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Abstract: Vibration monitoring and analysis are important methods in wind turbine gearbox fault 
diagnosis, and determining how to extract fault characteristics from the vibration signal is of pri-
mary importance. This paper presents a fault diagnosis approach based on modified hierarchical 
fluctuation dispersion entropy of tan-sigmoid mapping (MHFDE_TANSIG) and northern goshawk 
optimization–support vector machine (NGO–SVM) for wind turbine gearboxes. The tan-sigmoid 
(TANSIG) mapping function replaces the normal cumulative distribution function (NCDF) of the 
hierarchical fluctuation dispersion entropy (HFDE) method. Additionally, the hierarchical decom-
position of the HFDE method is improved, resulting in the proposed MHFDE_TANSIG method. 
The vibration signals of wind turbine gearboxes are analyzed using the MHFDE_TANSIG method 
to extract fault features. The constructed fault feature set is used to intelligently recognize and clas-
sify the fault type of the gearboxes with the NGO–SVM classifier. The fault diagnosis methods based 
on MHFDE_TANSIG and NGO–SVM are applied to the experimental data analysis of gearboxes 
with different operating conditions. The results show that the fault diagnosis model proposed in 
this paper has the best performance with an average accuracy rate of 97.25%. 

Keywords: gear box; fault diagnosis; tan-sigmoid mapping; modified hierarchical fluctuation  
dispersion entropy; support vector machine 
 

1. Introduction 
Wind turbines have become one of the major developments in the global renewable 

energy sector [1].They are widely applied across various countries and regions as a sig-
nificant component of the power supply [2,3]. Wind turbines are subjected to unstable 
working conditions, as well as exposed to high wind speeds, extreme temperatures, hu-
midity, and corrosive climates for long periods of time [4–6]. These factors can cause me-
chanical fatigue and component aging, which can lead to wind turbine failures. The gear-
box, as a complex wind turbine component, is subject to high torque and changing wind 
loads, which is a leading cause of wind turbine malfunction [7]. This paper introduces a 
data-driven intelligent diagnostic approach for identifying vibration faults in wind tur-
bine gearbox vibration signals. 

Complex nonlinear vibration signals in gearboxes can be caused by various failure 
factors, such as damage gears, meshing problems and poor lubrication of gears [8,9]. Lin-
ear signal analysis methods will miss important feature information in fault diagnosis, 
while the use of entropy value analysis methods can better deal with nonlinear signals 
[10,11]. The common entropy methods such as sampling entropy [12], permutation en-
tropy [13], fuzzy entropy [14] and dispersion entropy (DE) [15] are often used to extract 
features from signals. Several scholars have proposed multiscale entropy in order to better 
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capture and describe the complex structure and information in a signal. Multiscale en-
tropy provides a more comprehensive information analysis, which considers the infor-
mation changes under different time scales. Jin et al. [16] proposed a technique for diag-
nosing bearing faults utilizing a composite multivariate multiscale fuzzy entropy that has 
been refined through segmentation and a convolutional neural network. Song et al. [17] 
introduced a defect diagnosis technique that employs variational modal decomposition, 
multiscale entropy, and the Adaboost algorithm. Zhang et al. [18] performed adaptive de-
composition of vibration signals using fast ensemble empirical modal decomposition to 
calculate different scales of DE applied to bearing defect diagnosis. Nevertheless, the 
above methods still have several associated problems. 
(1) The entropy methods mentioned above have inherent flaws. Sampling entropy can 

be a complex and time-consuming process, making it unsuitable for real-time moni-
toring [19]. Fuzzy entropy is also inefficient to calculate [20], while permutation en-
tropy fails to take into account the relationship of magnitudes among amplitudes 
[21]. Although DE overcomes these drawbacks, it only considers the absolute nature 
of the magnitude and cannot assess the volatility of the signal [22].  

(2) Multiscale entropy disregards the high-frequency details found within time series; it 
mainly assesses the low-frequency information [23]. 
This paper introduces fluctuation dispersion entropy (FDE) to solve problem 1 and 

the hierarchical decomposition of time series as a solution to problem 2, in order to elim-
inate the interference of the above problems. 

