
Citation: Liu, Y.; Chen, L.; Chen, Y.;

Ding, J. An Adaptive Sampling

Algorithm with Dynamic Iterative

Probability Adjustment Incorporating

Positional Information. Entropy 2024,

26, 451. https://doi.org/10.3390/

e26060451

Academic Editors: Franz Martin

Rohrhofer and Bernhard C. Geiger

Received: 19 April 2024

Revised: 22 May 2024

Accepted: 23 May 2024

Published: 26 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Adaptive Sampling Algorithm with Dynamic Iterative
Probability Adjustment Incorporating Positional Information
Yanbing Liu , Liping Chen, Yu Chen and Jianwan Ding *

School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430070,
China; d202180319@hust.edu.cn (Y.L.); chenlp@hust.edu.cn (L.C.); d202180318@hust.edu.cn (Y.C.)
* Correspondence: dingjw@hust.edu.cn

Abstract: Physics-informed neural networks (PINNs) have garnered widespread use for solving
a variety of complex partial differential equations (PDEs). Nevertheless, when addressing certain
specific problem types, traditional sampling algorithms still reveal deficiencies in efficiency and
precision. In response, this paper builds upon the progress of adaptive sampling techniques, ad-
dressing the inadequacy of existing algorithms to fully leverage the spatial location information of
sample points, and introduces an innovative adaptive sampling method. This approach incorporates
the Dual Inverse Distance Weighting (DIDW) algorithm, embedding the spatial characteristics of
sampling points within the probability sampling process. Furthermore, it introduces reward factors
derived from reinforcement learning principles to dynamically refine the probability sampling for-
mula. This strategy more effectively captures the essential characteristics of PDEs with each iteration.
We utilize sparsely connected networks and have adjusted the sampling process, which has proven
to effectively reduce the training time. In numerical experiments on fluid mechanics problems, such
as the two-dimensional Burgers’ equation with sharp solutions, pipe flow, flow around a circular
cylinder, lid-driven cavity flow, and Kovasznay flow, our proposed adaptive sampling algorithm
markedly enhances accuracy over conventional PINN methods, validating the algorithm’s efficacy.

Keywords: physics-informed neural networks; adaptive sampling algorithm; Dual Inverse Distance
Weighting; partial differential equations

1. Introduction

The field of fluid mechanics includes numerous partial differential equations (PDEs)
essential for studying fluid dynamics. Computational fluid dynamics (CFD) uses numerical
analysis and data structures to analyze and solve fluid flow problems, incorporating various
numerical solving methods such as the finite element method [1], finite volume method [2],
and spectral methods [3]. Despite significant advancements over recent decades, these
methods often face complexities due to mesh division in practical applications. Utilizing the
capabilities of neural networks as universal function approximators, they become highly
effective for solving complex PDEs [4]. In 2019, Raissi et al. [5] introduced physics-informed
neural networks (PINNs), a deep learning-based innovative approach to solving PDEs
that, unlike traditional numerical methods, are mesh-free and can avoid the complexities
of mesh division. Moreover, unlike other neural network strategies for solving PDEs that
typically depend on extensive data samples, the PINN framework directly incorporates
physical laws into the training process. This approach allows for training without external
data and can accurately predict the physical behavior of fluid motion.

During the training of PINNs, especially when tackling complex systems of PDEs
or scenarios with irregular geometric domains, ensuring model solution accuracy often
necessitates a large number of training samples. Many researchers currently rely on
basic sampling strategies, such as uniform random sampling [6,7] and Latin hypercube
sampling [8], when employing PINNs to solve various physical models. These approaches

Entropy 2024, 26, 451. https://doi.org/10.3390/e26060451 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26060451
https://doi.org/10.3390/e26060451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0005-1703-5204
https://orcid.org/0000-0001-8860-2839
https://doi.org/10.3390/e26060451
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26060451?type=check_update&version=2

Entropy 2024, 26, 451 2 of 21

neglect the importance of sampling optimization as a crucial step for enhancing model
performance, failing to adequately refine critical model areas that significantly influence
solution accuracy. This oversight can result in missing key feature regions during the
sampling process, leading to insufficient precision in model solutions. In response, adaptive
sampling methods have been developed, which intensify sampling in critical areas, such
as solution discontinuity regions or near boundaries—akin to mesh refinement practices
in traditional numerical methods. These methods focus on strategically selecting sample
points, which can better capture the key characteristics and dynamic changes of the solution,
thereby enhancing the efficiency and accuracy of PINN.

Lu et al. [9] introduced DeepXDE, a Python library designed for solving PINNs,
and proposed a residual-based adaptive refinement algorithm, RAR. This algorithm aims
to enhance the initial training set by incorporating sample points with higher residual
values from the solution domain, thereby retraining the PINN’s network parameters
to ensure effective training near sharp solution fronts. Jeremy et al. [10] improved the
PINN’s loss function by integrating gradient information from the partial differential
residuals, in conjunction with the adaptive sampling algorithm RAR, thereby accelerating
the model’s convergence speed and achieving comparable accuracy with fewer residual
points. Gao et al. [11] innovated the sampling process through active learning, calculating
probability values for each residual point and selecting new sample points based on these
probabilities, thus refining the model’s learning focus. Several scholars [12–14] have
proposed adaptive sampling approaches with primary improvements in the selection
of probability sampling formulas, enhancing the efficiency and accuracy of PINNs in
capturing critical solution features. Additionally, some researchers have explored a domain
decomposition approach [15,16], dividing the solution domain into multiple regions and
strategically adding sample points in specific areas to significantly enhance PINN accuracy.
Furthermore, PENG [17] employed node generation techniques [18], similar to the focus
on residual value information in the RAR algorithm, by adding sample points with larger
residual values, although this method is currently limited to two-dimensional solution
spaces. Gu et al. [19] proposed a self-paced learning framework that assigns higher weights
to sample points with larger residuals, thereby facilitating the solution of high-dimensional
PDE problems.

Adaptive sampling is a strategic approach employed during the training of PINNs
to dynamically select or reallocate sample points, aiming to boost the network’s learning
efficiency and accuracy. These methods predominantly leverage residual values, which
are the discrepancies between the network’s predictions and actual system behaviors, as
indicators for redistributing samples. Focusing on areas with high residual values enables
the network to intensify learning in regions that are traditionally challenging to model, thus
elevating the overall model performance. However, relying exclusively on residual values
may prove insufficient for guiding sample selection within complex physical systems.
Incorporating positional information is critical, as it provides a comprehensive view that
captures the spatial intricacies of physical phenomena. This integration refines sampling
algorithms, enabling the network to effectively navigate areas with heightened complexity
or variability, thus enhancing the model’s predictive capabilities and accuracy.

To tackle the challenges previously outlined, we find inspiration in the Dual Inverse
Distance Weighting (DIDW) algorithm [20], traditionally applied in geoscientific contexts.
The essence of the DIDW algorithm lies in its ability to integrate the distance between data
points (D-D) and from data points to potential points (D-P). Furthermore, it employs locally
variable exponents to dynamically adjust the weights of these distances. Our adaptation of
this algorithm for the computational framework of PINNs allows for an enhanced analysis
of distances, not only between data points but also between these points and locations
where predictions are sought. Through the application of locally varying exponents, our
modified DIDW algorithm dynamically adjusts the weighting of these distances, thereby
more accurately reflecting the intricacies of local physical phenomena. This adaptation
enables PINNs to more effectively prioritize areas that are critical to enhancing the model’s

Entropy 2024, 26, 451 3 of 21

prediction accuracy, thereby improving both learning efficiency and predictive performance.
Moreover, to augment the algorithm’s randomness and accelerate convergence, we integrate
principles of reinforcement learning by introducing a private reward factor. This innovative
addition dynamically adjusts the probability density function for each iteration of the
adaptive sampling algorithm, substantially refining the precision of our solution. Through
these enhancements, our approach significantly improves the adaptability and efficacy of
PINNs in capturing complex physical processes.

The structure of this paper is organized as follows: Section 2 introduces the founda-
tional algorithm underlying PINNs. In Section 3, we provide an in-depth explanation of
the Dual Inverse Distance Weighting—Residual-Based Adaptive Refinement (DIDW-RAR)
algorithm, detailing its mechanisms and innovations, and introduce the sparsely connected
network structure used in PINNs. Section 4 is dedicated to validating our model through
its application to a variety of fluid dynamics problems, demonstrating its effectiveness and
versatility. We draw our conclusions in the final section, summarizing the key findings
and contributions of our work. Additionally, we have included a list of abbreviations and
nomenclature in the appendix to facilitate reading.

2. Methods

PINNs combine deep learning with physics to solve complex problems in science
and engineering. PINNs use the power of neural networks to approximate functions and
include physical equations as constraints in the loss function. This approach ensures that
PINNs not only learn from data but also obey physical laws. Originating from Raissi’s
work [4], PINNs are designed to work with partial differential equations as follows:

ut +Nx[u] = 0, x ∈ Ω, t ∈ [0, T],

u(x, 0) = I(x), x ∈ Ω,

u(x, t) = B(x, t), x ∈ ∂Ω, t ∈ [0, T],

(1)

where u(x, t) represents the latent variables that need to be determined, where x and
t denote the spatial and temporal coordinates, respectively. The term ut refers to the
derivative of u with respect to time, and Nx[·] indicates the differential operator in the
equation. The interior and boundary of the solution domain are represented by Ω and
∂Ω, respectively. I(x) and B(x, t) denote the initial and boundary conditions of the partial
differential equation, respectively. Through computation with PINNs, the approximated
value of the latent variable u(x, t) can be obtained as û(x, t; θ), where θ are the neural
network parameters.

