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Abstract: Mainstream research on information theory within the field of living systems involves the
application of analytical tools to understand a broad range of life processes. This paper is dedicated
to an opposite problem: it explores the information theory and communication engineering methods
that have counterparts in the data transmission process by way of DNA structures and neural fibers.
Considering the requirements of modern multimedia, transmission methods chosen by nature may
be different, suboptimal, or even far from optimal. However, nature is known for rational resource
usage, so its methods have a significant advantage: they are proven to be sustainable. Perhaps
understanding the engineering aspects of methods of nature can inspire a design of alternative green,
stable, and low-cost transmission.
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1. Introduction

We live in a digital era. Our access to multimedia for work and entertainment is
virtually permanent. However, most users have never heard of Claude Shannon, although
his works are the essence of worldwide communication connectivity.

The mathematical concepts established in 1948 in Shannon’s paper [1] announced
a new discipline, with the title “information theory” (IT) premiered a year later [2]. In-
formation theory owes its breakthrough to signal discretization based on another one of
Shannon’s key contributions, the sampling theorem (1949) [3]. Admittedly, Shannon’s
derivation on sampling was preceded by a conference paper by V. Kotelnikov [4]. The state
of the art in 1933 could not envisage the implementation possibilities, so the work went
unnoticed but not forgotten (having received the IEEE Alexander Graham Bell Award and
the Eduard Rhein Foundation Award).

Nevertheless, Shannon’s works were the first to establish segments of information
theory dealing with error control coding [5], cryptography [6], and compression [1], popu-
larized by the Huffman code [7]. Digitalization soon became ubiquitous and has immense
possibilities, from applications in multimedia that permeate speech, music, sounds, images,
movies, and animated multidimensional reality to the sophisticated processing of medical
signals and images that enable precise diagnostics.

The digital era implies that the previous one was analog. Indeed, telephony, television,
radio, photographic material, gramophone records, video and audio magnetic tapes, and
cassettes are some examples. Analog systems, however, have not been around forever.
The first photographic negative dates from 1839, the first telephone conversation was in
1876, and the ECG was recorded in 1887 (the same year of inventing the “phonograph”
(the predecessor of the gramophone)). The first X-ray image was taken at the end of 1895
and the first voiced radio message was recorded in 1897. In the 20th century, various
analog audio, video, and even computing devices were invented, but their application was
short-lived. In fact, the total lifespan of analog techniques was less than two centuries.
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The analog era was a significant period with pivotal technical achievements, but it was
short-lived.

Preceding the analog era, discrete communication and recording systems were dom-
inant techniques even then, although in a different form than nowadays. Transmission
using Morse code was binary and line-of-sight transmission implemented binary signals
generated by mirrors, fire, and smoke, while widespread storage systems (books) used
discrete sets of symbols (letters). The pictographic records are also discrete, and only pos-
sessed a slightly higher number of symbols. Abacus, as a forerunner of computer systems,
was discrete as well. Of all the other segments, cryptography existed even before Shannon
incorporated classical ciphers into the framework of information theory. Compression
based on dropping the vowels, practically based on (Shannon’s) entropy, was used at
times when recording mediums was expensive (and it is still used in some languages).
Morse code uses the same principles as Huffman’s algorithm, except that it was designed
intuitively and does not follow the rules of a prefix code.

In an earlier period, eons before the formalization of information theory, while life on
Earth was still emerging, nature has incorporated the concepts of information theory into
its systems for transferring and storing discrete data through space and time.

This paper is dedicated to communication engineering methods that have analogies in
the data transmission process by way of DNA structures and neural fibers. Considering
the requirements of modern multimedia, transmission methods chosen by nature may be
different, suboptimal, or even far from optimal. However, nature is known for rational
resource usage, so its methods have a significant advantage: they are proven to be sustain-
able. Perhaps understanding the engineering aspects of such methods can inspire a design
of alternative green, stable, and low-cost transmission.

Mainstream research on information theory within this field involves the application
of genome analysis and, more generally, the analysis of a range of processes in living
organisms. This is not a topic explored in this paper. This paper explores nature from the
perspective of a communication engineer. However, for the sake of completeness, some
very brief notions are included in Section 2.

Section 3 is devoted to nature’s interpretation of binary data based on the transmis-
sion of neurons in the body. Section 4 deals with the transmission and storage of DNA
quaternary data and solutions that nature implemented for error control, cryptography,
compression, and synchronization. Concluding remarks are given in Section 5.

