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Abstract: Taking into account the complexity of the human brain dynamics, the appropriate charac-
terization of any brain state is a challenge not easily met. Actually, even the discrimination of simple
behavioral tasks, such as resting with eyes closed or eyes open, represents an intricate problem and
many efforts have been and are being made to overcome it. In this work, the aforementioned issue
is carefully addressed by performing multiscale analyses of electroencephalogram records with the
permutation Jensen–Shannon distance. The influence that linear and nonlinear temporal correlations
have on the discrimination is unveiled. Results obtained lead to significant conclusions that help to
achieve an improved distinction between these resting brain states.

Keywords: time series; symbolic analysis; ordinal patterns; permutation entropy; Jensen–Shannon
divergence; permutation Jensen–Shannon distance; EEG records; resting brain states; multiscale
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1. Introduction

In the current era of big data, there is an exponential increase in observed data from
complex signals, and efficient tools to manage this modern deluge of data are intensively
looked for in the time series analysis community. Particularly, the brain is probably the
most paradigmatic example of a complex system with an enormously large number of
neurons (∼1010) and interconnections (∼1014) between them [1]. Emergent collective states
are achieved through the synchronous neuronal activity. The popularization of different
brain recording techniques, such as electroencephalography, magnetoencephalography,
and functional magnetic resonance imaging, has enabled researchers to have free access
to a practically unlimited amount of experimental data sets [2]. It is also true that our
understanding of the functioning of the brain is quite far from being complete. Actually,
despite the relevant progress achieved in recent decades, many aspects of the research in
the field are still in its infancy, and it is widely recognized that to obtain a better handle
on the brain dynamics is one of the most pressing, urgent and challenging issues of our
time [3].

Taking into account that a more thorough comprehension of simple brain conditions
is vital to better understand more complex ones, any step forward on this matter is highly
appreciated. Indeed, it has previously been suggested that the brain at rest can be inter-
preted as a fundamental default mode and that the brain activity during a specific task may
be described in terms of generic properties of the background brain activity [4]. Moreover,
it has been demonstrated that the activity of the brain at rest is affected by neurological
and psychiatric disorders like autism, epilepsy, Parkinson’s disease, schizophrenia, and
obsessive-compulsive disorder [5–8]. In the same line, resting-state EEG measures have also
been shown to be useful for the detection of cognitive decline in mild cognitive impairment
and Alzheimer’s disease [9] and for decoding and predicting cognitive performance [10].
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The influence of the eye’s resting condition (closed/open) on the early detection of Parkin-
son’s disease has been carefully tested in order to determine the most suitable biomarkers
for real-time applications [11]. Likewise, better classification rates are reached in the eyes
open condition in a resting state EEG for the diagnosis of Alzheimer’s disease when using
permutation entropy as a neuromarker [12]. From a more practical perspective, a better
knowledge of the differences between simple resting conditions, such as keeping the eyes
closed (EC) and the eyes open (EO), could also be potentially useful for brain–computer
interfaces. In particular, this may be helpful in enhancing switching mechanisms for assis-
tive technologies (environmental control systems) designed to assist people with severe
disabilities in daily living tasks [13].

Even when the attenuation of the alpha waves over the human posterior cortex in the
EO condition is a well-known recognized fact for almost a century [14], different approaches
have more recently been proposed to obtain an improved discrimination and classification
of these baseline brain states [2,7,15–19]. It has been found, for example, that different
entropy measures (permutation entropy, approximate entropy, multiscale entropy, spatial
permutation entropy) achieve higher values in the EO condition compared with the EC
one [2,16,18,20,21]. This can be explained by the increasing disorder and desynchronization
of brain activity due to visual information receiving and processing [16]. For a similar
reason, there is a differential modulation of the time-reversal symmetry by these two
experimental conditions, and the time irreversibility also increases in the EO resting state
with respect to the EC resting one [7].

It is also worth highlighting here the well-recognized potentiality of the ordinal
pattern-based methodologies for characterizing EEG data. Without being exhaustive, the
first application for detecting the onset of epileptic seizures in intracranial EEG data [22]
and the foundational contributions by Li et al. [23,24] and Keller et al. [25,26] in this regard
deserve to be especially mentioned. The reason for its outstanding performance likely lies
in the robustness of ordinal patterns to the data artefacts and low-frequency perturbations
that usually contaminate EEG records [27].