In constructing PINNs, fully connected neural networks (FCNNs) are instrumental
in capturing complex nonlinear relationships through dense inter-layer connections. This
capability is especially critical for approximating solutions to PDEs. An FCNN consists
of multiple hierarchical layers, including an input layer, several hidden layers, and an
output layer. In an FCNN, the output of each layer is produced by first calculating a linear
combination of the previous layer’s outputs using weight matrices and bias vectors and
then applying a nonlinear activation function to this linear combination. Assuming the
weight matrix and bias vector for the l-th layer of the neural network are Wl ∈ RNl×Nl−1

and bl ∈ RNl , respectively, the output relationship between adjacent layers can be expressed
as follows:

Ol(X) = ϕl
(

WlO
l−1(X) + bl

)
, 1 ≤ l ≤ L − 1 (2)

Here, Ol(X) represents the output at the l-th layer of the neural network, where X
denotes the input data. We denote the trainable parameters of the neural network by
θ = {Wl , bl}L

l=1, and ϕ(·) represents the activation function, commonly the hyperbolic
tangent function (tanh), in PINNs. Through the aforementioned neural network, an ap-

Entropy 2024, 26, 451 4 of 21

proximate solution to the equation, û(x, t; θ), can be obtained. This approximation is then
substituted into the partial differential equation to construct the residual form as follows:

f (x, t; θ) :=
∂

∂t
û(x, t; θ) +Nx[û(x, t; θ)] (3)

PINNs compute all partial derivatives and differential operators through automatic
differentiation (AD) in PyTorch [21]. The goal is to optimize θ so that the approximated
solution û(x, t; θ) adheres to the specified boundary and initial conditions, while also fulfill-
ing the physical constraints dictated by the PDEs. Accordingly, the PINNs’ loss function is
divided into three main components: constraints from boundary conditions, constraints
from initial conditions, and constraints derived directly from the PDEs themselves. The
specific expression for the loss function is as follows:

Loss(θ; N) := λ f MSEPDE

(
θ; N f

)
+ λb MSEBC(θ; Nb) + λi MSEIC(θ; Ni) (4)

The parameters λ f , λb, and λi represent the weighting coefficients for the different loss

terms, where MSEPDE

(
θ; N f

)
, MSEBC(θ; Nb), and MSEIC(θ; Ni) are defined as follows:

MSEPDE

(
θ; N f

)
=

1∣∣∣N f

∣∣∣
N f

∑
k=1

∥
∂û

(
xk

f , t; θ
)

∂t
+Nx

[
û
(

xk
f , tk

f ; θ
)]

∥2,

MSEBC(θ; Nb) =
1

|Nb|
Nb
∑

k=1
∥ B

(
xk

b, tk
b; θ

)
∥2,

MSEIC(θ; Ni) =
1

|Ni|
Ni
∑

k=1
∥ I

(
xk

i , 0; θ
)
∥2,

(5)

The sets
{

xk
f , tk

f

}N f

k=1
,
{

xk
b, tk

b

}Nb

k=1
, and

{
xk

i

}Ni

k=1
represent the sets of residual, boundary,

and initial training points within the solution domain, respectively, with their correspond-
ing counts being N f , Nb, and Ni. To minimize the loss function Loss(θ; N), we employ
gradient descent algorithms like Adam [22], SGD [23], or L-BFGS [24], aiming to reduce the
loss as much as possible towards zero. PINNs utilize the robust capabilities of FCNNs for
physics-driven learning, enabling the prediction of physical processes even without direct
data, showcasing their significant advantage in handling complex physical scenarios.

Nonetheless, applying FCNNs within PINNs necessitates meticulous design and fine-
tuning of the network architecture, including the choice of activation functions and training
strategies, to maintain the model’s accuracy and numerical stability. This process involves
optimizing the network’s depth and width and carefully balancing the weights among
different residuals in the loss function to ensure adherence to the physical laws. Figure 1
presents a flowchart of the PINN framework. The initial training set is processed through
an FCNN to obtain a latent solution, which is then differentiated using AD to construct the
loss function.

The figure also showcases one research direction in PINNs, namely the adaptive
sampling algorithm. The implementation process is described as follows: as shown by
the red line in Figure 1, the process begins with a PINN trained on an initial sample set.
Subsequently, the admissible sample set is solved using this PINN, and sample points with
larger errors are selected for addition. These additional sample points are then combined
with the original initial sample set for retraining the PINN.

Entropy 2024, 26, 451 5 of 21Entropy 2024, 26, x FOR PEER REVIEW 5 of 22

Figure 1. Schematic of PINN in an adaptive sampling algorithm.

3. Methodology

The adaptive sampling algorithms of PINNs have significantly evolved. In PINNs,

the brief flow of the adaptive sampling algorithm is shown in Figure 1.

Initially, the residual-based adaptive refinement with greed (RAR-G) method aimed

at increasing sampling points in areas with large residuals from PDEs, using a greedy

algorithm to iteratively optimize the distribution of these points. As the technology

evolved, the residual-based adaptive refinement with distribution (RAR-D) method was

proposed, introducing a probability density function (PDF) related to the residuals. This

strategy not only improved the distribution of sampling points but also enhanced the per-

formance and accuracy of PINNs in solving complex PDE problems. Nonetheless, both

RAR-G and RAR-D methods primarily concentrated on the magnitude of residuals with-

out fully accounting for the spatial distribution of sampling points. This oversight could

lead to ignoring the spatial heterogeneity inherent in physical problems, namely the dif-

fering impacts that various spatial regions have on the PDE solutions.

3.1. Dual Inverse Distance Weighting Method

Building on the foundations laid by these sampling algorithms, we propose a novel

strategy that incorporates the spatial information of sampling points. This ensures that the

sampling distribution reflects not only the magnitude of the residuals but also the spatial

characteristics of the solution. Incorporating spatial information is crucial for guiding the

neural network more effectively in learning the solutions to PDEs, especially for problems

with complex boundary conditions or those exhibiting rapid changes in certain areas.

Firstly, we need to compute the corresponding residual value 𝜀(𝒙, 𝑡) = |𝑓(𝒙, 𝑡; 𝜃)| for

every point within the solution domain. After considering the spatial information of the

sampling points, we modify the definition of the probability density function as follows:

𝑤(𝒙, 𝑡) ∝ (𝛽 ∙ 𝜀(𝒙, 𝑡) + 𝛾 ∙ 𝑔(𝒙, 𝑡)) (6)

where 𝜀(𝒙, 𝑡) denotes the physical property indicator, derived from the residual values,

whereas 𝑔(𝒙, 𝑡) represents the spatial location indicator. 𝛽 and 𝛾 are non-negative tuning

Figure 1. Schematic of PINN in an adaptive sampling algorithm.

3. Methodology

The adaptive sampling algorithms of PINNs have significantly evolved. In PINNs,
the brief flow of the adaptive sampling algorithm is shown in Figure 1.

Initially, the residual-based adaptive refinement with greed (RAR-G) method aimed
at increasing sampling points in areas with large residuals from PDEs, using a greedy
algorithm to iteratively optimize the distribution of these points. As the technology evolved,
the residual-based adaptive refinement with distribution (RAR-D) method was proposed,
introducing a probability density function (PDF) related to the residuals. This strategy
not only improved the distribution of sampling points but also enhanced the performance
and accuracy of PINNs in solving complex PDE problems. Nonetheless, both RAR-G
and RAR-D methods primarily concentrated on the magnitude of residuals without fully
accounting for the spatial distribution of sampling points. This oversight could lead to
ignoring the spatial heterogeneity inherent in physical problems, namely the differing
impacts that various spatial regions have on the PDE solutions.

3.1. Dual Inverse Distance Weighting Method

Building on the foundations laid by these sampling algorithms, we propose a novel
strategy that incorporates the spatial information of sampling points. This ensures that the
sampling distribution reflects not only the magnitude of the residuals but also the spatial
characteristics of the solution. Incorporating spatial information is crucial for guiding the
neural network more effectively in learning the solutions to PDEs, especially for problems
with complex boundary conditions or those exhibiting rapid changes in certain areas.

Firstly, we need to compute the corresponding residual value ε(x, t) = | f (x, t; θ)| for
every point within the solution domain. After considering the spatial information of the
sampling points, we modify the definition of the probability density function as follows:

w(x, t) ∝ (β·ε(x, t) + γ·g(x, t)) (6)

where ε(x, t) denotes the physical property indicator, derived from the residual values,
whereas g(x, t) represents the spatial location indicator. β and γ are non-negative tuning

Entropy 2024, 26, 451 6 of 21

coefficients that balance the importance of the physical property indicators and the spatial
location indicators.

We select the DIDW method for the spatial location indicator. This method incorpo-
rates local variability into the weight calculation, adjusting the impact of distances between
data points and between data points and the potential points via locally adaptive exponents.
Such adaptability allows the weights to more accurately reflect the spatial heterogeneity of
the studied phenomenon, offering nuanced control over sampling point selection based
on their spatial context and the physical property distribution within the region. The
implementation process unfolds as follows:

Step 1. Define the Distance Metric

D-P Distance (Data Point to Potential Point Distance): For each potential sampling
point (x, t) and points (xi, ti) within the existing sample set S, calculate the distance di
between them.