2. Information Theory as a Tool

Few people know that Shannon’s doctoral dissertation was devoted to genetics [8].
It was a few years before the discovery of DNA when the classical Mendelian theory
of inheritance still dominated. Shannon derived a general formula for the distribution
of several related observed characteristic traits of individuals after a certain number of
generations, assuming that the mating of individuals is random. The formula, although
original and innovative at the time of receiving his Ph.D. (in 1940), went unnoticed, perhaps
because the thesis was never published.In addition, Shannon changed his field of interest.

The first definition of information theory as a “general calculus for biology” was
proposed in 1970 [9], but it is generally agreed upon that Lila Gatlin in 1971 was the first
to thoroughly connect information theory to biological systems [10]. Her definition of life
“. . . as an information processing system—a structural hierarchy of functioning units—that
has acquired through evolution the ability to store and process the information necessary
for its accurate reproduction” comprises complex IT-based mathematical analyses of DNA
structures and diverse biological processes. One of the first analyses that implemented
Shannon’s entropy was published in [11]. Since then, the mainstream of information theory
in living systems has been to derive IT-based analytical tools for diverse genome and life
system analyses. For example, one classical analysis study [12] explored how sensory
stimuli are represented in the activity of neurons, combining techniques from physics,
mathematics, and biology, with an emphasis on sensitivity to noise and errors, and con-
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cluded that it is not known if organisms perform the sort of reconstructions that yield
favorable results in their analytical approach. The analysis carried out in [13] derives a the-
oretical framework for understanding the complex interplay between genetic information,
regulatory proteins, and cellular processes, from the perspective of theoretical biophysics
and computational neuroscience.

When considering the engineering aspects of works conducted by experts in infor-
mation theory and error control coding, J. Hagenauer and his team stand out. They
emphasized that their objective was to apply techniques from communications engineering
to problems in the area of biology [14]. Their contributions were, among others, devoted
to entropy analysis [15] and developing distance measures for the pairwise analysis of
sequences of different lengths [16]. Several excellent review papers show the evolution of
analytical methodologies conceived on the principles of information theory, with the first
one being [17] (1996). Gene mapping was analyzed in [18,19], and, more recently, in [20].

However, recent review papers admit that IT might not always be an almighty ana-
lytical tool, as it requires sufficient sample sizes and significant computer resources, and
both might be unavailable [21]. It is also noted that IT might not reveal which information
is important for the organism, how biological systems use the information to carry out
specific functions, and how a functional input–output relationship is established [22].

Nowadays, information theory is recognized as an integral part of understanding bio-
systems and, in particular, DNA structures. It is the subject of collaborative research carried
out by biologists, physiologists, mathematicians, physicists, and engineers, to mention only
a few of the professions.

To bring back the paper focus, we refer to the inspiring works of T. Schneider [23–25],
who, after speculating that “Claude Shannon probably never realized that his work on the
mathematics of communications was about biology” [26], contributed to our hypothesis that
nature might guide us towards an engineering solution: “All the sophisticated mechanisms
of biology must be based on codes—we ‘just’ have to learn what those codes are so that we
can apply them to our own technologies” [27].

3. Small-Scale Transmission in the Body: Binary Data

A mechanistic approach to the functionality of data transmission within the human
body reduces it to a wired electrical transmission along the neural lines. This over-simplified
statement evoked a lot of protests, as other systems, such as renal and endocrine systems,
are also responsible for data transmission. However, the dominant transmission path
is neurons, and the carriers of information are impulses of nerve action potential (NAP)
(Figure 1).
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Figure 1. Pulses of nerve action potential (NAP)—information is transferred using digital frequency
modulation.

It was generally assumed that the NAP amplitude and shape are a constant for a
particular neuron. The information is proportional to the number of impulses per unit of
time, that is, to frequency. A stronger signal indicates more pulses and a weaker signal
indicates fewer pulses, which means that frequency modulation is responsible for the
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transmission of information via nerve fibers. Signaling is binary, with NAP impulses being
either “on” (if a threshold is exceeded) or “off” [28]. In [29], the process of converting
information in the retina is modelled as an analog-to-digital convertor. Synapses were
considered to be mere connectors, where transmission slows down as it is performed using
chemical diffusion (similar to electrical connectors that attenuate the pulse energy).