In this work, a recently introduced ordinal metric tool, the permutation Jensen–
Shannon distance [28], is used to try to unravel the intricacies and interplay of linear
and nonlinear temporal correlations that are inextricably present in any kind of brain
activity. The results obtained prove that the implementation of the aforementioned ordinal
measure on the original resting EEG records and different surrogate realizations generated
from them provide relevant information about the temporal scales and spatial localizations
where these linear and nonlinear components play a significant and non-negligible role.
Consequently, and contrasting with previous studies on the same EEG data set, an enhanced
characterization and discrimination of these simple baseline brain states is achieved.

The rest of the work is structured as follows. In Section 2, the main tool implemented
along this work, namely the permutation Jensen–Shannon distance, is briefly introduced.
After that, a numerical analysis is included in Section 3 to illustrate how linear and nonlinear
components are unveiled through the proposed analysis. Then, in Section 4, the distinction
between EC and EO resting brain states is carefully analyzed. Finally, the main findings
obtained from this study and some open problems are detailed in the last Section 5.

2. Permutation Jensen–Shannon Distance

The permutation Jensen–Shannon distance (PJSD) is an ordinal metric introduced to
quantify the degree of discernability between two arbitrary time series [28]. It has been
shown that, by appropriately choosing the time series taken as a reference, a wide range
of complex phenomena can be handled in a robust way. Thanks to this versatility, the
PJSD represents a useful addition to the complex signals analysis methods. Moreover, this
concept has very recently been generalized to evaluate the heterogeneity of multiple time
series from an ordinal approach [29].

The PJSD is basically based on two constitutive ingredients: the Jensen–Shannon
divergence [30] and the ordinal symbolization proposed by Bandt and Pompe (BP) [31]. The
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Jensen–Shannon divergence is a dissimilarity measure between two arbitrary probability
distributions P = {p1, . . . , pn} and Q = {q1, . . . , qn} given by

DJS(P, Q) = S
(

P + Q
2

)
− 1

2
S(P)− 1

2
S(Q) , (1)

where S is the Shannon entropy function, i.e., S(P) = −∑n
i=1 pi ln pi, and as usual, the

convention 0 ln 0 = 0 is assumed in accordance with its mathematical limit. It is a quantity
bounded between 0 and ln 2. The minimum value is reached when the two distributions
under comparison are identical while the maximum value is obtained whenever their
supports are disjoints (that is, piqi = 0 for i = 1, . . . , n). The Jensen–Shannon diver-
gence stands out for satisfying several desirable mathematical properties: non-negativity
(DJS(P, Q) ≥ 0), identity of indiscernibles (DJS(P, Q) = 0 if and only if P = Q), and symme-
try (DJS(P, Q) = DJS(Q, P)) [30]. In addition, it is also well defined even when pi vanishes
without vanishing qi or vice versa. More importantly, the square root of the Jensen–Shannon
divergence,

[
DJS(P, Q)

]1/2, is a metric since it also satisfies the triangle inequality:[
DJS(P, Q)

]1/2 ≤
[
DJS(P, R)

]1/2
+

[
DJS(R, Q)

]1/2, (2)

with R a third arbitrary probability distribution [32]. Actually, more recently, it has been
shown that

[
DJS(P, Q)

]α for α ∈ (0, 1/2] is also a metric [33]. Extensions of this divergence
to weigh differently the compared distributions and/or to quantify the overall difference
among any finite number of probability distributions are also available. Interpretations and
statistical properties of the Jensen–Shannon divergence have been exhaustively analyzed
by Grosse et al. [34].

The estimation of the Jensen–Shannon distance,
[
DJS(P, Q)