D-D Distance (Data Point to Data Point Distance): For every pair of sampling points
(xi, ti) and

(
xj, tj

)
within the existing sample set S, calculate the distance dij between them.

Step 2. Introduce Locally Varying Exponents

Define two locally varying exponents p1(x, t) and p2(x, t), corresponding to the weight
impacts of D-P distance and D-D distance, respectively. These exponents are dynamically
adjusted based on the local attributes of the estimation position (x, t) to better adapt to
the local characteristics of spatial data. Specifically, p1(x, t) is proportional to the gradient
magnitude of the solution, i.e., p1(x, t) = |ûx(x, t; θ)|, and p2(x, t) is proportional to the
rate of change of the solution’s gradient, i.e., p2(x, t) = |ûxx(x, t; θ)|.
Step 3. Calculate Weights

Utilize the DIDW formula to calculate the weight for each potential sampling point:

g(x, t) =
d−p1(x,t)

i ∑n
j=1 dp2(x,t)

ij

∑n
i=1

[
d−p1(x,t)

i ∑n
j=1 dp2(x,t)

ij

] (7)

This formula takes into account both the distance from potential sampling points to
existing sampling points and the distance between sampling points, adjusting their impact
through locally varying exponents. We utilize the K-means clustering algorithm [25] for
selecting potential sampling points, renowned for its simplicity and rapid execution speed.
K-means clustering is performed based on the residual value of each sample point within
the admissible set, thereby determining the set of potential sample points.

3.2. Dynamically Adjusting the Probability Density Function

Using the same probability density function formula for sampling in every iteration
can decelerate the convergence speed of the neural network. To enhance the algorithm’s
global optimization capabilities, randomness is strategically incorporated into the selection
process for new sampling points. Each time a set of admissible points is formed, the normal
sampling process is chosen with a higher probability, while the selection of the admissible
point set in a completely random manner is assigned a lower probability. The strategy
formula is as follows:

xi(k) =

 norm
(
(xs, ts), e1−β(k−1)

)
, ξ < ε

random in[(xmin, tmin), (xmax, tmax)], ξ ≥ ε
(8)

In the formula, norm() generates sample points based on a normal distribution,
where the sampling points selected in the previous round (xs, ts) serve as the mean, and
e1−β(k−1) determines the variance. This setup implies that the larger the residual value
of the sampling points selected in the previous round, the smaller the variance becomes.

Entropy 2024, 26, 451 7 of 21

Consequently, there is a higher probability of selecting the expected value. Furthermore, ξ
represents a random number between 0 and 1, and ε is a factor set manually, typically set
to ε = 0.8. This configuration indicates that the algorithm is 80% likely to employ normal
sampling for generating new admissible domains and has a 20% chance of randomly
creating admissible domains directly within the solution domain.

Inspired by the principles of reinforcement learning, we establish a reward–penalty
factor β(k), which is determined based on the current value of the loss function and its
recorded historical values. This factor dictates the update mechanism for the probability
density function corresponding to each sample point in the current round, thereby influ-
encing the neural network’s learning rate and convergence outcomes. Within a sampling
iteration round, all sample points in the acceptable domain share the same reward factor.
Assuming the current training round is k, the reward–penalty function is demonstrated
as follows:

β(k) = min
(

max
(

0,
Lmean − L(k)
Lmean − Lmin

)
, 1
)

(9)

where Lmean is the average loss function value of the previous s(s < k) rounds, L(k) is the
current value of the loss function, and Lmin is the historical minimum value of the loss
function. From this, it is evident that the value of β(k) is in the range of [0,1], depending on
the relationship among Lmean, Lmin, and L(k), specifically as follows:

(1) L(k) ≥ Lmean: In this case, the currently selected sample points increase the average
loss function value of the recent s rounds, indicating a poorly performing sample set.
Consequently, the value of β(k) will be 0.

(2) Lmean > L(k) > Lmin: Here, the currently selected sample set decreases the average
loss function value of the recent s rounds but does not surpass the historical optimum.
This indicates a relatively well-performing sample set. As per the formula, the value
of β(k) should be in the range of (0, 1). The closer L(k) is to Lmin, the larger the value
of β(k) is.

(3) L(k) ≤ Lmin: In this scenario, the currently selected parameters outperform the
historical optimum, indicating a very well-performing parameter set. According to
the formula, the value of β(k) will be 1.

However, this reward mechanism has inherent flaws. Sharing a single reward factor
across the entire admissible set leads to a significant issue: For regions within the solution
domain that exhibit larger errors, their contribution to reducing the overall loss function is
substantial, resulting in a lower target loss function value for the current round. Conse-
quently, the reward factor will be relatively high. On the other hand, other regions in the
solution domain that have been selected with fewer sample points exert minimal influence
on the target loss function for the current round. This causes the algorithm to continue
rewarding these less effective sample points.

To tackle the issue mentioned, this paper introduces a “private reward factor” mecha-
nism, wherein each parameter is assigned its own distinct reward factor. In this refined
approach, upon identifying the admissible set, a common reward factor γ is derived using
the formula previously discussed. Subsequently, the comprehensive residual value of
each sampling point within the admissible set is calculated independently for both the
current and previous iteration of the neural network. This serves as a criterion to gauge
the performance improvement or decline of individual sampling points. For instance, the
formula for assessing the i-th sampling point is presented as follows:

errk(xi, ti) = wk−1(xi, ti)− wk(xi, ti) (10)

In the formula, wk−1(x, t) denotes the comprehensive residual value within the ad-
missible set for the PINN at round k − 1, and wk(x, t) signifies the comprehensive residual
value in the admissible set for the PINN at round k. Observation reveals that a positive
deviation, erri(k), signifies a beneficial adjustment of the sampling point in the current
round, leading the output of the sigmoid function towards one. On the contrary, a negative

Entropy 2024, 26, 451 8 of 21

deviation suggests an unfavorable selection of the sampling point, driving the sigmoid
function’s output towards zero. Outputs of the sigmoid function for other cases will fall in
the range of (0, 1). This output value from the sigmoid function is defined as the private
reward factor for each sampling point, formulated as

αk(xi, ti) = sigmoid(C · errk(xi, ti)) (11)

where C serves as a control factor that can be adjusted to either amplify or diminish the
impact of individual sample deviations on the reward factor. The final reward factor for
each parameter is obtained by multiplying the private reward factor by the common reward
factor, as shown in the following equation:

βk(xi, ti) = αk(xi, ti) · γ (12)

In practice, the private reward factor functions as a corrective coefficient for the
original reward factor, ensuring that the algorithm does not indiscriminately reward poorly
performing sample points simply because of overall satisfactory performance.

With each sample point assigned a unique reward factor, it can then adjust its own
probability density function based on the designated update strategy. This strategy deter-
mines whether and how to modify the probability density associated with each sample
point in the admissible set for the current round, effectively influencing the chance of
that parameter being chosen in future learning iterations. The formula for this strategy is
outlined as follows:

fk(xi, ti) =αk(wk(xi, ti) + βk(xi, ti)H((xs, ts), (xi, ti))), (xi, ti) ∈ H (13)

The formula provided uses the sample point (xi, ti) within the admissible set H as
an illustration. In the formula, βk(xi, ti) represents the reward factor associated with the
sample point (xi, ti) in the k-th round. Furthermore, H((xs, ts), (xi, ti)) denotes the Gaussian
neighborhood function:

H((xs, ts), (xi, ti)) = ∑n((xs ,ts))

j=1 λe−
((xs ,ts)−(xi ,ti))

2

2σ2 (14)

Here, (xs, ts) symbolizes the newly added sample points selected in the previous
round, while n((xs, ts)) indicates the number of new sample points added in the previous
round. λ and σ represent the amplitude and variance of the Gaussian distribution function,
respectively. These can be described as follows:

λ = gh
(xi ,ti)max−(xi ,ti)min

σ = gw((xi, ti)max − (xi, ti)min)

(15)

Here, gh and gw are parameters designed to control the amplitude and variance of
the Gaussian distribution function, respectively, thus affecting the learning rate of the
algorithm. In this paper, we set gh = gw = 1. Additionally, αk serves as a normalization
factor and is defined as follows:

αk =
1

∑H wk(xi, ti) + βk(xi, ti)H((xs, ts), (xi, ti))
(16)

Based on the content discussed, the complete process of the DIDW-RAR algorithm
(Algorithm 1) can be summarized as follows:

Entropy 2024, 26, 451 9 of 21

Algorithm 1. DIDW-RAR algorithm

Entropy 2024, 26, x FOR PEER REVIEW 9 of 22

Algorithm 1. DIDW-RAR algorithm

Utilize random sampling algorithm to obtain an initial set of sampling points 𝒞

Train the PINN using gradient descent algorithm

Repeat

 Obtain the admissible set 𝒢 from the solution domain using Formula (8)

 Calculate the residual value for each sampling point within the admissible set

 Utilize the K-means clustering algorithm to obtain the potential sampling set ℋ

 Calculate PDF for each point in ℋ, and use it to obtain the new point set 𝒥

 Integrate the new point set 𝒥 into the initial point set 𝒞

 Train the PINN again.

Until the total number of iterations or the total number of residual points reaches the

limit;

3.3. Sparsely Connected Neural Network

Considering that the adaptive sampling algorithm requires multiple trainings of the

neural network, and fully connected networks, due to their large number of parameters,

occupy significant storage space and considerably increase training time, we have opted

to improve PINNs using a sparsely connected neural network.