More recent findings, however, show that the pulse shape, initially believed to be
constant for a particular neuron, can be changed in multiple ways [30]. Data transfer is
shown to have an analog component as, in addition to digital action potentials, graded
subthreshold synaptic potentials propagate as well [30–33]. Hybrid analog–digital trans-
mission shows that the amount of transferred information is larger than initially supposed.
In data transmission systems, a similar simple but purely digital approach is implemented
in the form of so-called “piggybacking”, where low-rate binary data are embedded into
high-rate binary data [34]. This incites an idea for further improving communication sys-
tems: to enable continuous (analog) changes in the amplitude (or some other parameters of
digital signals) and provide hybrid transmission that might increase data flow or protect
data in a steganography manner.

Digital frequency modulation is not the only analogy. Nature has improved transmis-
sion by applying destructive (lossy) compression. The relationship between excitation and
pulse frequency is not linear and can be approximated by non-linear functions. The most
frequent approximation is logarithmic, as the relationship between excitation S and pulse
frequency f is expressed by the Weber–Fechner law, according to which f ≈ a·log(S) + b,
where a and b are empirical constants [28]. Logarithmic transformation reduces the ampli-
tude range so the transmission can be performed in real time. For example, the interval
between neural impulses is physiologically limited (about 5 ms in humans), and the
strongest excitation to which such an interval corresponds is considered to be typically
106 times greater than the weakest. If the connection was linear, the interval corresponding
to the smallest excitation would be 106 times longer than 5 ms, so the time needed to feel a
light excitation, for example, a feather falling on the hand, would be more than an hour. The
price to be paid for more efficient transmission is low resolution. To distinguish between
two different stimuli, a greater change in their intensity is required.

Destructive nature’s ability to compress our senses has a great impact on how we save
resources for real communication data transmission and storage. It provides the possibility
of eliminating information content that our senses are unable to perceive. The first benefit
relates to digital telephone signals, where technical interfaces were required to transfer the
data with a mere rate of 64 kb/s (8 bits per sample), although satisfactory quality required
at least 12 bits per sample, equivalent to 96 kb/s. This goal was achieved via the nonlinear
attenuation of large speech amplitudes that correspond to vowels which are insignificant
considering the information content [35].

Another benefit of nature’s ability to compress our senses regards the savings in
storage resources. Numerous standardized destructive compression algorithms reduce the
size of bulky data, such as images, video, and audio signals. These algorithms designed by
humans are tuned to the compression algorithm designed by nature so that the eye or ear
of the user cannot perceive any distortion.

4. Large-Scale Transmission across Space and Time: Quaternary Data

The DNA molecule is a memory block that stores genetic records. It is a very long
molecule composed of millions of constitutive elements—nucleotides. There are only four
different nucleotides, labeled A, G, T(U), and C, drawn from a four-symbol alphabet [36].
Information is stored (and transmitted) as a sequence of nucleotides, and complexity
is achieved by their large number. DNA transmits information across space, via the
movement of the host, and across time, via inheritance. DNA records are permanent—the
DNA record of a Siberian mammoth has been successfully decoded, although it lived
around 1,500,000 years ago [37].
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4.1. DNA-Based Signals

A DNA molecule consists of two chains of nucleotides (two strands). Parallel nu-
cleotides are connected according to the template A-T and G-C so that the strands are
complementary. A human body contains 109 nucleotides (discrete carriers of information),
and the total length of the DNA molecule is equal to 400 distances from the earth to the
sun [36].

There is ambiguity surrounding whether the genetic record initially only contained
binary nucleotides [38] and whether they were slowly transferred towards quaternary
symbols. The basis of this hypothesis is that the binary alphabet is the simplest, and life
began with the simplest organisms. Simplistic reasoning without evidence caused negative
reactions, but no conclusion was drawn because neither side provided evidence.

The engineering logic would be that the number of binary nucleotides would be the
square of the number of quaternary nucleotides (1018 instead of 109 nucleotides in humans).
The DNA strands would be too long for comfortable handling; the replication process
would require more organic material and the translation process would require a lengthy
search along the strands, so more energy would be consumed if the data were binary.

Such reasoning implies that an increased number of nucleotides would have shorter
chains and achieve greater energy and material savings. However, nature stopped at four
nucleotides. A parallel may likely be found in communications design. A change in the
number of signaling levels from four to eight could be performed only if a considerable
hardware change was made. This occurred in dial-up modems. To accomplish the eight-
level modulation with the desired rate, the classical step-by-step signal generation had
to be replaced by a signal processor that directly synthesized the waveforms [39]. It may
be speculated that an increase in the number of different nucleotides makes the DNA
“hardware” unstable.

