails, the medium in the circulation pipe-

line ceases to flow, resulting in the loss of the fluid circuit’s temperature control capability, 

potentially causing localized temperatures to rise in some loads. A standby design is im-

plemented for the circulation pump to guarantee system reliability. 

The energy storage unit, as a stabilizing element within the system, ensuring the cir-

culation pump operates within normal pressure parameters. The primary role of the filter 

is to eliminate impurities from the working medium, thereby enhancing the efficiency of 

the fluid circuit. At the same time, the gas-liquid separator is pivotal in isolating and ex-

pelling air bubbles entrapped within the circulating medium, thereby maintaining the 

normal operation of the application fluid circuit. Additionally, various types of valve com-

ponents are strategically positioned throughout the main circuit of the fluid circuit system 

to ensure unhindered flow of the working medium, encompassing self-locking valves, 

two electric flow control valves (electric flow control valve A and electric flow control 

valve B), two check valves (check valve A and check valve B), and two injection discharge 

valves (injection discharge valve A and injection discharge valve B). 

Various types of sensors are strategically deployed at critical junctures within the ap-

plication fluid circuit system, including three temperature sensors (temperature sensor A, 

temperature sensor B, and temperature sensor C), three pressure sensors (pressure sensor 
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A, pressure sensor B, and pressure sensor C), three flow sensors (flow sensor A, flow sen-

sor B, and flow sensor C), and a differential pressure sensor. These sensors facilitate real-

time measurement and display of the system’s temperature, pressure, flow rate, pressure 

differential, and liquid level within the accumulator. During normal operation of the ap-

plication fluid circuit system, sensor readings remain within a dynamic range. Any devi-

ation from this range indicates system malfunction, with the degree of fault directly cor-

related with the extent of deviation in sensor readings. Leveraging the embedded sensors 

within the system enables effective state monitoring. 

Analyzing the telemetry parameters of the circulation pump and the monitoring pa-

rameters related to the health status of the circulation pump, an analysis is conducted on 

the sensor types and telemetry parameters of the circulation pump. Based on the layout 

of internal sensors in the circulation pump, four factors are selected to assess the likeli-

hood of faults occurring: the rotational speed value of circulation pump A, the pressure 

value of pressure sensor A, the pressure value of pressure sensor C, and the level value of 

the energy storage tank gauge. From the perspective of evidence theory, the information 

obtained from each sensor can be regarded as evidence, and fault diagnosis based on 

multi-sensor information is essentially an evidence fusion problem. The corresponding 

relationship between fault modes and relevant monitoring parameters is presented in Ta-

ble 5. The fault modes 𝐴1, 𝐴2 and 𝐴3 are all random static faults. 

Table 5. Correspondence between circulation pump fault modes and relevant monitoring parame-

ters. 

Project Name Fault Mode Fault Diagnosis Method 
Telemetry Available for 

Fault Diagnosis 

Space Application 

Fluid Circuit Loop 

Pump 

𝐴1 

(Circulation Pump speed re-

duction) 

Decrease in Circulation Pump Speed, 

decrease in Internal Pressure Circula-

tion pump 

A rotational speed value, 

Pressure sensor A pressure 

value, 

Pressure sensor C pressure 

value, 

Energy storage tank gauge 

value 

𝐴2 

(Circulation Pump Shut-

down) 

Gradual decrease in circulation pump 

speed to zero, decrease in internal 

pressure 

𝐴3 

(Circulation Pump Leakage) 

Decrease in circulation pump speed, 

decrease in internal pressure, decrease 

in system flow rate 

Through fault simulation of the space application fluid circuit loop pump, 50 fault 

data samples are collected for each fault mode. Each fault mode records four feature at-

tributes, namely the rotational speed value of circulation pump A (X1), the pressure value 

of pressure sensor A (X2), the pressure value of pressure sensor C (X3), and the level value 

of the energy storage tank gauge (X4). 