]1/2, between two time
series requires first to know the corresponding probability distributions P and Q associated
with the two time series under analysis. It is, therefore, necessary to map continuous time
series into discrete sequences. For such a purpose, the BP coarse-grained representation [31],
introduced more than 20 years ago, is implemented. This symbolization methodology has
been successfully applied in heterogeneous fields. The main reasons behind this success
are its wide applicability and the fact that the BP discretization method is naturally able to
capture the presence of underlying temporal correlations in the dynamics of the process that
generates the time series. Interested readers are referred to the reviews [35–40] for further
details. The BP recipe for symbolizing a time series can be briefly summarized as follows.
Given a real-valued time series {xt ∈ R, t = 1, . . . , L}, vectors of equally spaced D values
of the form (xs, xs+τ , . . . , xs+(D−1)τ) with s = 1, . . . , L∗ = L − (D − 1)τ are mapped to one
of the D! possible ordinal permutations of the same size that describe the order relation
between these elements. For example, the vector (2.5, 3.7, 1.2) is mapped to the permutation
pattern (2, 3, 1), replacing each element in the original vector by its respective ranking in the
subset. Assigning a symbol πi to each ordinal pattern, the original time series is mapped
to the coarse-graining sequence {ys ∈ ΠD, s = 1, . . . , L∗}, with ΠD = {π1, π2, . . . , πD!}
the set of permutations of length D. Just for illustrative purpose, Π3 = {π1 = (1, 2, 3),
π2 = (1, 3, 2), π3 = (2, 1, 3), π4 = (2, 3, 1), π5 = (3, 1, 2), π6 = (3, 2, 1)}. There are therefore
two parameters which need to be fixed before the method is implemented: the number of
elements in the permutation patterns D (called order or embedding dimension, D ≥ 2 with
D ∈ N) and the time separation between the elements in the subsequence τ (called lag or
embedding delay, τ ∈ N). Consecutive data are considered if τ = 1, while τ−spaced data
samples are analyzed if τ ≥ 2. An associated ordinal probability distribution,

PD,τ
π = {p(πi), i = 1, . . . , D!}, (3)

can then be straightforwardly computed with p(πi) the probability of each ordinal pattern
estimated by its relative frequency of occurrence in the symbolized sequence. Regarding
the selection of the involved parameters, a rule of thumb requires the condition L ≫ D!,
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with L the number of data in the original time series, for a robust estimation of PD,τ
π . It

is also clear that larger values of D offer an improved characterization of the underlying
temporal structures. On the other hand, a value of the lag τ = 1 is often used in discrete
systems and also when the chosen sampling frequency is the optimal one to characterize
the underlying dynamics of continuous systems [38]. However, this arbitrary choice can
lead to erroneous conclusions especially for systems with scale-dependent dynamics [41].
A multiscale analysis, by analyzing how descriptors of the ordinal distribution change with
τ, gives a more complete picture in these instances [42]. Finally, a word of caution when
the number of equalities in the time series is non-negligible. Since the BP recipe is based on
sorted data, it is needed to clarify how they will be handled. This is particularly relevant
when dealing with low-resolution time series. Regarding this issue, it has been shown
that the estimation of the ordinal probability distribution could be significantly biased in
such cases, and that the addition of a small random perturbation mitigates this unwanted
effect [43].

Different statistics can be computed from the resulting permutation probability distri-
bution given in Equation (3). The permutation entropy (PE) [31], which is just defined as
the Shannon entropy of this ordinal distribution,

S
(

PD,τ
π

)
= −

D!

∑
i=1

p(πi) log p(πi), (4)

is undoubtedly the most representative and widely used descriptor. It quantifies the variety
of permutation patterns in the ordinal sequence obtained from a time series. The maximum
value, Smax = log D!, is obtained for a totally random stochastic process (white noise), while
the minimum value, Smin = 0, is reached for a completely regular (monotonically increasing
or decreasing) time series. The normalized permutation entropy H = S

(
PD,τ

π

)
/Smax, such

that 0 ≤ H ≤ 1, is often implemented in practical analysis.
The PJSD is defined as the Jensen–Shannon distance between the ordinal pattern distri-

butions associated with two arbitrary time series,
[

DJS

(
PD,τ1

π , QD,τ2
π

)]1/2
. More precisely,

normalized PJSD values with respect to its upper bound, i.e., (log 2)1/2, are estimated. It
can be used to compare the ordinal mapping between different time series. Numerical and
real data applications included in Ref. [28] confirm its utility for characterizing, classifying
and discriminating different dynamics from the analysis of time series generated by them.
Moreover, its robustness to noise and invariance under scaling of the data make this ordinal
distance especially appropriate for the analysis of experimental signals. When calculating
the PJSD, the order D chosen to implement the BP symbolization recipe should be the same
for both time series in order to have the same number of possible permutation patterns in
the ordinal probability distributions to be compared. However, different lags (τ1 and τ2)
can be potentially selected. This opens up the possibility to contrast the ordinal mappings
of only one or two time series at two different temporal scales.