Nucleotides are organized in triplets called codons. There are 43 = 64 possible triplets,
mapped into amino acids and into so-called “stop” or “nonsense” codons, according to
Figure 2. A sequence of amino acids makes up a protein, which is a key factor in all
processes in living beings. Information on each protein is written in segments of the DNA
molecule. Those segments represent the gene for the given protein [36].
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Figure 2. Codons—triplets of nucleotides. Here, 1, 2, 3, 4, or 6 codons can be mapped into the same
amino acid. The codons UAA, UAG and UGA are not amino acids, they mark the end of transcription
process, while amino acid Met sometimes mark the beginning.

This hierarchical system (in the order of nucleotides, amino acids, genes, and proteins)
resembles the hierarchy of digital transport systems, where the basic information carriers
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are gradually multiplexed into higher-level entities via low-level containers, from basic
input signals with lower data rates to high-level containers with higher data rates, ending
with the entire frame.

4.2. Error Control

The transfer of data to a new cell occurs with each cell division in a procedure called
DNA replication. As with any type of data transfer, it is prone to errors, for which the
only form of protection is inserting the information redundancy. The nature provided this
redundancy via a simple repetition, whereby DNA comprises two complementary strands,
so the data are “doubled”.

During the replication stage, the DNA strands are separated, and the DNA polymerase
enzyme begins to act on each nucleotide, generating its complement. Several types of errors
can occur. The first type is a substitution error when the wrong nucleotide is generated,
either if an added nucleotide is in a rare form (tautomer) or if the nucleotide is slightly
shifted (wobble). The second type of error is strand slippage, when either existing or newly
synthesized strands make a loop, causing the deletion of an existing nucleotide or the
insertion of a non-existing nucleotide [40]. Both of these errors have their counterparts
in communication data transmission. The first one is simply an error. The second one is
known as a “cycle-slip”; if the clock rate at the receiver is too high or too low, additional
symbols would be inserted or some of the received symbols would be “missed”.

In the process of DNA replication, DNA polymerase makes a mistake once in every
100,000 nucleotides. Knowing that one cell can contain up to 6 billion pairs of nucleotides,
up to 120,000 errors are generated during just one cell division [40].

Errors are corrected by the DNA polymerase itself in a procedure called “proofread-
ing”, which recognizes irregular strand bonding and removes errors based on informational
redundancy in chemical compounds. Thus, about 99% of errors are removed. This is insuf-
ficient. Residual errors are subject to the second level of error correction, “mismatch repair”,
where several different enzymes look at the entire DNA structure and replace the wrong
nucleotide with the correct one. The residual error after the procedure is about 10−9 [40].

In comparison, an error probability of 10−5, according to standards [41], is considered
a link failure in digital transport systems with a synchronous digital hierarchy (SDH) that
globally carry data via (mostly) optical links. However, there is a difference between the
significance of the residual errors in communication theory and the DNA data transfer.
Communication engineers would be happy to eliminate all the errors, while nature tends to
preserve some of them. Most DNA errors lead to mutations, which usually have a negative
connotation but also provide genetic variability that is a prerequisite to evolution.

Another form of error control coding occurs at a higher hierarchical level. Nature
performs the unequal error control of amino acids, coding all but two of them by two,
three, four, or six different codons. For example, the amino acid alanine is coded by codons
GCU, GCC, GCA, and GCG. A tautomeric error translates A to C, so GCA becomes GCC.
However, both GCA and GCC are codewords for alanine, so even if the error at the first
level at DNA replication is not corrected, the gene for this protein remains the same.

4.3. Cryptography

One-way functions, in the context of communications and cryptography, are mathe-
matical functions that are easy to compute in one direction but difficult to reverse. In [42]
(p. 193), it is said that the existence of one-way functions is equivalent to the existence of all
(non-trivial) private-key cryptography, and this constitutes one of the major contributions
of modern cryptography. As a simplest example, it is easy to compute a product of two
integers, but, given a product, its factorization in the integer ring is not easy. They are also
related to the ciphers with an asymmetric (public) key [43], which are considered one of
the most significant breakthroughs in the history of world cryptography [34].