Azami et al. [24] introduced the concept of FDE. This entropy measure considers the 
volatility of the series, which is more robust to the presence of underlying trends in the 
time series. The method is both computationally efficient and stable as it reduces all pos-
sible dispersion patterns for the same parameters. 

Jang et al. [25] proposed hierarchical entropy as a means of viewing signals from a 
multiscale perspective through hierarchical decomposition. They achieved this by con-
structing a hierarchical method of high- and low-frequency operators. Hierarchical pro-
cessing takes into account all frequency components in the signal, leading to a more com-
prehensive and accurate assessment compared to coarse-grained multiscale processing. 

However, hierarchical processing still has some shortcomings. The sequence length 
is reduced by half with each additional decomposition layer. Shorter time series do not 
provide sufficient information to accurately reflect the characteristics of the primary sig-
nal, leading to a decrease in the stability of the calculation results and a potentially large 
margin of error. As a consequence, the accuracy and reliability of the time series are af-
fected by the traditional hierarchical treatment. Li et al. [26] proposed an improved strat-
ification method to address this issue. The drawbacks of the traditional hierarchical ap-
proach are significantly overcome by defining different averaging operators at different 
levels through moving average and moving difference in the hierarchical process. The 
improved method ensures that the approach is no longer affected by the length of data, 
and its calculation accuracy is greatly improved. 

Mapping the time series into different classes is a crucial part of the FDE, and tradi-
tional entropy algorithms typically utilize the NCDF to achieve this function [27]. How-
ever, the wind turbine working environment has unique characteristics that often contam-
inate the gearbox vibration signal with significant noise [28]. This noise can adversely af-
fect subsequent wind turbine fault diagnosis. Common transfer functions include the log-
sigmoid (LOGSIG), TANSIG, and purelin functions [29]. Among these, the TANSIG func-
tion is less sensitive to small fluctuations in the input, resulting in greater noise resistance 
[30]. Therefore, this paper proposes replacing NCDF in MHFDE with TANSIG mapping. 

Intelligent learning algorithms, especially deep learning methods, have the ability to 
comprehensively investigate the relationships between features, with powerful expressive 
and classification capabilities. Therefore, they are widely used in various fields. In the field 
of fault diagnosis, classification tasks in the diagnostic process commonly use learning 
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algorithms such as support vector machine (SVM) [31], decision trees [32], random forests 
[33], and neural networks [34]. Compared to other intelligent learning algorithms, SVM 
finds the optimal hyperplane by maximizing the spacing between categories, which gives 
it a better ability to generalize to unseen data, making it highly accurate when dealing 
with unknown data. Additionally, it is also relatively computationally efficient for small 
sample datasets. SVM parameters are typically optimized due to the effects of overfitting 
and underfitting, which can enhance classification accuracy. Dehghani et al. [35] proposed 
the northern goshawk optimization (NGO) algorithm in 2021. The NGO algorithm emu-
lates the northern goshawk’s hunting procedure and is characterized by rapid conver-
gence and strong optimization capabilities [36]. This paper utilizes the NGO to optimize 
the kernel function parameters g and penalty coefficient c of SVM. 

This paper proposes a methodology for defect diagnosis in wind turbine gearboxes 
based on MHFDE_TANSIG and NGO–SVM. Firstly, an improved hierarchical method is 
used to reconstruct the subsequence. Then, the traditional DE is replaced by FDE and the 
NCDF is replaced by the TANSIG function. It is used to construct the feature matrices of 
different state signals of the gearbox. Finally, NGO–SVM is employed for classification 
and identification in order to achieve intelligent diagnosis of various gearbox faults. The 
experimental results demonstrate that the approach presented in this article can profi-
ciently detect the faults with a certain level of superiority. 

2. Basic Principle 
2.1. Modified Hierarchical Fluctuation Dispersion Entropy of Tan-Sigmoid Mapping Method 
2.1.1. Fluctuation Dispersion Entropy of Tan-Sigmoid Mapping 

The following are the steps involved in calculating FDE_TANSIG: 
Step 1. The TANSIG function maps the original signal { , 1,2,..., }jx x j N= = , which is 

of length N, to { , 1,2,..., }, (0,1)j jy y j N y= = ⊂ . 