The specific implementation process is shown in Figure 2. In our network, different

parts employ varying densities of connections. The initial layers use a fully connected de-

sign to capture as many features and complexities from the input data as possible, which

is crucial during the early stages of the model because these stages require the formation

of sufficient abstraction levels for effective learning. In subsequent layers, we imple-

mented sparse connections by applying a masking operation on the weight matrix to re-

duce the number of connections between neurons. Specifically, during weight initializa-

tion, a random mask is generated based on a predefined level of sparsity and applied to

the weight matrix, setting a certain proportion of weight elements to zero. This design

maintains sparsity throughout the training process while significantly reducing storage

and computational demands. The network and the process of implementing sparsity are

illustrated in the diagram.

Figure 2. The implementation process of the sparsely connection neural network.

3.3. Sparsely Connected Neural Network

Considering that the adaptive sampling algorithm requires multiple trainings of the
neural network, and fully connected networks, due to their large number of parameters,
occupy significant storage space and considerably increase training time, we have opted to
improve PINNs using a sparsely connected neural network.

The specific implementation process is shown in Figure 2. In our network, different
parts employ varying densities of connections. The initial layers use a fully connected
design to capture as many features and complexities from the input data as possible,
which is crucial during the early stages of the model because these stages require the
formation of sufficient abstraction levels for effective learning. In subsequent layers,
we implemented sparse connections by applying a masking operation on the weight
matrix to reduce the number of connections between neurons. Specifically, during weight
initialization, a random mask is generated based on a predefined level of sparsity and
applied to the weight matrix, setting a certain proportion of weight elements to zero. This
design maintains sparsity throughout the training process while significantly reducing
storage and computational demands. The network and the process of implementing
sparsity are illustrated in the diagram.

Entropy 2024, 26, x FOR PEER REVIEW 9 of 22

Algorithm 1. DIDW-RAR algorithm

Utilize random sampling algorithm to obtain an initial set of sampling points 𝒞

Train the PINN using gradient descent algorithm

Repeat

 Obtain the admissible set 𝒢 from the solution domain using Formula (8)

 Calculate the residual value for each sampling point within the admissible set

 Utilize the K-means clustering algorithm to obtain the potential sampling set ℋ

 Calculate PDF for each point in ℋ, and use it to obtain the new point set 𝒥

 Integrate the new point set 𝒥 into the initial point set 𝒞

 Train the PINN again.

Until the total number of iterations or the total number of residual points reaches the

limit;

3.3. Sparsely Connected Neural Network

Considering that the adaptive sampling algorithm requires multiple trainings of the

neural network, and fully connected networks, due to their large number of parameters,

occupy significant storage space and considerably increase training time, we have opted

to improve PINNs using a sparsely connected neural network.

The specific implementation process is shown in Figure 2. In our network, different

parts employ varying densities of connections. The initial layers use a fully connected de-

sign to capture as many features and complexities from the input data as possible, which

is crucial during the early stages of the model because these stages require the formation

of sufficient abstraction levels for effective learning. In subsequent layers, we imple-

mented sparse connections by applying a masking operation on the weight matrix to re-

duce the number of connections between neurons. Specifically, during weight initializa-

tion, a random mask is generated based on a predefined level of sparsity and applied to

the weight matrix, setting a certain proportion of weight elements to zero. This design

maintains sparsity throughout the training process while significantly reducing storage

and computational demands. The network and the process of implementing sparsity are

illustrated in the diagram.

Figure 2. The implementation process of the sparsely connection neural network.

By reducing the number of connections, the sparse network significantly reduces the

multiply–add operations during forward and backward propagation, thus lowering the

Figure 2. The implementation process of the sparsely connection neural network.

By reducing the number of connections, the sparse network significantly reduces the
multiply–add operations during forward and backward propagation, thus lowering the
computational resources required for each training iteration, increasing training speed, and
reducing energy consumption. Additionally, sparse connections also decrease the total

Entropy 2024, 26, 451 10 of 21

number of model parameters, directly reducing the memory space required for storing
the parameters.

4. Results

For this paper, to validate the effectiveness of the proposed adaptive sampling al-
gorithm DIDW-RAR in solving partial differential equations, we conducted a series of
numerical experiments. The L2 error metric has been selected due to its ability to quantify
the deviation between the neural network’s predicted output and the true solution. It
allows us to gauge how closely the neural network approximates the solution of the partial
differential equation throughout the learning process. The formula for the relative L2 error
is as follows:

L2 error =

√
∑N

i=1∥u(xi, ti)− û(xi, ti)∥2√
∑N

i=1∥u(xi, ti)∥2
(17)

Here, u(xi, ti) denotes the reference value of the sample point, while û(xi, ti) signifies
the exact value of the sample point, with N representing the total number of sample points.

We select several typical cases, including the two-dimensional Burgers’ equation with
sharp solutions, and the Navier–Stokes equations under various scenarios such as pipe
flow, flow around a circular cylinder, lid-driven cavity flow, and Kovasznay flow. The
following sections will provide a detailed description of the solving process for each case.

4.1. Burgers’ Equation

Burgers’ equation is a nonlinear partial differential equation that models the behavior
of shock waves, commonly encountered in fluid mechanics. It is frequently used to model
turbulence, the dynamics of viscous fluids, and a variety of wave phenomena. For our
initial investigation, we consider the two-dimensional viscous Burgers’ equation, which is
articulated as follows [26]:

ut + uux1 + uux2 = ν(ux1x1 + ux2x2), (x1, x2, t) ∈
(
−10, 10)2 × (0, 10),

u = g, (x1, x2, t) ∈ ∂
(
−10, 10)2 × (0, 10),

u = h, (x1, x2, t) ∈
(
−10, 10)2 × {0},

(18)

In this paper, we investigate the Burgers’ equation with a diffusion coefficient of
v = 0.1. Starting from the exact solution u(x1, x2, t) = (1 + exp((x1 + x2 − 2vt)/2v))−1,
we establish the initial and boundary conditions. Our objective is to approximate the
solution across the entire spatiotemporal domain. For this purpose, we construct a deep
neural network composed of five hidden layers, each containing 50 neurons, and select the
hyperbolic tangent function (tanh) as the activation function. For the distribution of the
test set, we have chosen uniformly distributed grid data of 1000 × 1000 at time snapshots
t = 2.5 and 5, used to compute the relative L2 error of the prediction results.

At the initial stage of training, we employ a uniformly random sampling algorithm to
select 1000 boundary training points, 500 initial training points, and 5000 internal training
points from the solution domain. Existing adaptive sampling algorithms choose a fixed
number of sample points in each sampling round. To reduce the training time of the model,
we adjust the cyclic sampling process. In our approach, we conduct 50 rounds of sampling.
In the first 20 rounds, we select 50 sample points per round and perform 4000 optimization
steps using the Adam optimizer after each selection. In the subsequent 30 rounds, we
choose 150 sample points per round. Considering that the Adam optimizer can quickly
find a reasonable solution space and the L-BFGS optimizer offers more stable convergence
properties, we conduct 2000 steps of Adam optimization followed by 2000 steps of L-BFGS
optimization after selecting the sample points.

In the experiments conducted for this paper, we utilize the adaptive sampling algo-
rithm; we propose and compare its performance against that of the LHS sampling algorithm.
The corresponding fitting results of the two algorithms are shown in Figure 3. At time

Entropy 2024, 26, 451 11 of 21

snapshot t = 2.5, the relative L2 error of the DIDW-RAR sampling algorithm is 0.0234%.
At time snapshot t = 5, the relative L2 error is 0.0316%. If we use the adaptive sampling
algorithm to improve solution accuracy, it will require a long runtime. Therefore, we have
made modifications to the network structure and the iteration process to minimize the
runtime as much as possible. By using sparsely connected neural networks and modifying
the cyclic sampling process, the computation time is reduced by 27%.

Entropy 2024, 26, x FOR PEER REVIEW 11 of 22

convergence properties, we conduct 2000 steps of Adam optimization followed by 2000

steps of L-BFGS optimization after selecting the sample points.

In the experiments conducted for this paper, we utilize the adaptive sampling algo-

rithm; we propose and compare its performance against that of the LHS sampling algo-

rithm. The corresponding fitting results of the two algorithms are shown in Figure 3. At

time snapshot 𝑡=2.5, the relative L2 error of the DIDW-RAR sampling algorithm is 0.0234%.

At time snapshot 𝑡=5, the relative L2 error is 0.0316%. If we use the adaptive sampling

algorithm to improve solution accuracy, it will require a long runtime. Therefore, we have

made modifications to the network structure and the iteration process to minimize the

runtime as much as possible. By using sparsely connected neural networks and modifying

the cyclic sampling process, the computation time is reduced by 27%.

(a)

Entropy 2024, 26, x FOR PEER REVIEW 12 of 22

(b)

Figure 3. Burgers’ equation: reference velocity, predicted velocity, and absolute point-wise error at

t = 2.5 and t = 5.0. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2. Navier–Stokes Equation

In the realm of fluid mechanics, the Navier–Stokes equations are of paramount im-

portance as they encapsulate the movement of fluid substances and elucidate the core

principles of fluid dynamics. Various fluid phenomena—ranging from advection and flow

around a cylinder to flow in a square cavity—represent distinct instances of the N-S equa-

tions applied within their unique contexts.