From the three categories of fault data samples, 𝐴1, 𝐴2, 𝐴3, 30 samples are randomly 

selected as training models, while the remaining 20 samples are used as testing samples 

for model validation. 

The mean and standard deviation of the 30 training samples on attributes X1, X2, X3, 

and X4 are calculated, respectively, and then the Gaussian models for each category of 

training samples on each attribute are constructed. The Gaussian models corresponding 

to the four attributes are shown in Figure 5 below. 
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(a) Gaussian Model for Attribute X1 (b) Gaussian Model for Attribute X2 

  

(c) Gaussian Model for Attribute X3 (d) Gaussian Model for Attribute X4 

Figure 5. Gaussian models for four attributes. 

Taking class 𝐴1as an example, a sample 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [0.5241, 11.1642, 1.2547, 

6.6462], is randomly selected from the test set, where 𝑥1, 𝑥2, 𝑥3, 𝑥4 denote the eigenvalues 

of this sample on four attributes, namely, X1, X2, X3 and X4. By matching the sample 𝑥 

with the Gaussian models of each category, we obtain the degree of match between the 

sample 𝑥 and each Gaussian model, as shown in Figure 6 below. 

  
(a) Gaussian Model for Attribute X1 (b) Gaussian Model for Attribute X2 
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(c) Gaussian Model for Attribute X3 (d) Gaussian Model for Attribute X4 

Figure 6. Matching degree between the testing sample and gaussian models. 

Finally, we obtained four sets of BPA values for the testing sample based on the four 

attributes SL, SW, PL, and PW. The specific numerical values are shown in Table 6 below. 

Table 6. BPA Functions for the testing sample on each attribute. 

Category 𝒎({𝑨𝟏}) 𝒎({𝑨𝟐}) 𝒎({𝑨𝟑}) 𝒎({𝑨𝟏, 𝑨𝟐}) 𝒎({𝑨𝟏, 𝑨𝟑}) 𝒎({𝑨𝟐, 𝑨𝟑}) 𝒎({𝑨𝟏, 𝑨𝟐, 𝑨𝟑}) 

𝑚1(𝐵𝑃𝐴X1) 0.978 0.0000 0.0000 0.538 0.0000 0.0000 0.0000 

𝑚2(𝐵𝑃𝐴X2) 0.972 0.0000 0.0000 0.0000 0.052 0.0000 0.0000 

𝑚3(𝐵𝑃𝐴X3) 0.932 0.0000 0.0000 0.0000 0.783 0.0000 0.1928 

𝑚4(𝐵𝑃𝐴X4) 0.845 0.0000 0.0000 0.0000 0.0395 0.0000 0.0015 

The current BPA function was converted to a single subset of focal elements using a 

pignistic probability transformation, and the converted BPA function is shown in Table 7 

below. 

Table 7. BPA functions after pignistic probability transformation. 

Category  𝒎({𝑨𝟏}) 𝒎({𝑨𝟐}) 𝒎({𝑨𝟑}) 

𝑚1(𝐵𝑃𝐴X1) 0.8226 0.1774 0.0000 

𝑚2(𝐵𝑃𝐴X2) 0.9746 0.0000 0.0254 

𝑚3(𝐵𝑃𝐴X3) 0.7274 0.0337 0.2389 

𝑚4(𝐵𝑃𝐴X4) 0.9766 0.0006 0.0228 

The Bray–Curtis dissimilarity matrix is obtained by applying Equations (11) and (12) 

as follows: 

𝐵 = [

0 0.1774
0.1774 0

0.2389 0.1768
0.2472 0.0026

0.2389 0.2472
0.1768 0.0026

0 0.2492
0.2492 0

]  

Applying Equation (13), the evidence support based on the Bray–Curtis dissimilarity 

matrix is determined as follows: 

𝑆𝑈𝑃(𝑚𝑖
′) = {3.8697,98.5744,3.0610,98.5711}  

Utilizing Equation (14) for normalization, the support coefficients become as follows: 