2

2 1
1 xy

e−
= −

+
 (1) 

Step 2. A linear transformation is employed to map the variable y into the specified 
range 1,2,...,c   : 

( 0.5)c
j iz round cy= +  (2) 

where “round” refers to the rounding function, and c represents the number of categories. 
Step 3. The specific calculation process for the embedding vector is as follows: 

{ },
( 1), ,...,

1,2,..., ( 1)

m c m m m
i i i d i m dz z z z

i N m d
+ + −=

= − −
 (3) 

where m is the number of embedding dimensions; and d is the time delay; 

Step 4. Determination of the dispersion pattern 
0 1 1... ( 1,2,..., )

mv v v v cπ
−

=  . If 0
c
iz v=  , 

1 ,...,c
i dz v+ = ( 1) 1

c
i m d mz v+ − −= , and ,m c

iz  z represents the dispersion pattern 
0 1 1... mv v vπ

−
; 

Step 5. Determine the probability that each dispersion pattern 
0 1 1... mv v vπ

−
 exists: 

0 1 1

0 1 1

...
...

( )
( )

( 1)
m

m

v v v
v v v

Num
P

N m d

π
π −

−
=

− −
 (4) 

where 
0 1 1...( )

mv v vNum π
−

 is ,m c
iz  mapping to 

0 1 1... mv v vπ
−

 number of individuals. 
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Step 6. The definition of information entropy specifies that the FDE_TANSIG of a 
signal x is given by 

` ( )
1

0 1 1 0 1 1

(2 1)

1
_ ( , , , ) ( ) ln ( )

m

m m

c

v v v v v vFDE TANSIG x m c d P P
π

π π
−

− −

−

=

= − ⋅∑
 

 (5) 

2.1.2. Modified Hierarchical Fluctuation Dispersion Entropy of Tan-Sigmoid Mapping 
To calculate MHFDE_TANSIG for a specific time series x, follow these steps: 
Step 1. Define two properties of the operator 0Q  and 1Q  as 

1
0 1

(2 ) (2 1) (2 ) (2 1)
( ) , ( ) , 0,1, ,2

2 2
nx j x j x j x j

Q x Q x j −+ + − +
= = =   (6) 

where 12n−  is the length of the operator, n is a positive integer, and 0 ( )Q x  and 1( )Q x  
represent the low-frequency and high-frequency components extracted for the previous 
layer of the signal, respectively. 

Step 2. The matrix form of the kth layer operator j
kQ  should be defined as follows 

when j equals 0 or 1: 







1

1

1 1

2 1

j 2 1

2 1 ( 2 1) ( 2 1)

1 ( 1)0 0 0 0 0 0
2 2

1 ( 1)0 0 0 0 0 0
' 2 2

1 ( 1)0 0 0 0 0 0
2 2

k

k

k k k

j

j

k

j

l l

Q

−

−

− −

−

−

− − + × − +

 −
 
 
 − 

=  
 
 
 −
 
  

 

 



 

 (7) 

Step 3. It is necessary to iteratively use the j
kQ  operator defined above to calculate 

the hierarchical component ,k ex   for each layer during the hierarchical decomposition. 

Additionally, a vector 1 1, , ,k kr r r−    and an integer value 
1
2

k
k p

p
p

q r−

=

= ∑  must be defined, 

where { } { }, 1,2, , 0,1pr p k= ∈  denotes the averaging or differencing operator for the p-

th layer. 
Thus, the stratification component of the q-node on the k-th layer can be represented 

as 

1 1

1 1
, r r rk k

k k
k qx Q Q Q x

−

−= × × × ×
 (8) 

Step 4. Calculate FDE_TANSIG of the subsequence ,k qx  following the steps in Sec-
tion 2.1.1. The final formula is 

( ) ( ),_ , , , , _ , , ,k qMHFDE TANSIG x k m c d FDE TANSIG x m c d=  (9) 

Figure 1 displays the MHFDE_TANSIG flowchart. 
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Time series x

Hierarchical decomposition 
sequence xk,q

Calculate the entropy of the 
xk,q series

q<2k

MHFDE_TANSIG

q=q+1

 
Figure 1. Flowchart of MHFDE_TANSIG. 