For incompressible Navier–Stokes equations, the dimensionless form of the govern-

ing equations is as follows:

{𝒖𝑡 + (𝒖 ⋅ ∇)𝒖 = −∇𝑝 +
1

𝑅𝑒
Δ𝒖 + 𝑓,

∇ ⋅ 𝒖 = 0,
 (19)

where ∇ represents the Nabla operator, 𝒖 = (𝑢1, 𝑢2) is the velocity vector, 𝑝 represents the

pressure of the fluid, 𝑓 denotes a given source term, and 𝑅𝑒 stands for the Reynolds num-

ber.

4.2.1. Pipe Flow

In fluid mechanics research, pipe flow refers to the natural state of fluid movement

in the absence of fixed obstacles, which is of particular significance in the fields of mete-

orology and oceanography, for instance, in analyzing patterns of ocean surface waves or

atmospheric flows. We employ the proposed adaptive sampling algorithm, in conjunction

with PINN, to simulate advection through a cylindrical object. The inlet is characterized

by a uniformly distributed velocity profile, and the outlet is set to zero pressure; non-slip

conditions are applied along the boundaries of the pipe, as shown in Figure 4.

Figure 3. Burgers’ equation: reference velocity, predicted velocity, and absolute point-wise error at
t = 2.5 and t = 5.0. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

Entropy 2024, 26, 451 12 of 21

4.2. Navier–Stokes Equation

In the realm of fluid mechanics, the Navier–Stokes equations are of paramount im-
portance as they encapsulate the movement of fluid substances and elucidate the core
principles of fluid dynamics. Various fluid phenomena—ranging from advection and
flow around a cylinder to flow in a square cavity—represent distinct instances of the N-S
equations applied within their unique contexts.

For incompressible Navier–Stokes equations, the dimensionless form of the governing
equations is as follows: {

ut + (u · ∇)u = −∇p + 1
Re ∆u + f ,

∇ · u = 0,
(19)

where ∇ represents the Nabla operator, u = (u1, u2) is the velocity vector, p represents the
pressure of the fluid, f denotes a given source term, and Re stands for the Reynolds number.

4.2.1. Pipe Flow

In fluid mechanics research, pipe flow refers to the natural state of fluid movement
in the absence of fixed obstacles, which is of particular significance in the fields of mete-
orology and oceanography, for instance, in analyzing patterns of ocean surface waves or
atmospheric flows. We employ the proposed adaptive sampling algorithm, in conjunction
with PINN, to simulate advection through a cylindrical object. The inlet is characterized
by a uniformly distributed velocity profile, and the outlet is set to zero pressure; non-slip
conditions are applied along the boundaries of the pipe, as shown in Figure 4.

Entropy 2024, 26, x FOR PEER REVIEW 13 of 22

Figure 4. Computational model diagram for pipe flow.

During the initial training phase, we select 2000 internal sample points and 500

boundary sample points using uniformly random sampling. Firstly, we conduct 15,000

iterations using the Adam optimizer with a learning rate of 10−4. Subsequently, employ-

ing the DIDW-RAR sampling algorithm, we add 10 sample points to the training set in

each of the first twenty rounds and continue with 4000 iterations using the Adam opti-

mizer. In the last twenty rounds, we add 30 sample points per round, followed by 2000

iterations of Adam optimization and 2000 iterations of L-BFGS optimization. The LHS

sampling algorithm is also utilized for comparison, ensuring its sampling process is con-

sistent with that of the adaptive algorithm. The network configuration comprises a six-

layer fully connected neural network with 50 neurons per layer, using tanh as the activa-

tion function. To evaluate the error between the prediction and the reference solution, a

uniformly distributed grid of 1000 × 1000 points is used.

The fitting results of the two algorithms for the pipe flow are illustrated in Figure 5.

The predicted solutions using the LHS algorithm exhibit relative L2 errors of 23.1% for

variable u, 86% for variable v, and 59.2% for variable p. In comparison, the predicted solu-

tions derived from the DIDW-RAR algorithm demonstrate relative L2 errors of 2.29% for

variable u, 3.37% for variable v, and 1.96% for variable p. Additionally, with our improve-

ments, the training time is reduced by 19%.

(a)

Figure 4. Computational model diagram for pipe flow.

During the initial training phase, we select 2000 internal sample points and
500 boundary sample points using uniformly random sampling. Firstly, we conduct
15,000 iterations using the Adam optimizer with a learning rate of 10−4. Subsequently,
employing the DIDW-RAR sampling algorithm, we add 10 sample points to the training
set in each of the first twenty rounds and continue with 4000 iterations using the Adam
optimizer. In the last twenty rounds, we add 30 sample points per round, followed by
2000 iterations of Adam optimization and 2000 iterations of L-BFGS optimization. The
LHS sampling algorithm is also utilized for comparison, ensuring its sampling process
is consistent with that of the adaptive algorithm. The network configuration comprises
a six-layer fully connected neural network with 50 neurons per layer, using tanh as the
activation function. To evaluate the error between the prediction and the reference solution,
a uniformly distributed grid of 1000 × 1000 points is used.

The fitting results of the two algorithms for the pipe flow are illustrated in Figure 5. The
predicted solutions using the LHS algorithm exhibit relative L2 errors of 23.1% for variable
u, 86% for variable v, and 59.2% for variable p. In comparison, the predicted solutions
derived from the DIDW-RAR algorithm demonstrate relative L2 errors of 2.29% for variable
u, 3.37% for variable v, and 1.96% for variable p. Additionally, with our improvements, the
training time is reduced by 19%.

Entropy 2024, 26, 451 13 of 21

Entropy 2024, 26, x FOR PEER REVIEW 13 of 22

Figure 4. Computational model diagram for pipe flow.

During the initial training phase, we select 2000 internal sample points and 500

boundary sample points using uniformly random sampling. Firstly, we conduct 15,000

iterations using the Adam optimizer with a learning rate of 10−4. Subsequently, employ-

ing the DIDW-RAR sampling algorithm, we add 10 sample points to the training set in

each of the first twenty rounds and continue with 4000 iterations using the Adam opti-

mizer. In the last twenty rounds, we add 30 sample points per round, followed by 2000

iterations of Adam optimization and 2000 iterations of L-BFGS optimization. The LHS

sampling algorithm is also utilized for comparison, ensuring its sampling process is con-

sistent with that of the adaptive algorithm. The network configuration comprises a six-

layer fully connected neural network with 50 neurons per layer, using tanh as the activa-

tion function. To evaluate the error between the prediction and the reference solution, a

uniformly distributed grid of 1000 × 1000 points is used.

The fitting results of the two algorithms for the pipe flow are illustrated in Figure 5.

The predicted solutions using the LHS algorithm exhibit relative L2 errors of 23.1% for

variable u, 86% for variable v, and 59.2% for variable p. In comparison, the predicted solu-

tions derived from the DIDW-RAR algorithm demonstrate relative L2 errors of 2.29% for

variable u, 3.37% for variable v, and 1.96% for variable p. Additionally, with our improve-

ments, the training time is reduced by 19%.

(a)

Entropy 2024, 26, x FOR PEER REVIEW 14 of 22

(b)

Figure 5. Flow around a pipe flow: reference velocity, predicted velocity, and absolute point-wise

error. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.2. Flow around a Circular Cylinder

Flow around a circular cylinder involves the fluid motion patterns, such as water or

air, around a stationary cylindrical body. These flow patterns play a significant role in

engineering domains. For example, in the aerospace field, research on flow around a cyl-

inder helps optimize the design of aircraft to reduce drag; in civil engineering, under-

standing the behavior of fluids flowing around bridge piers is crucial for designing

bridges that can withstand wind and waves. Combining PINNs with the proposed adap-

tive algorithm to solve the laminar and turbulent flow problems around a cylinder, a par-

abolic velocity distribution is adopted at the inlet, while zero pressure is maintained at the

outlet. Non-slip conditions are set at the boundary and inner walls of the cylindrical body,

as shown in Figure 6.

Figure 6. Computational model diagram for flow around a circular cylinder.

In our study, by converting the Navier–Stokes equations into the stream function

formulation, we effectively reduce the number of variables required for a solution from

three to two. This transformation not only simplifies the problem but also significantly

lessens the computational load. Additionally, employing the stream function inherently

Figure 5. Flow around a pipe flow: reference velocity, predicted velocity, and absolute point-wise
error. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.2. Flow around a Circular Cylinder

Flow around a circular cylinder involves the fluid motion patterns, such as water or
air, around a stationary cylindrical body. These flow patterns play a significant role in engi-
neering domains. For example, in the aerospace field, research on flow around a cylinder
helps optimize the design of aircraft to reduce drag; in civil engineering, understanding

Entropy 2024, 26, 451 14 of 21

the behavior of fluids flowing around bridge piers is crucial for designing bridges that
can withstand wind and waves. Combining PINNs with the proposed adaptive algorithm
to solve the laminar and turbulent flow problems around a cylinder, a parabolic velocity
distribution is adopted at the inlet, while zero pressure is maintained at the outlet. Non-slip
conditions are set at the boundary and inner walls of the cylindrical body, as shown in
Figure 6.