The information on proteins is protected on the principle of one-way function. Map-
ping the codon to an amino acid is easy, but reverse mapping is not. From the previous
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section, it is obvious that the same amino acid is mapped from different codons (Figure 2).
A simple example reveals that if there were 100 amino acids per protein, formed by only
two different codons each, there would be 2100 ≈ 1030 different possibilities to generate the
same protein. It is not clear, however, if such protection is unintentional but accidentally
achieved as a consequence of unequal error protection or if nature has designed it with a
true security purpose and, if so, against whom.

The reverse problem is the human-designed protection of DNA data. The need exists
because silicon-based storage media are expected to outstrip available resources. The
solution already taken from nature is DNA storage that is rapidly developing [44]. Stored
data require protection, so efforts are aimed at designing a cryptography system targeted
for data with DNA molecular structures [45,46], implementing a one-time pad system that
is more feasible in DNA than in classical systems [47], and creating a system based on
the characteristics of DNA molecules [48,49]. Such systems are expected to potentially
complement traditional and quantum cryptography [50].

4.4. Compression

Although the number of nucleotides that define the genome is impressive and provides
a considerable data storage, nature has made savings possible. Contrary to the destructive
compression of small-scale transmission, in the case of DNA, the compression must be
non-destructive (lossless). Such a compression reduces the necessary resources while
retaining the same amount of information. It is achieved by “folding” individual genes,
using the same nucleotides of the DNA strand to code for different genes. This is especially
characteristic of viruses because their genomes are small, but all the same, they must store
a lot of data [51,52]. This also occurs in the human genome where 774 overlapping gene
pairs have been found [33].

Figure 3a shows the start of two different genes in the same DNA strand [36]. Both
genes use the same nucleotides, but the corresponding codons are organized differently.
A codon consists of three nucleotides, so there are three possible starting positions. In
the example shown in Figure 3a, the beginnings of the codons of the two genes are not
synchronized, and the first nucleotide of the codon in the “lower” gene is shifted by one
position relative to the codons in the “upper” gene.
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The same overlap model is applied in the LZ77 (Ziv–Lempel 77) dictionary technique
for non-destructive compression [53]. An example is shown in Figure 3b. Information
already encoded is stored in the dictionary, while information awaiting compression is
stored in the input buffer. Encoding involves finding the input string in the dictionary and
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registering its position and length. In this example, the specific string BCBC is not in the
dictionary. But, its bifix structure [54,55] enables compression since the suffix of the string
that is not in the dictionary overlaps the contents in the input buffer. This overlapping
enables a higher degree of compression (Figure 3b).

However, regarding DNA compression, another problem arose. Advances in DNA
analysis and sequencing caused an exponential increase in genomic data, as shown in [53].
Its storage requires lossless compression. At first, the classical Ziv–Lempel (LZ) compres-
sion algorithm seemed to be sufficient. Then, an algorithm based on statistical evolutionary
models and prediction techniques from lossless binary image compression was introduced.
It outperformed the LZ algorithm by a factor of 1.6 because it was designed and tuned
exclusively for genome data [56].

4.5. Synchronization

Synchronization is a key function of digital systems. In a stream of digital data,
it is almost impossible to find the beginning of the message, unless it is marked by a
synchronization sequence (sync marker). An illustrative example is shown in Figure 4.
Ordinary text is full of sync markers (Figure 4b): “blank” marks the beginning and end of
the word, while capital letters and punctuation signs mark the beginning and end of the
sentences. Without those sync markers, ordinary text (Figure 4a) is quite unintelligible.
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In communication transmission systems, data are binary and framed, i.e., the begin-
ning of the stream of data is, without exception, marked by a sync sequence. Data can be
de-multiplexed and read if a sync sequence is found. The end of the data stream need not
be marked as it depends on the protocol.

The stream of DNA data contains the information on the proteins. To replicate the
protein, it is necessary to find the corresponding gene where the data are stored. It is
performed in the “transcription” process and involves finding the exact position of the
gene within the DNA strand. This position is called the “transcription start site” (TSS)
(Figure 5a). The TSS position of the particular gene is preceded by the “promoter region”
that contains the information on the TSS position.

An enzyme RNA polymerase “slides” along the DNA chain until it reaches the start
of the protein gene. This procedure is similar to the serial acquisition of sync markers in
synchronous transport systems. Synchronization has been mostly analyzed in relation to
Escherichia coli bacteria, which is the simplest case [57–60].