2.1.3. Parameters Select 
From the definition of MHFDE_TANSIG in Section 2.1.2, it can be seen that the com-

putational results of this method are affected by a number of factors, including the number 
of decomposition layers k, time delay d, embedding dimension m, classification class c, 
and the time series x itself. Furthermore, the length of time series l exerts a direct influence 
on the time series x. The selection of optimal parameter values can result in enhanced 
performance in entropy value calculations [26]. 

In this study, the configuration of the MHFDE_TANSIG requires manual adjustment 
of five essential parameters: decomposition layers k, the length of time series l, time delay 
d, embedding dimension m, and classification class c.  

The test signals used in this study are white Gaussian noise (WGN) and 1/f noise. 
WGN is a random signal with a Gaussian distribution that is smooth in frequency, while 
1/f noise is not smooth in frequency and its power spectral density has a 1/f relationship 
with frequency. Figure 2 illustrates examples of WGN and 1/f noise. 

The experiments described in this paper were conducted on a computer running 
MATLAB R2022b, which was equipped with a 12th Gen Intel(R) Core(TM) i5-12500H 2.5 
GHz processor (Intel, Santa Clara, CA, USA), 16.0 GB RAM, and Windows 11 operating 
system. Fifty WGN and 1/f noise samples were configured as test signals to calculate the 
MHFDE_TANSIG values under different parameters and their runtime lengths were 
counted, thus evaluating the performance under different parameters. 
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(a) (b) 

Figure 2. Test signals: (a) WGN; (b) 1/f noise. 

(1) Decomposition layers k 
The decomposition layer, denoted by k, represents the number of layers of decompo-

sition in the modified hierarchical processing. In general, this value is typically between 1 
and 5 [37]. 

We recorded the MHFDE_TANSIG at various numbers of decomposition layers k in 
Figure 3 and counted the computation time of the entropy value of each layer at different 
numbers of decomposition layers k as shown in Table 1. This is used to assess the impact 
of k on the stability and properties of MHFDE_TANSIG. The remaining parameters of 
MHFDE_TANSIG are as follows: l = 2048; m = 2; c = 5; d = 1. 

  
(a) (b) 

Figure 3. Different k on MHFDE_TANSIG: (a) WGN; (b) 1/f noise. 

Table 1. Running time for different k. 

Types 
Time (s) 

k = 1 k = 2 k = 3 k = 4 k = 5 
WGN 0.1060  0.2509  0.4522  1.2964  2.0964  

1/f noise 0.0946  0.3488  0.4682  0.9868  2.2760  

According to Figure 3, it can be concluded that the stability of entropy value de-
creases as the number of decomposition layers k increases, resulting in a significant reduc-
tion in computational efficiency. Conversely, the decomposed signal sequence will lack 
sufficient detail to obtain hierarchical components from low to high frequency if k is too 
low. As shown in Table 1, excessive number of k leads to computational inefficiency. 

Therefore, a value of k = 3 is recommended for comprehensive consideration. 
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From the definition of hierarchical processing in Section 2.1.2, the value of the scale 
factor is determined by the number of decomposition levels k. When k = 3, the number of 
scale factors is 32 8= . 

The eight scales resulting from the three-layer decomposition of the original signal 
represent the components of the original signal in different frequency ranges. The subse-
quence under multiple scale factors after layering can more fully reflect the characteristics 
of the original signal under multiple scales compared to the original signal, and can be 
evaluated more comprehensively and accurately. 
(2) The data length l 

Subsequently, the effect of signal length l on the performance of MHFDE_TANSIG 
calculation is discussed. Signal lengths that are either excessively large or excessively 
small can have a detrimental impact on the efficacy of entropy calculations [38]. Therefore, 
the values of l in this study are 512, 1024, 2048, 4096, and 8192. 