Entropy 2024, 26, x FOR PEER REVIEW 14 of 22

(b)

Figure 5. Flow around a pipe flow: reference velocity, predicted velocity, and absolute point-wise

error. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.2. Flow around a Circular Cylinder

Flow around a circular cylinder involves the fluid motion patterns, such as water or

air, around a stationary cylindrical body. These flow patterns play a significant role in

engineering domains. For example, in the aerospace field, research on flow around a cyl-

inder helps optimize the design of aircraft to reduce drag; in civil engineering, under-

standing the behavior of fluids flowing around bridge piers is crucial for designing

bridges that can withstand wind and waves. Combining PINNs with the proposed adap-

tive algorithm to solve the laminar and turbulent flow problems around a cylinder, a par-

abolic velocity distribution is adopted at the inlet, while zero pressure is maintained at the

outlet. Non-slip conditions are set at the boundary and inner walls of the cylindrical body,

as shown in Figure 6.

Figure 6. Computational model diagram for flow around a circular cylinder.

In our study, by converting the Navier–Stokes equations into the stream function

formulation, we effectively reduce the number of variables required for a solution from

three to two. This transformation not only simplifies the problem but also significantly

lessens the computational load. Additionally, employing the stream function inherently

Figure 6. Computational model diagram for flow around a circular cylinder.

In our study, by converting the Navier–Stokes equations into the stream function
formulation, we effectively reduce the number of variables required for a solution from
three to two. This transformation not only simplifies the problem but also significantly
lessens the computational load. Additionally, employing the stream function inherently
satisfies the continuity equation for incompressible flows, thereby diminishing the necessity
to enforce numerous physical constraints during the solving process. The correlation
between the stream function and velocity is established as follows:

u = −∂φ

∂y
, v = −∂φ

∂x
(20)

We use uniformly random sampling to set 200 sample points at the inlet and outlet,
400 sample points on the upper and lower surfaces of the pipe, 200 sample points on the
surface of the cylinder, and 5000 sample points within the solution domain. Initially, the
PINN uses the Adam optimizer, starting with a learning rate of 10−3 for 15,000 iterations
and then adjusting the learning rate to 10−4 for another 15,000 iterations. Subsequently,
we employ the adaptive sampling algorithm DIDW-RAR proposed in this paper for one
hundred iterations. In the first fifty iterations, we add 25 sample points per iteration and
conduct training with 5000 steps using the Adam optimizer. In the last fifty iterations, we
add 75 sample points per iteration and conduct training with 2000 steps of Adam optimiza-
tion followed by 3000 steps of L-BFGS optimization, until a total of 5000 new sample points
is added. To ensure consistency and comparability of the experimental results, the process
of generating sample points also utilized the LHS algorithm, maintaining consistency with
the aforementioned procedure. The relative L2 error is evaluated on a test set consisting of
a uniformly distributed grid of 1100 × 410 points. The results of training with different
sampling algorithms are shown in Figure 7. Using the LHS algorithm, the L2 errors for the
predicted solutions are 1.10% for variable u, 3.75% for variable v, and 6.66% for variable
p. For solutions obtained with the DIDW-RAR algorithm, the corresponding L2 errors are
0.54% for variable u, 1.32% for variable v, and 3.38% for variable p. With our improvements
to the network and training process, the training time is reduced by 13%.

Entropy 2024, 26, 451 15 of 21

Entropy 2024, 26, x FOR PEER REVIEW 15 of 22

satisfies the continuity equation for incompressible flows, thereby diminishing the neces-

sity to enforce numerous physical constraints during the solving process. The correlation

between the stream function and velocity is established as follows:

𝑢 = −
𝜕𝜑

𝜕𝑦
, 𝑣 = −

𝜕𝜑

𝜕𝑥
 (20)

We use uniformly random sampling to set 200 sample points at the inlet and outlet,

400 sample points on the upper and lower surfaces of the pipe, 200 sample points on the

surface of the cylinder, and 5000 sample points within the solution domain. Initially, the

PINN uses the Adam optimizer, starting with a learning rate of 10−3 for 15,000 iterations

and then adjusting the learning rate to 10−4 for another 15,000 iterations. Subsequently,

we employ the adaptive sampling algorithm DIDW-RAR proposed in this paper for one

hundred iterations. In the first fifty iterations, we add 25 sample points per iteration and

conduct training with 5000 steps using the Adam optimizer. In the last fifty iterations, we

add 75 sample points per iteration and conduct training with 2000 steps of Adam optimi-

zation followed by 3000 steps of L-BFGS optimization, until a total of 5000 new sample

points is added. To ensure consistency and comparability of the experimental results, the

process of generating sample points also utilized the LHS algorithm, maintaining con-

sistency with the aforementioned procedure. The relative L2 error is evaluated on a test

set consisting of a uniformly distributed grid of 1100 × 410 points. The results of training

with different sampling algorithms are shown in Figure 7. Using the LHS algorithm, the

L2 errors for the predicted solutions are 1.10% for variable u, 3.75% for variable v, and

6.66% for variable p. For solutions obtained with the DIDW-RAR algorithm, the corre-

sponding L2 errors are 0.54% for variable u, 1.32% for variable v, and 3.38% for variable p.

With our improvements to the network and training process, the training time is reduced

by 13%.

(a)

Entropy 2024, 26, x FOR PEER REVIEW 16 of 22

(b)

Figure 7. Flow around a circular cylinder: reference velocity, predicted velocity, and absolute point-

wise error. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.3. Lid-Driven Cavity Flow

Square cavity flow pertains to the fluid motion within an enclosure defined by four

walls, where typically the top wall is in motion. This seemingly simple model is remarka-

bly capable of demonstrating a vast array of flow phenomena inherent in incompressible

fluids, such as vortices, secondary flows, Taylor–Görtler vortices, fluid bifurcation, insta-

bilities, transient flows, and turbulence. Owing to its comprehensive representation of

fluid dynamics, square cavity flow is frequently utilized to probe a multitude of theoreti-

cal and engineering challenges, finding relevance in fields as diverse as meteorology, nav-

igation, mechanical engineering, and mining. Regarded as a quintessential problem in the

study of incompressible fluid flow, our square cavity flow model is designed with a hori-

zontal velocity imparted exclusively at the top surface, while the other three surfaces

maintain a zero-velocity condition, which is called lid-driven cavity flow. Non-slip condi-

tions are rigorously applied to all walls. The boundary conditions are delineated as fol-

lows:

𝑢(𝑥, 0) = 0, 𝑢(𝑥, 1) = 1, 𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0,

𝑣(𝑥, 0) = 0, 𝑣(𝑥, 1) = 0, 𝑣(0, 𝑦) = 0, 𝑣(1, 𝑦) = 0.
 (21)

The schematic diagram of the lid-driven cavity flow is shown in Figure 8.

Figure 7. Flow around a circular cylinder: reference velocity, predicted velocity, and absolute
point-wise error. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.3. Lid-Driven Cavity Flow

Square cavity flow pertains to the fluid motion within an enclosure defined by four
walls, where typically the top wall is in motion. This seemingly simple model is remarkably
capable of demonstrating a vast array of flow phenomena inherent in incompressible fluids,
such as vortices, secondary flows, Taylor–Görtler vortices, fluid bifurcation, instabilities,
transient flows, and turbulence. Owing to its comprehensive representation of fluid dy-
namics, square cavity flow is frequently utilized to probe a multitude of theoretical and
engineering challenges, finding relevance in fields as diverse as meteorology, navigation,
mechanical engineering, and mining. Regarded as a quintessential problem in the study
of incompressible fluid flow, our square cavity flow model is designed with a horizontal
velocity imparted exclusively at the top surface, while the other three surfaces maintain

Entropy 2024, 26, 451 16 of 21

a zero-velocity condition, which is called lid-driven cavity flow. Non-slip conditions are
rigorously applied to all walls. The boundary conditions are delineated as follows:

u(x, 0) = 0, u(x, 1) = 1, u(0, y) = 0, u(1, y) = 0,

v(x, 0) = 0, v(x, 1) = 0, v(0, y) = 0, v(1, y) = 0.
(21)

The schematic diagram of the lid-driven cavity flow is shown in Figure 8.

Entropy 2024, 26, x FOR PEER REVIEW 16 of 22

(b)

Figure 7. Flow around a circular cylinder: reference velocity, predicted velocity, and absolute point-

wise error. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.3. Lid-Driven Cavity Flow

Square cavity flow pertains to the fluid motion within an enclosure defined by four

walls, where typically the top wall is in motion. This seemingly simple model is remarka-

bly capable of demonstrating a vast array of flow phenomena inherent in incompressible

fluids, such as vortices, secondary flows, Taylor–Görtler vortices, fluid bifurcation, insta-

bilities, transient flows, and turbulence. Owing to its comprehensive representation of

fluid dynamics, square cavity flow is frequently utilized to probe a multitude of theoreti-

cal and engineering challenges, finding relevance in fields as diverse as meteorology, nav-

igation, mechanical engineering, and mining. Regarded as a quintessential problem in the

study of incompressible fluid flow, our square cavity flow model is designed with a hori-

zontal velocity imparted exclusively at the top surface, while the other three surfaces

maintain a zero-velocity condition, which is called lid-driven cavity flow. Non-slip condi-

tions are rigorously applied to all walls. The boundary conditions are delineated as fol-

lows:

𝑢(𝑥, 0) = 0, 𝑢(𝑥, 1) = 1, 𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0,

𝑣(𝑥, 0) = 0, 𝑣(𝑥, 1) = 0, 𝑣(0, 𝑦) = 0, 𝑣(1, 𝑦) = 0.
 (21)

The schematic diagram of the lid-driven cavity flow is shown in Figure 8.