However, the promoter region is not too helpful. Its information does not provide
unequivocal instructions on how to find TSS. There are two sync markers in the promoter
region, each comprising six nucleotides (Figure 5a). Contrary to communication systems
where the structure and position of markers are always the same, the position and structure
of sync markers in DNA are not firmly defined. Probabilities of sync nucleotides from
Figure 5a are shown in Figure 5b. The decision that the markers are found is made by
consensus (for this reason, the sync markers are frequently called “consensus” sequences).
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Finding the markers does not mean that the position of TSS is known. The mutual distance
of the two markers is 16, 17, or 18 with a probability of 92%, and the remaining 8%
corresponds to distances of 12, 13, 19, 20, etc.
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Even worse, TSS is located with a probability of 75% at a distance of 7 ± 1 from the
sequence marked with −10. The experiments so far have not found a solution to how the
enzyme can find TSS, given that, in the remaining 25% of cases, distances show larger
deviations, and, to emphasize again, E. Coli is the simplest sample.

From the previous example, it is obvious that the synchronization process for tran-
scription is not performed analogously to synchronization in digital communications. The
synchronization rules are considerably more relaxed when compared to the rigid ITU-T
(International Telecommunication Union—Telecommunication Standardization Sector) rec-
ommendations. However, these relaxed rules have successfully transcribed proteins from
their genes for millions of years, and it would be a challenge to answer “why” this happens.

However, a segment where DNA synchronization outperforms human synchroniza-
tion systems is the sync marker that marks the end of the data stream (i.e., the end of
the frame).

Data frames in computer communication most often comprise a “STOP” byte to mark
the end of the frame. Framing and synchronization in this context are specified by the Open
Systems Interconnection (OSI) model, a reference model of the International Organization
for Standardization. The aforementioned functions belong to the second of seven functional
layers, known as the data link layer.

The stream of information data is without constraints, and the information byte can
be the same as the STOP byte and cause an error in the end of the frame. So, another
redundant byte is inserted to show that the information byte that follows is just incidentally
equal to the STOP byte. This redundant byte should be ignored at the receiver, but if it is
simulated by data bytes, it cannot be ignored, i.e., it should be marked as information by
an additional redundant byte. The complete procedure is known as “byte stuffing” [34].

Nature has avoided byte stuffing. Figure 2 shows STOP codons; any of them unam-
biguously mark the end of the transcription. These codons cannot become amino acids and
cannot falsely mark the end of the transcription.

Sometimes, the translation continues past the stop codon, a phenomenon called “stop-
codon read-through”. This is not a rare occurrence, and it has prompted the adaptive
hypothesis that it is an important regulated mechanism. More recent research has doubted
that such events have biological functions and suggested that most of them are non-
adaptive cellular errors [61]. If this is the case, it would correspond to the communication
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event when channel errors corrupt the STOP byte and the receiver continues to receive
non-informative data.

5. Discussion

This paper outlined some of the transmission and storage problems in living systems.
Some of the solutions are almost equivalent. Some are simple, in particular error control,
which is a simple repetition coding the same information by several codewords. Some did
not fall into the trap that (computer) engineers tripped over. Some are different. But, nature
is diverse, and so the more observant we are and the more we consider its engineering, the
more we shall know about how to think differently and apply them. Nature has worked
for years, and its engineering solutions should be seriously listened to and considered.
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60. Bajić, D.; Stefanović, Č. Krosbifiks analiza sinhronizacije rama DNK sekvenci (in Serbian). Digitalna Obrada Govora i Slike DOGS

2008, 7, 132–136.
61. Li, C.; Zhang, J. Stop-codon read-through arises largely from molecular errors and is generally nonadaptive. PLoS Genet. 2019, 15,

e1008141. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1101/gr.2433104
https://www.ncbi.nlm.nih.gov/pubmed/15520290
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1973.1055064
https://doi.org/10.1109/TCOMM.2011.110711.100607
https://doi.org/10.1109/TIT.2009.2037052
https://doi.org/10.1093/nar/15.5.2343
https://doi.org/10.1007/s00202-007-0062-6
https://doi.org/10.1371/journal.pgen.1008141
https://www.ncbi.nlm.nih.gov/pubmed/31120886

	Introduction 
	Information Theory as a Tool 
	Small-Scale Transmission in the Body: Binary Data 
	Large-Scale Transmission across Space and Time: Quaternary Data 
	DNA-Based Signals 
	Error Control 
	Cryptography 
	Compression 
	Synchronization 

	Discussion 
	References