The MHFDE_TANSIG performance is tested by analyzing two noise signals for dif-
ferent lengths l of the time series, as shown in Figure 4, to investigate the effect of length. 
We also counted the computation time of the entropy value of each layer at different data 
lengths l, as shown in Table 2. The remaining parameters of MHFDE_TANSIG are as fol-
lows: k = 3; m = 2; c = 5; d = 1. 

  
(a) (b) 

Figure 4. Different l on MHFDE_TANSIG: (a) WGN; (b) 1/f noise. 

Table 2. Running time for different l. 

Types 
Time (s) 

l = 8192 l = 4096 l = 2048 l = 1024 l = 512 
WGN 1.0398 0.7033 0.4681 0.4488 0.3626 

1/f noise 0.9783 0.6958 0.4810 0.4006 0.3793 

Figure 4 shows that the MHFDE has a high degree of overlap on most scales, indicat-
ing insensitivity to data length. However, there is some discrepancy in both the mean and 
error of entropy when the scale factor is 1. Table 3 shows the entropy coefficient of varia-
tion (CV) for different data lengths at a scale factor of 1. 

Table 3. CV for different l. 

Types 
CV 

l = 8196 l = 4096 l = 2048 l = 1024 l = 512 
WGN 0.0439 0.0317 0.0239 0.0187 0.0125 

1/f noise 0.0551 0.0303 0.0276 0.0258 0.0148 
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Table 3 shows that CV decreases as data length increases, indicating that MHFDE 
may be less stable on certain scales with lower data length. As shown in Table 2, excessive 
data length l leads to computational inefficiency. 

Therefore, a value of l = 2048 is recommended for comprehensive consideration. 
(3) Time delay d 

The time delay d in the definition of FDE denotes the time required to reconstruct the 
phase space, which takes values in the range of 1 to 5. 

The correlation performance of MHFDE_TANSIG was validated using two noise sig-
nals with different time delays d as shown in Figure 5, and the computation time was 
statistically calculated as shown in Table 4. The remaining parameters of MHFDE_TAN-
SIG are as follows: l = 2048; m = 2; c = 5; k = 3. 

  
(a) (b) 

Figure 5. Different d on MHFDE_TANSIG: (a) WGN; (b) 1/f noise. 

Table 4. Running time for different d. 

Types 
Time (s) 

d = 1 d = 2 d = 3 d = 4 d = 5 
WGN 0.4548 0.4735 0.4621 0.4634 0.4550 

1/f noise 0.4639 0.4635 0.4701 0.4635 0.4687 

As demonstrated in Figure 5 and Table 4, there are no significant advantages or dis-
advantages of MHFDE with varying time delays d, and there is no significant difference 
in computation time. According to [39], certain signal frequency information may be dis-
regarded when d is greater than 1 and the entropy value becomes less stable as it increases.  

Therefore, a value of d = 1 is recommended for comprehensive consideration. 
(4) Embedding dimension m 

The embedding dimension m is the dimension of the reconstructed phase space in 
the definition of FDE. It typically takes values in the range of 2 to 6 [37]. 

The correlation properties of MHFDE_TANSIG were validated using two noise sig-
nals with different m in Figure 6, and the computation time was statistically calculated as 
shown in Table 5. The remaining parameters of MHFDE_TANSIG are as follows: l = 2048; 
k = 3; c = 5; d = 1. 
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(a) (b) 

Figure 6. Different m on MHFDE_TANSIG: (a) WGN; (b) 1/f noise. 

Table 5. Running time for different m. 

Types 
Time (s) 

m = 2 m = 3 m = 4 m = 5 m = 6 
white 0.4801 0.7227 1.9838 11.4546 109.5944 

1/f 0.4888 0.6912 2.0941 11.3713 125.9975 

Figure 6 shows that the entropy value increases while the stability decreases as m 
increases. Stability of the entropy curve is greatest when m is at its minimum. Table 5 
demonstrates a significant difference in computation time under different embedding di-
mensions, with the fastest computation efficiency when m is the smallest. 

Therefore, a value of m = 2 is recommended for comprehensive consideration. 
(5) Classification class c 

The value of the classification category c indicates the number of dispersion patterns 
present in the definition of FDE. This value is typically within the range of 3 to 7 [37]. 