Figure 8. Computational model diagram for lid-driven cavity flow.

To mitigate the influence of boundary conditions on the accuracy of the solution, we
integrate lid-driven velocity boundary conditions as hard constraints during the neural
network’s training phase. The transformation of these conditions into specific equations is
detailed as follows:

u = xy(x − 1)û

v = xy(x − 1)(y − 1)v̂.
(22)

For the implementation of hard constraints with greater ease, our neural network
foregoes the computation using the stream function. Within the computational domain,
we allocate 5000 initial sample points using uniformly random sampling and begin the
training of the PINN with 20,000 Adam optimization steps, followed by 15,000 steps using
the L-BFGS method. Subsequently, we employ the adaptive sampling algorithm proposed
in this paper for two hundred iterations of training. In the first hundred iterations, we
add 20 sample points per iteration and conduct training with 5000 steps using the Adam
optimizer. In the following hundred iterations, we add 60 sample points per iteration and
conduct training with 2000 steps of Adam followed by 3000 steps of L-BFGS, until a total
of 8000 new sample points is added throughout the iterative process. For experimental
consistency and comparability, we also create 5000 initial sample points within the compu-
tational domain using a uniformly random sampling algorithm and conduct 200 iterations.
During each iteration, 40 sample points are randomly selected, following the same training
procedure as that employed by the adaptive sampling algorithm.

We select points from a uniformly distributed 200 × 200 grid as the test set to evaluate
the accuracy of the predicted solution. The prediction outcomes from both the random
and adaptive sampling algorithms are illustrated in Figure 9. The rightmost section of
Figure 9 depicts the point-wise error distribution between the predicted and the reference
solutions. The figure demonstrates the high precision of the algorithm introduced in
this paper for solving the lid-driven cavity flow problem. When the uniformly random
sampling algorithm and the DIDW-RAR sampling algorithm are employed as adaptive
sampling algorithms, the relative L2 errors for velocity are 5.4% and 0.91%, respectively.
The training time is reduced by 19% compared to the general sampling process.

Entropy 2024, 26, 451 17 of 21

Entropy 2024, 26, x FOR PEER REVIEW 17 of 22

Figure 8. Computational model diagram for lid-driven cavity flow.

To mitigate the influence of boundary conditions on the accuracy of the solution, we

integrate lid-driven velocity boundary conditions as hard constraints during the neural

network’s training phase. The transformation of these conditions into specific equations

is detailed as follows:

�̅� = 𝑥𝑦(𝑥 − 1)�̂�

�̅� = 𝑥𝑦(𝑥 − 1)(𝑦 − 1)�̂�.
 (22)

For the implementation of hard constraints with greater ease, our neural network

foregoes the computation using the stream function. Within the computational domain,

we allocate 5000 initial sample points using uniformly random sampling and begin the

training of the PINN with 20,000 Adam optimization steps, followed by 15,000 steps using

the L-BFGS method. Subsequently, we employ the adaptive sampling algorithm proposed

in this paper for two hundred iterations of training. In the first hundred iterations, we add

20 sample points per iteration and conduct training with 5000 steps using the Adam opti-

mizer. In the following hundred iterations, we add 60 sample points per iteration and

conduct training with 2000 steps of Adam followed by 3000 steps of L-BFGS, until a total

of 8000 new sample points is added throughout the iterative process. For experimental

consistency and comparability, we also create 5000 initial sample points within the com-

putational domain using a uniformly random sampling algorithm and conduct 200 itera-

tions. During each iteration, 40 sample points are randomly selected, following the same

training procedure as that employed by the adaptive sampling algorithm.

We select points from a uniformly distributed 200 × 200 grid as the test set to evaluate

the accuracy of the predicted solution. The prediction outcomes from both the random

and adaptive sampling algorithms are illustrated in Figure 9. The rightmost section of

Figure 9 depicts the point-wise error distribution between the predicted and the reference

solutions. The figure demonstrates the high precision of the algorithm introduced in this

paper for solving the lid-driven cavity flow problem. When the uniformly random sam-

pling algorithm and the DIDW-RAR sampling algorithm are employed as adaptive sam-

pling algorithms, the relative L2 errors for velocity are 5.4% and 0.91%, respectively. The

training time is reduced by 19% compared to the general sampling process.

(a)

Entropy 2024, 26, x FOR PEER REVIEW 18 of 22

(b)

Figure 9. Lid-driven cavity flow: reference velocity, predicted velocity, and absolute point-wise er-

ror. (a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.4. Kovasznay Flow

Kovasznay flow finds extensive applications in engineering disciplines, particularly

in aerodynamics, automotive engineering, the energy sector, and ocean engineering. Re-

search on Kovasznay flow holds significant importance in optimizing designs and im-

proving performance in engineering applications, aiding engineers in better understand-

ing and controlling fluid flow behaviors to enhance system efficiency and performance.

We are planning to employ an adaptive sampling algorithm combined with PINN to fit

the Kovasznay flow. The domain for solving is set as [−0.5,1] × [−0.5,1.5]. The analytical

expressions for velocity and pressure in the Kovasznay flow are as follows:

𝑢(𝑥, 𝑦) = 1 − 𝑒𝜆𝑥cos (2𝜋𝑦),

𝜈(𝑥, 𝑦) =
𝜆

2𝜋
𝑒𝜆𝑥sin (2𝜋𝑦),

𝑝(𝑥, 𝑦) =
1

2
(1 − 𝑒2𝜆𝑥),

𝑤ℎ𝑒𝑟𝑒 𝜆 =
1

2𝜈
− √

1

4𝜈2
+ 4𝜋2, 𝜈 =

1

Re
=

1

20
.

 (23)

where 𝜆 = 1 2𝜈⁄ − √1 4𝜈2⁄ + 4𝜋2, 𝜈 = 1 Re⁄ = 1 20⁄ . We use uniformly random sampling

to collect 3000 initial sample points within the solution domain and set 500 initial sample

points at the boundaries. The training process is consistent with that of the lid-driven cav-

ity flow, with the difference being that we only conduct 100 iterations of sampling. The

LHS method is also employed for algorithm comparison. A four-layer fully connected

neural network is utilized, featuring 50 neurons per layer, with the tanh function as the

activation. We select points from a uniformly distributed 1000 × 1000 grid within the so-

lution domain of [−0.5, 1] × [−0.5, 1.5] as the test set to evaluate the error between the pre-

dicted and analytical solutions. The fitting results of the two algorithms are illustrated in

Figure 10. For the predicted solutions obtained using the LHS algorithm, the L2 errors are

0.13% for variable u, 0.43% for variable v, and 0.21% for variable p. In contrast, for the

solutions derived from the DIDW-RAR algorithm, the L2 errors are 0.04% for variable u,

0.12% for variable v, and 0.08% for variable p. With our improvements to the network and

training process, the training time is reduced by 17%.

Figure 9. Lid-driven cavity flow: reference velocity, predicted velocity, and absolute point-wise error.
(a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

4.2.4. Kovasznay Flow

Kovasznay flow finds extensive applications in engineering disciplines, particularly in
aerodynamics, automotive engineering, the energy sector, and ocean engineering. Research
on Kovasznay flow holds significant importance in optimizing designs and improving
performance in engineering applications, aiding engineers in better understanding and
controlling fluid flow behaviors to enhance system efficiency and performance. We are
planning to employ an adaptive sampling algorithm combined with PINN to fit the Kovasz-
nay flow. The domain for solving is set as [−0.5, 1]× [−0.5, 1.5]. The analytical expressions
for velocity and pressure in the Kovasznay flow are as follows:

u(x, y) = 1 − eλxcos(2πy),

ν(x, y) = λ
2π eλxsin(2πy),

p(x, y) = 1
2
(
1 − e2λx),

where λ = 1
2ν −

√
1

4ν2 + 4π2, ν = 1
Re = 1

20 .

(23)

where λ = 1/2ν −
√

1/4ν2 + 4π2, ν = 1/Re = 1/20. We use uniformly random sampling
to collect 3000 initial sample points within the solution domain and set 500 initial sample
points at the boundaries. The training process is consistent with that of the lid-driven cavity
flow, with the difference being that we only conduct 100 iterations of sampling. The LHS
method is also employed for algorithm comparison. A four-layer fully connected neural
network is utilized, featuring 50 neurons per layer, with the tanh function as the activation.
We select points from a uniformly distributed 1000 × 1000 grid within the solution domain
of [−0.5, 1] × [−0.5, 1.5] as the test set to evaluate the error between the predicted and
analytical solutions. The fitting results of the two algorithms are illustrated in Figure 10.
For the predicted solutions obtained using the LHS algorithm, the L2 errors are 0.13% for
variable u, 0.43% for variable v, and 0.21% for variable p. In contrast, for the solutions
derived from the DIDW-RAR algorithm, the L2 errors are 0.04% for variable u, 0.12% for

Entropy 2024, 26, 451 18 of 21

variable v, and 0.08% for variable p. With our improvements to the network and training
process, the training time is reduced by 17%.

Entropy 2024, 26, x FOR PEER REVIEW 19 of 22

(a)

(b)

Figure 10. Kovasznay flow: reference velocity, predicted velocity, and absolute point-wise error. (a)

Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

5. Conclusions

Figure 10. Kovasznay flow: reference velocity, predicted velocity, and absolute point-wise error.
(a) Latin hypercube sampling algorithm; (b) DIDW-RAR sampling algorithm.