3. Numerical Analysis

Trying to illustrate how the PJSD can be implemented to unveil linear and nonlinear
underlying dynamics from a time series, a numerically controlled analysis on a toy model is
developed below. More precisely, realizations of the logistic map in the fully chaotic regime,
a paradigmatic example of a nonlinear complex system, are mixed with simulations from a
linear first-order autoregressive AR(1) process according to the following model:

zn = mxn + (1 − m)yn (5)

with xn = 4xn−1(1 − xn−1), yn = αyn−1 + ϵn (ϵt are pseudorandom values drawn from the
standard normal distribution), and m is the fraction of nonlinear dynamics included in the
mixed time series (0 ≤ m ≤ 1). When m = 0 and m = 1, the pure AR(1) and logistic models
are recovered, respectively, while as m goes from 0 to 1, the mixed time series include
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less linear stochastic and more nonlinear deterministic structures. The parameter α of the
AR(1) model should satisfy the condition |α| < 1 to have a stationary process, and larger
correlations and anti-correlations are realized as this parameter moves away from zero in
the positive and negative direction, respectively. The parameter α is fixed to be equal to 0.9
in the present analysis. A similar, but not exactly the same, mixed model has previously
been proposed to evaluate the performance of network tools in statistical tests to detect
weak nonlinearities [44].

Next, surrogate data sets are generated to extract information about the linear and/or
nonlinear nature of the original time series. Particularly, shuffled and Fourier transform
based surrogates are considered in the performed analysis. On the one hand, in the first
generating algorithm, also known as scrambled or random permutation, the surrogate time
series is conducted by shuffling the time order of the original time series and, consequently,
any underlying temporal structure (linear and/or nonlinear) is destroyed. These random-
ized resampled sequences are fully random data that have exactly the same amplitude
distribution as the original time series, and the associated null hypothesis is that the data
under analysis are just uncorrelated noise with an arbitrary amplitude distribution. On
the other hand, with the Fourier transform (FT)-based algorithm, a data sequence with
the same autocorrelation function as the original time series is created by randomizing the
phases of the discrete Fourier transform of the original time series and then computing the
inverse transform [45]. In this way, the linear behavior contained in the original data are
preserved, while the nonlinear temporal structure is fully removed. The null hypothesis is
hence that the data that come from a linear Gaussian process. Some generalizations of the
FT surrogate generation method, such as the amplitude adjusted Fourier transform (AAFT)
and iterative amplitude adjusted Fourier transform (IAAFT), seek to reproduce both the
autocorrelation function and the amplitude distribution of the original data [46]. Interested
readers are referred to Ref. [47] for a thorough review on surrogate data testing.

By estimating the PJSD between the primary time series and its shuffled surrogate
counterpart, the influence that any kind of temporal correlation (linear and nonlinear) has
on the system that generates the original data can be directly measured. Similarly, the
PJSD between the original time series and its FT surrogate quantifies the relevance of the
role played by nonlinearity on the underlying system dynamics. Finally, doing the same,
i.e., estimating the ordinal distance, but between the two surrogate realizations (shuffled
and FT), allows us to quantify the impact that linearity, solely, has on the dynamics. Thus,
these three surrogate-based ordinal distances offer a practical and easy way to identify and
quantify the linear and/or nonlinear nature of a system from the analysis of a time series
generated by it.

Figure 1 shows the results obtained when applying the previously described analysis to
the simple mixed model defined by Equation (5). Mean and standard deviation (as an error
bar) of the PJSD estimations with D ∈ {3, 4, 5, 6} and τ1 = τ2 = τ = 1 from an ensemble of
100 independent realizations with length L = 104 data for the mixed model with α = 0.9 are
depicted as a function of the fraction m. The choice of the lag parameter is plenty justified by
the discrete nature of the toy numerical model. It is important to note that in the simulation
process, both involved signals in the mixed model, i.e., xn and yn, have been standardized
(mean equal to 0 and standard deviation equal to 1) previously to be added, in order to make
the comparison between both dynamics more equitable. The estimated ordinal distances
behave consistently when they are plotted as a function of the fraction of nonlinearity m (m
goes from 0 to 1 with step 0.05). That is, the PJSD between the original time series and its
shuffled surrogate, PJSD(PX , PXSh) (blue curve), that quantifies both, linear and nonlinear,
structures, decreases with m up to reach a minimum value around m∼0.25–0.3. At this
particular fraction value, it is possible to conjecture that there is a maximum interplay
between the linear and nonlinear natures occurring in the mixed model. After it, the
PJSD increases monotonically due to the growing impact of the deterministic nonlinear
dynamics, while the other two proposed ordinal distances that characterize nonlinear and
linear components, i.e., PJSD(PX, PXFT ) (red curve) and PJSD(PXSh , PXFT ) (green curve),
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increases and decreases monotonically with m, respectively, as was expected. Moreover,
these two curves overlap consistently with the more general one that contemplates the effect
of both components: PJSD(PX, PXFT ) ≈ PJSD(PX, PXSh) for m larger than 0.35, whereas
PJSD(PXSh , PXFT ) ≈ PJSD(PX , PXSh) when m is smaller or equal than 0.2. According to these
findings, the linear stochastic and nonlinear deterministic components govern the dynamics
of the mixed model in the ranges [0, 0.2] and [0.4, 1] of m, respectively. A transition region,
where the effect of both components seems to be weakened, happens in the intermediate
range. The PJSD baseline reference resulting from the analysis of a pair of shuffled surrogate
realizations from each model simulation, PJSD(PXSh , PXSh) (black curve), has also been
included to take finite-size effects into consideration. It is clearly evidenced that there exists
a systematic shift or bias that depends on the order D.