𝑊𝑅_𝐵(𝑚𝑖
′) = {0.0190,0.4830,0.0150,0.4830}  

Applying Equations (15) and (16), the entropy of each piece of evidence is calculated 

as follows: 
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𝐸𝑖(𝑚𝑖
′) = {1.9628,1.1862,2.6974,1.1784}  

Normalization of the evidence uncertainty coefficient according to Equation (17) 

yields the following: 

𝑊𝑅_𝐸(𝑚𝑖
′) = {0.2794,0.1689,0.3840,0.1677}  

According to Equations (18) and (19), the normalized evidence weighted correction 

coefficient is calculated as follows: 

𝑊𝐹𝑈𝑆(𝑚𝑖
′)
= {0.0306,0.4698,0.0332,0.4664}  

Applying Equation (20), a corresponding correction coefficient is assigned to each 

piece of evidence, resulting in the final mass function value: 

𝑚𝑖
′ = {0.9627,0.0068,0.0305}  

Evidence fusion is executed according to Equation (21), and the final fusion results 

are presented in Table 8. 

Table 8. Final fusion results. 

Fusion Results 𝒎({𝑨𝟏}) 𝒎({𝑨𝟐}) 𝒎({𝑨𝟑}) 

𝑚1
′⨁𝑚2

′  0.9989 0.0001 0.0010 

𝑚1
′⨁𝑚2

′⨁𝑚3
′  0.9999 0.0000 0.0001 

𝑚1
′⨁𝑚2

′⨁𝑚3
′⨁𝑚4

′  1.0000 0.0000 0.0000 

Testing on the remaining 59 training samples from classes 𝐴1, 𝐴2 and 𝐴3 yielded an 

overall recognition rate of 98%, validating the effectiveness of the method. This confirms 

the potential applicability of the method for practical fault detection in space application 

fluid circuit loop pumps. 

5. Conclusions 

This paper proposes a fault diagnosis method for space fluid circuit loop pumps 

based on an improved D-S evidence theory. Initially, Gaussian membership functions are 

employed to obtain the corresponding BPA functions for the evidence acquired from sen-

sors, facilitating the quantitative representation of sensor signals. Subsequently, multi-

subset focal element evidence is converted to single-subset focal element evidence using 

the pignistic probability function, enhancing the accuracy of fault identification. Further-

more, to address conflicting evidence fusion in D-S evidence theory, a conflict evidence 

fusion method based on Bray–Curtis dissimilarity, and belief entropy is introduced. This 

method comprehensively evaluates evidence similarity and information content, deter-

mining the credibility of evidence using Bray–Curtis dissimilarity and assessing evidence 

uncertainty using belief entropy. Weighting correction coefficients for evidence are then 

determined based on a comprehensive assessment of the credibility and uncertainty of the 

evidence. Finally, the fusion of corrected evidence using D-S evidence theory yields the 

ultimate fault diagnosis. The main contributions of this paper are as follows: 

(1) Addressing the ambiguity of sensor signals in the practical working environment of 

spatially applied fluid circuit loop pumps by introducing Gaussian models to deter-

mine BPA functions for each attribute. This enables the quantitative representation of 

sensor signals and facilitates more accurate fault identification through the conver-

sion of multi-subset focal element evidence to single-subset focal element evidence 

using the pignistic probability function. 

(2) Proposing a conflict evidence fusion method based on Bray–Curtis dissimilarity and 

belief entropy for handling conflicting evidence in D-S evidence theory. This method 

integrates the assessment of evidence similarity and information content to deter-

mine evidence credibility and uncertainty, respectively. Weighting correction 
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coefficients for evidence are then determined based on this comprehensive assess-

ment, leading to the final fault diagnosis using D-S evidence theory. 

(3) The fault diagnosis method for space fluid circuit loop pumps based on the improved 

D-S evidence theory effectively addresses the ambiguity of sensor signals and the 

conflict after signal interference in the equipment environment, thus aligning well 

with the actual operating conditions of spatially applied fluid circuit loop pumps and 

demonstrating strong robustness. 
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