Entropy 2024, 26, 451 19 of 21

5. Conclusions

In this paper, we propose an adaptive sampling algorithm for PINNs that synergisti-
cally combines the DIDW algorithm with the attributes of sampling points. This approach
allows for the selection of sample points in accordance with the specific characteristics of
the physical problems to be solved and the spatial distribution of the data. For the first
time, we incorporate the concept of reinforcement learning into the adaptive sampling algo-
rithm by designing a private reward factor for sampling points based on the error during
the iterative process. This innovation modifies the probability sampling formula in each
iteration, introducing randomness to the sampling point selection process and enhancing
the global optimization capabilities of the algorithm. This not only aids in improving the
PINN model’s ability to solve complex physical problems but also effectively increases the
model’s learning efficiency and prediction accuracy, especially in cases of sparse data or
uneven distribution. Moreover, randomness is introduced into the algorithm, influencing
the selection of point generation algorithms in each iteration. To reduce the training time
of the model, we optimized the network structure and improved the sampling process,
measures that have been proven to effectively reduce training time by 10% to 20%.

We have applied the proposed adaptive sampling algorithm, DIDW-RAR, to solve
multiple fluid dynamics problems, including the two-dimensional Burgers’ equation char-
acterized by sharp solutions and various scenarios of the Navier–Stokes equations, such as
pipe flow, flow around a circular cylinder, lid-driven cavity flow, and Kovasznay flow. The
results demonstrate that with the aid of the proposed adaptive sampling algorithm, PINNs
can effectively enhance the accuracy of solutions for the aforementioned problems.

While the PINN model for partial differential equations presented in this paper fea-
tures a loss function with multiple distinct components, our research has not yet explored
the optimal weight balance among these components. It is apparent that the allocation of
weights within the loss function directly influences the network’s learning efficacy and peak
performance. Consequently, our future work will focus on introducing adaptive weight
strategies to precisely calibrate the appropriate weights for each term in the loss function.
Additionally, the existing adaptive sampling algorithms largely depend on the iterative
addition of new sampling points to enhance learning efficiency and predictive accuracy, a
process that necessitates a substantial number of iterations and, therefore, incurs a relatively
high computational cost. Although we have implemented a sparse network and designed
a specialized sampling process, the reduced runtime is still significantly longer than that of
the standard sampling algorithm. To boost efficiency and curtail the required iterations,
we aim to investigate novel strategies for more effective increases in sampling points, such
as devising entirely new mechanisms for generating sampling points. By implementing
these approaches, we aspire to significantly diminish the duration of model training while
preserving accuracy, which will also be a pivotal aspect of our continued research.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L.; software, Y.L., L.C. and J.D.;
validation, Y.L.; formal analysis, Y.L. and Y.C.; investigation, Y.L.; resources, Y.L.; data curation,
Y.L. and L.C.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L., L.C. and
J.D.; visualization, Y.L. and Y.C.; supervision, Y.L.; project administration, L.C. and J.D.; funding
acquisition, L.C. and J.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Key R&D Program of Hubei Province under grant number
2021AAB001.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions, e.g., privacy or ethical.
The data presented in this study are available on request from the corresponding author. The data are
not publicly available due to the Chinese law.

Conflicts of Interest: We declare no conflicts of interest.

Entropy 2024, 26, 451 20 of 21

Abbreviations
The following abbreviations and nomenclature are used in this manuscript:

PINN Physics-Informed Neural Network
CFD Computational Fluid Dynamics
PDE Partial Differential Equation
DIDW Dual Inverse Distance Weighting
D-D Distance Between Data Points
D-P Distance From Data Point to Potential Point
DIDW-RAR Dual Inverse Distance Weighting—Residual-Based Adaptive Refinement
FCNN Fully Connected Neural Networks
AD Automatic Differentiation
PDF Probability Density Function
RAR-G Residual-Based Adaptive Refinement with Greed
RAR-D Residual-Based Adaptive Refinement with Distribution
LHS Latin Hypercube Sampling

References
1. Chai, S.; Zou, Y.; Zhou, C.; Zhao, W. Weak Galerkin finite element methods for a fourth order parabolic equation. Numer. Methods

Partial. Differ. Equ. 2019, 35, 1745–1755. [CrossRef]
2. Yang, C.; Niu, R.; Zhang, P. Numerical analyses of liquid slosh by Finite volume and Lattice Boltzmann methods. Aerosp. Sci.

Technol. 2021, 113, 106681. [CrossRef]
3. Karniadakis, G.; Sherwin, S.J. Spectral/hp Element Methods for Computational Fluid Dynamics; Oxford University Press: New York,

NY, USA, 2005.
4. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review.

Acta Mech. Sin. 2021, 37, 1727–1738. [CrossRef]
5. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
6. Xiang, Z.; Peng, W.; Liu, X.; Yao, W. Self-adaptive loss balanced Physics-informed neural networks. Neurocomputing 2022, 496,

11–34. [CrossRef]
7. Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel physics-informed neural networks via domain decomposition. J. Comput.

Phys. 2021, 447, 110683. [CrossRef]
8. Rao, C.; Sun, H.; Liu, Y. Physics-informed deep learning for incompressible laminar flows. Theor. Appl. Mech. Lett. 2020, 10,

207–212. [CrossRef]
9. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021,

63, 208–228. [CrossRef]
10. Yu, J.; Lu, L.; Meng, X.; Karniadakis, G.E. Gradient-enhanced physics-informed neural networks for forward and inverse PDE

problems. Comput. Methods Appl. Mech. Eng. 2022, 393, 114823. [CrossRef]
11. Gao, W.; Wang, C. Active learning based sampling for high-dimensional nonlinear partial differential equations. J. Comput. Phys.

2023, 475, 111848. [CrossRef]
12. Tang, K.; Wan, X.; Yang, C. DAS: A deep adaptive sampling method for solving partial differential equations. arXiv 2021,

arXiv:2112.14038.
13. Hanna, J.M.; Aguado, J.V.; Comas-Cardona, S.; Askri, R.; Borzacchiello, D. Residual-based adaptivity for two-phase flow

simulation in porous media using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2022, 396, 115100.
[CrossRef]

14. Wu, C.; Zhu, M.; Tan, Q.; Kartha, Y.; Lu, L. A comprehensive study of non-adaptive and residual-based adaptive sampling for
physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2023, 403, 115671. [CrossRef]

15. Zeng, S.; Zhang, Z.; Zou, Q. Adaptive deep neural networks methods for high-dimensional partial differential equations.
J. Comput. Phys. 2022, 463, 111232. [CrossRef]

16. Mao, Z.; Meng, X. Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving
partial differential equations with sharp solutions. Appl. Math. Mech. 2023, 44, 1069–1084. [CrossRef]

17. Peng, W.; Zhou, W.; Zhang, X.; Yao, W.; Liu, Z. Rang: A residual-based adaptive node generation method for physics-informed
neural networks. arXiv 2022, arXiv:2205.01051.

18. Fornberg, B.; Flyer, N. Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 2015, 69,
531–544. [CrossRef]

19. Gu, Y.; Yang, H.; Zhou, C. Selectnet: Self-paced learning for high-dimensional partial differential equations. J. Comput. Phys. 2021,
441, 110444. [CrossRef]

20. Li, Z. An enhanced dual IDW method for high-quality geospatial interpolation. Sci. Rep. 2021, 11, 9903. [CrossRef]

https://doi.org/10.1002/num.22373
https://doi.org/10.1016/j.ast.2021.106681
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.neucom.2022.05.015
https://doi.org/10.1016/j.jcp.2021.110683
https://doi.org/10.1016/j.taml.2020.01.039
https://doi.org/10.1137/19M1274067
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.jcp.2022.111848
https://doi.org/10.1016/j.cma.2022.115100
https://doi.org/10.1016/j.cma.2022.115671
https://doi.org/10.1016/j.jcp.2022.111232
https://doi.org/10.1007/s10483-023-2994-7
https://doi.org/10.1016/j.camwa.2015.01.009
https://doi.org/10.1016/j.jcp.2021.110444
https://doi.org/10.1038/s41598-021-89172-w

Entropy 2024, 26, 451 21 of 21

21. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Marchine
Learn. Res. 2018, 18, 1–43.

22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
23. Newton, D.; Yousefian, F.; Pasupathy, R. Stochastic gradient descent: Recent trends. Recent Adv. Optim. Model. Contemp. Probl.

2018, 193–220.
24. Chang, D.; Sun, S.; Zhang, C. An accelerated linearly convergent stochastic L-BFGS algorithm. IEEE Trans. Neural Netw. Learn.

Syst. 2019, 30, 3338–3346. [CrossRef]
25. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 31, 264–323. [CrossRef]
26. Yang, X.; Ge, Y.; Zhang, L. A class of high-order compact difference schemes for solving the Burgers’ equations. Appl. Math.

Comput. 2019, 358, 394–417. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TNNLS.2019.2891088
https://doi.org/10.1145/331499.331504
https://doi.org/10.1016/j.amc.2019.04.023

	Introduction
	Methods
	Methodology
	Dual Inverse Distance Weighting Method
	Dynamically Adjusting the Probability Density Function
	Sparsely Connected Neural Network

	Results
	Burgers’ Equation
	Navier–Stokes Equation
	Pipe Flow
	Flow around a Circular Cylinder
	Lid-Driven Cavity Flow
	Kovasznay Flow

	Conclusions
	References