Figure 1. Mean and standard deviation (as error bar) of the PJSD estimations with D ∈ {3, 4, 5, 6}
and τ = 1 from an ensemble of 100 independent realizations with length L = 104 data for the
mixed model with parameter α = 0.9. PJSD(PX , PXSh ) (blue curve), PJSD(PX , PXFT ) (red curve),
PJSD(PXSh , PXFT ) (green curve), and PJSD(PXSh , PXSh ) (black curve) are plotted as a function of the
fraction m (m ∈ {0, 0.05, 0.1, . . . , 0.95, 1}). The first ordinal distance characterizes linear and nonlinear
behaviors globally, the second one quantifies just the nonlinear component, the third one measures
linear temporal correlations solely, and, finally, the last ordinal distance is estimated to set a baseline
reference. Results obtained are qualitatively analogous for the different orders D.

Just for the sake of completeness, and taking into account that the PE is the most
representative and established descriptor within the ordinal encoding recipe, Figure 2
shows the behavior of this entropic measure for the mixed model as a function of the
parameter m. Once again, mean and standard deviation (as error bars) for PE estimations
with D ∈ {3, 4, 5, 6} and τ = 1 from the same ensemble of 100 independent realizations for
each value of m are depicted. By comparing Figures 1 and 2, it can be concluded that the
behavior observed for PE is opposed to the one obtained for PJSD(PX, PXSh), achieving a
maximum where the latter reaches a minimum, and increasing and decreasing in the same
range of m in which the ordinal distance between the original time series and its shuffled
surrogate decreases and increases, respectively. Essentially, PE decreases when linear
and/or nonlinear temporal correlations are included in the dynamics. Consequently, PE
and PJSD(PX , PXSh) offer the same qualitative information when they are used to examine
the proposed mixed model. Therefore, PE quantifies the presence of any kind of temporal
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correlation in a global sense, and when implementing it as a statistic, it is not directly
feasible to discriminate between the linear and nonlinear components occurring in the
system dynamics.

Figure 2. Mean and standard deviation (as error bar) of the PE estimations with D ∈ {3, 4, 5, 6}
and τ = 1 from the same ensemble of numerical realizations of the mixed model detailed in
Figure 1. The behavior followed by the PE as a function of the fraction m is opposed to that ob-
served for PJSD(PX , PXSh ). Thus, both measures provide the same qualitative information about the
mixed model.

Previous analysis has been repeated for other values of the correlation parameter α
and, also, for the two aforementioned improved FT surrogate methods (AAFT and IAAFT).
Results obtained are qualitatively and quantitatively similar in the former and latter cases,
respectively. It is worth noting that, when considering other α values, the ordinal distances
that take linear correlations into account (PJSD(PX, PXSh) and PJSD(PXSh , PXFT )) change
accordingly. That is, they increase for low values of m as α moves from 0 to 1.

4. Resting Brain States Characterization

EEG data from 109 healthy subjects in two different states: resting with their eyes
closed and resting with their eyes open have been analyzed. These data are freely available
from PhysioNet [48], and they include a set of 64-channel EEGs sampled at 160 samples
per second from subjects who performed a series of different motor/imagery tasks [49],
including the two baseline runs of resting state conditions, both recorded during a period
of one minute. The EEGs were recorded from 64 electrodes according to the international
10-10 system. Please see https://physionet.org/content/eegmmidb/1.0.0/ (accessed on 31
March 2024) for further details. It is worth remembering here that EEG is a noninvasive
and portable technique able to capture brain electric activity with high temporal resolution.

It is well known that the brain is a multiscale system in which typical rhythmic patterns
are located at specific regions. Actually, a detailed atlas of the natural frequencies of the
human brain at rest have recently been developed [50]. Bearing in mind this inherent spatio-
temporal architecture of the resting human brain, a PJSD analysis per channel varying the
lag τ, i.e., at different time scales, has been performed. The main goal is to simultaneously
look for brain regions and temporal scales that maximize the discrimination between the
two resting states (EC and EO). Moreover, trying to disentangle the influence that linear and
nonlinear temporal correlations have on the discriminative power, an analysis analogous
to the one detailed in the previous section has been carried out.

https://physionet.org/content/eegmmidb/1.0.0/
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Figure 3 shows the results obtained when the PJSD(PX, PXSh) is implemented to dis-
criminate between the EC and EO resting states. Differences in average between the EO
and EC conditions, ⟨PJSD(PX , PXSh)

∣∣
EO⟩ − ⟨PJSD(PX , PXSh)

∣∣
EC⟩, as a function of the chan-

nel and lag τ (τ1 = τ2 = τ ∈ {1, 2, . . . , 50}) are depicted in Figure 3a while p-values (in
logarithmic base 10 scale), calculated by using the Wilcoxon rank sum test, are shown in
Figure 3b. This non-parametric approach can be used to identify significant differences
between two independent samples. The Matlab code ranksum was implemented for such a
purpose (Matlab Version 9.5, R2018b). For further details, interested readers are referred
to https://www.mathworks.com/help/stats/ranksum.html (accessed on 31 March 2024).
Topographic visualizations of these p-values in logarithmic base 10 scale for two specific
lags, τ = 1 and τ = 24, are displayed in Figure 3c and Figure 3d, respectively. Several
interesting conclusions can be drawn from these plots. First, the optimal discrimination
between the EO and EC states are obtained for the occipital electrodes when the EEG
records are mapped with a lag τ = 2, i.e., at a sampling time very close to the original
one (τ = 1). This finding is clearly not surprising in view of the fact that the primary
visual cortex is located in the occipital lobe [2,16]. Additionally, PJSD(PX , PXSh) is lower in
the EO than in the EC condition for low values of the lag τ. Putting this in another way,
temporal correlations (linear and/or nonlinear) are stronger in the latter resting condition
for these temporal scales. However, the situation changes drastically when larger values
of lag (smaller sampling times) are considered since frontal electrodes achieve the lowest
p-values for these temporal scales with larger values of the quantifier in the EO resting state.
This is a much more novel and appealing result, which could be potentially correlated with
the critical role played by the frontal lobe in visual perception [16,51]. Further tests are
obviously required to validate this hypothesis. On the other hand, it is also important to
highlight that the optimal discrimination powers in the frontal channels are not as high as
the one obtained for the occipital ones.

Figure 3. Discrimination of the two resting states, EO and EC, by implementing PJSD(PX , PXSh ) as
discriminative statistic. Results obtained for the raw EEG records when an order D = 6 is chosen for
estimating the ordinal quantifier are depicted. Differences in average between EO and EC resting
conditions and p-values (in logarithmic base 10 scale), calculated by using the Wilcoxon rank sum
test, as a function of the channel and the lag τ (τ ∈ {1, 2, . . . , 50}) are displayed in (a,b), respectively.
Topographic maps of the p-values (in logarithmic base 10 scale) for two specific lags, τ = 1 and
τ = 24, are illustrated in (c,d), respectively.

In order to check if the well-known stronger alpha activity in the eye-closed condition
plays a main role in the previously obtained result, a simple numerical analysis has been
developed. A sine wave with a frequency of 10 Hz was sampled at a sampling rate of

https://www.mathworks.com/help/stats/ranksum.html
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160 Hz and an appropriate fraction of random numbers from a standard normal distribution
was then added to simulate the noise stochastic component. It is worth remembering here
that alpha waves have frequencies from 8 to 12 Hz, approximately. After performing the
same analysis by using PJSD(PX , PXSh) as a discriminative statistic between the simulated
noisy oscillations and fully random dynamics, it has been found that the optimal lag scales
that minimize the p-value are τ = 8, τ = 24 and τ = 40. They coincide with the odd
multiples of the half-period of the sinusoidal waveform. Actually, the improved recognition
of periodicities from periodic dynamics at these particular values of the lag τ has been
carefully confirmed by Bandt by using ordinal autocorrelation functions [52]. Thus, those
are the lag scales in which the alpha rhythm is better resolved, and they consequently
optimize the discrimination between the resting states (please see Figure 3b). There are,
however, other lags for which the distinction is enhanced, and the explanation behind this
better discrimination is not as direct and immediate. Further research that is beyond the
scope of this study is needed to fully understand them.

With the intention to explore the impact that solely nonlinear temporal correlations
have on the distinction between the two resting states, an analogous analysis using the
PJSD(PX , PXFT ) has been developed. Figure 4 shows the results obtained in this case. Frontal
channels have more intense nonlinear correlations in the EO than in the EC resting condition
(Figure 4a), and an enhanced discrimination is found in this brain region practically for
all τ values under consideration (Figure 4b). The lowest p-values, reached for for τ = 2
(Figure 4d), are several orders of magnitude lower than those estimated in the previous
analysis for PJSD(PX, PXSh). This result is of high relevance just because a much more
robust, spatially located discrimination of the resting states is observed. Even when the
reasons behind the presence of stronger nonlinear signatures in the frontal channels for
the EO condition are not clear at all and that an interpretation from a neurophysiological
perspective is highly necessary, leveraging on this heuristic finding, further insights can
be achieved.

Figure 4. The same as in Figure 3 but using PJSD(PX , PXFT ) as the discriminative statistic. In this case,
the topographic map of the p-values (in logarithmic base 10 scale) for τ = 2 is illustrated in (d).

Analogously, PJSD(PXSh , PXFT ) has been implemented as a discriminative statistic to
unveil the role played by linear temporal correlations (solely) in the EO vs. EC conditions.
The main findings are displayed in Figure 5. It is found that channels in the frontal
region of the brain with lag τ ∈ [5, 10] have the highest discrimination powers. Under
these circumstances, linear correlations in the EO resting state are stronger than those in
the EC one. It is also worth noting that this behavior changes in the opposite way, i.e.,
the EO condition has weaker linear correlations than in the EC condition, for occipital
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and some particular frontal channels at small and large τ values, respectively. Indeed,
significant differences between both resting conditions are also achieved in such cases, but
the associated p-values are not the smallest ones.

Figure 5. The same as in Figure 3 but using PJSD(PXSh , PXFT ) as a discriminative statistic. In this case,
the topographic map of the p-values (in logarithmic base 10 scale) for τ = 8 is illustrated in (d).

Finally, and for comparison purposes, Figure 6 illustrates the results obtained when PE
is estimated from the resting EEG raw data. On the one hand, it is found that the behavior
observed when using the PE as discriminative statistic is strongly correlated with that
found for the PJSD(PX , PXSh) (Figure 3), attaining very similar levels of discrimination in
both cases. Once again, as it happens in the numerical analysis developed in Section 3,
both measures, PE and PJSD(PX , PXSh), give essentially the same qualitative information.
On the other hand, by comparing with Figures 4 and 5, it is clear that PJSD(PX , PXFT ) and
PJSD(PXSh , PXFT ) are able to provide useful additional information about the linear and/or
nonlinear temporal structures occurring in the brain resting dynamics. Moreover, temporal
scales and regions of the brain where these components undertake a relevant role are more
robustly identified.

Figure 6. The same as in Figure 3 but using PE as discriminative statistic.
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Throughout all of this section, results obtained for the original EEG records with order
D = 6 are illustrated. However, it is worth remarking here that very similar findings
are obtained for other orders (D = 3, D = 4 and D = 5), and also when a tiny random
perturbation is added to the raw EEGs for breaking equalities. Moreover, it has also been
checked that obtained p-values are qualitatively analogous when other statistical tests, such
as the two-sample t-test or the Welch’s t-test, are applied.

It is clear that the comparison with other nonlinear techniques would be very useful
to evaluate the advantages of the proposed methodology in a more thorough way. Fur-
thermore, in recent years, more powerful ordinal tools have been introduced, such as the
generalized statistical complexity measure based on ordinal transition frequencies instead
of ordinal pattern frequencies [53] and some time irreversibility metrics based on permuta-
tion patterns [54], that can help to reach an enhanced performance in the discrimination
task. However, the results included in this section confirm that the PJSD(PX, PXFT ) and
PJSD(PXSh , PXFT ) offer improved discrimination powers than the PE, which is the most
widely used ordinal measure, by several orders of magnitude. It is then quite reasonable
to conjecture that the multiscale surrogate approach by implementing the PJSD could
overcome some very recently observed limitations of the PE for distinguishing eyes-open
and eyes-closed brain states when the same dataset is analyzed [55].

5. Conclusions

It is unquestionable that spontaneous electroencephalographic brain activity carries
relevant information that can help us to decode complex brain functioning. Hence, a robust
characterization of resting states is a challenge that deserves special consideration and
efforts. In the present work, the focus has been put on discriminating between the EC and
EO states from EEG data of healthy subjects. An improved characterization of these two
apparently trivial brain conditions is a fundamental step towards a better understanding
of more demanding cognitive tasks. By implementing an approach based on the PJSD,
temporal scales and brain channels that optimize the distinction between these two baseline
resting states have been revealed.

Main conclusions obtained from the analyses developed in this work are listed below:

• It is shown that PJSD(PX , PXSh) and PE offer equivalent information. Both measures
quantify linear and nonlinear correlations in a global way. When they are used as a
discriminative tool, occipital and frontal electrodes at low and intermediate/large τ
values, respectively, reach the highest discrimination powers;

• PJSD(PX , PXFT ) unveils the role played by nonlinear correlations solely. When applied
to the EO vs. EC problem, it is found that frontal channels at practically all τ values
under consideration (1 ≤ τ ≤ 50) achieve the most significant differences;

• PJSD(PXSh , PXFT ) characterizes the impact that the presence of linear correlations have
on the dynamics. Frontal channels with lag τ ∈ [5, 10] have the highest discrimination
powers when it is implemented as a quantifier for discriminating the resting EEG data;

• The lowest p-values are obtained for PJSD(PX, PXFT ) in the frontal channels. The
presence of more intense nonlinear correlations in the EO resting condition than in the
EC one in the frontal lobe is the justification for them;

• The differences observed between the baseline resting conditions are much more signifi-
cant, i.e., the associated p-values are several orders of magnitude lower, when linear and
nonlinear correlations are independently considered by estimating PJSD(PXSh , PXFT ) and
PJSD(PX , PXFT ), respectively;

• When contrasted with the results obtained by using the PE, which is the most widely ac-
cepted ordinal benchmark, it is found that the proposed multiscale surrogate method-
ology by estimating the PJSD offers enhanced discrimination powers specially for
channels located in the frontal brain area. It is important to stress that this novel
heuristic finding necessarily deserves further neurophysiological interpretations. This
issue should be addressed in future research;
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• Finally, it is important to warn that the success of the proposed methodology strongly
depends on the appropriate generation of surrogate realizations. In particular, gener-
ating reliable surrogates which only mimic the linear properties of the original data
represents a subtle issue, not easily tackled. The presence of spurious static and/or
dynamic nonlinearities in the supposedly pure linear surrogates could definitely lead
to wrong conclusions [56]. Hence, it would be important to try to confirm the findings
achieved in the resting EEG analysis by using a different approach, not based on
surrogate data sets. This clearly constitutes another very interesting issue to try to
deal with.

Reaching an improved understanding of the underlying mechanisms that govern the
brain dynamics at rest is a fundamental step prior to building more suitable theoretical brain
models. Results obtained evidence that the analysis proposed in this work is a powerful
tool in such a context. It could also be particularly useful for identifying and detecting
potential biomarkers of neurological disorders, and, consequently, it may also provide
important insights about the success of different kinds of treatment strategies. Furthermore,
it is reasonable to hypothesize that other scientific fields could also be significantly benefited
by its implementation. Hence, interested researchers are strongly encouraged to use this
procedure in their field of interest in order to obtain a more comprehensive understanding
of its scope and limitations.

Funding: This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET), Argentina.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The EEG data analyzed in this study are publicly available from
PhysioNet at https://physionet.org/content/eegmmidb/1.0.0/ (accessed on 31 March 2024).

Acknowledgments: L.Z. acknowledges the financial support from Consejo Nacional de Investiga-
ciones Científicas y Técnicas (CONICET), Argentina. The two anonymous reviewers are greatly
acknowledged for their constructive suggestions that helped to improve an earlier version of
the manuscript.

Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalogram
EC Eyes Closed
EO Eyes Open
PJSD Permutation Jensen–Shannon Distance
BP Bandt and Pompe
PE Permutation Entropy
FT Fourier Transform
AR(1) First-order Autoregressive Process
AAFT Amplitude Adjusted Fourier Transform
IAAFT Iterative Amplitude Adjusted Fourier Transform

References
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