The correlation performance of MHFDE_TANSIG was validated using two noise sig-
nals with different classification class c as shown in Figure 7, and the computation time 
was statistically calculated as shown in Table 6. The remaining parameters of 
MHFDE_TANSIG are as follows: l = 2048; k = 3; m = 2; d = 1. 

  
(a) (b) 

Figure 7. Different c on MHFDE_TANSIG: (a) WGN; (b) 1/f noise. 

Table 6. Running time for different c. 

Types 
Time (s) 

c = 3 c = 4 c = 5 c = 6 c = 7 
white 0.4598 0.4509 0.4760 0.4781 0.4763 

1/f 0.4669 0.4782 0.4860 0.4762 0.4973 
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From Figure 7 and Table 6, there is no specific category with a significantly superior 
entropy value and computation time. However, the definition of classification class in 
MHFDE_TANSIG states that the value of c indicates the number of dispersion patterns 
present, assuming the other parameters are fixed. A smaller c value could make it chal-
lenging to differentiate between various signal classes, whereas a value that is too large 
could result in reduced noise immunity. 

The value of c = 5 is recommended for comprehensive consideration to ensure a reli-
able trade-off between statistical measures and noise immunity performance. 

2.1.4. Comparison of Different Entropy Methods Based on WGN and 1/f Noise 
The results of MHFDE_TANSIG were compared with those of the unimproved en-

tropy methods using the test signals in Figure 8. The parameters and mapping functions 
of various entropy algorithms are detailed in Table 7. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Different types of entropy value under the test signals. (a) MHFDE_TANSIG; (b) 
MHFDE_LOGSIG; (c) MHFDE; (d) HFDE; (e) MHDE; (f) HDE. 
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Table 7. Parameters and mapping function of different entropy algorithms. 

Entropy Methods Mapping Function Parameters 
MHFDE_TANSIG TANSIG l = 2048, k = 3, d = 1, m = 2, c = 5 
MHFDE_LOGSIG LOGSIG l = 2048, k = 3, d = 1, m = 2, c = 5 

MHFDE NCDF l = 2048, k = 3, d = 1, m = 2, c = 5 
HFDE NCDF l = 2048, k = 3, d = 1, m = 2, c = 5 
MHDE NCDF l = 2048, k = 3, d = 1, m = 2, c = 5 
HDE NCDF l = 2048, k = 3, d = 1, m = 2, c = 5 

FDE shows a higher differentiation of different signals compared to DE from the 
comparison of (c) and (e) (or (d) and (f)) in Figure 8. The comparison of (c) and (d) (or (e) 
and (f)) in Figure 8 illustrates that the modified hierarchical processing has lower error 
values and higher entropy stability compared to the traditional hierarchization. None of 
the three types of methods show crossover in the first four scales based on different map-
ping functions by comparing (a), (b), and (c) in Figure 8. MHFDE_TANSIG has almost no 
overlapping parts in scales 5–8. However, MHFDE has a significant overlap in scale 7, and 
MHFDE_LOGSIG has a significant overlap in both scales 5 and 7. 

2.2. Northern Goshawk Algorithm Optimized Support Vector Machine 
2.2.1. Support Vector Machine 

The SVM learning algorithm uses statistical studies and minimization of structural 
risk to determine an optimal hyperplane that both correctly classifies the samples and 
maximizes their spacing [40]. 

The choice of kernel function is paramount for the category capabilities of SVM. The 
radial basis function requires fewer parameters and exhibits superior performance in clas-
sification tasks in contrast to alternative kernel functions [41]. Below is a definition of the 
function: 

( )
2

2, exp
2

i j
i j

x x
f x x

g

 − = − 
  

 

 (10) 

where g is a parameter that measures the complexity of the Gaussian kernel function. 
In the radial basis function, c and g determine the ability to generalize the model. c 

indicates the preference weights for the two metrics (interval size, categorization accu-
racy) in the direction of adaptation and optimization. g represents the arrangement of the 
sequence once it has been mapped to a new feature space. The support vector machine 
encounters issues with extended training periods and poor accuracy when tackling issues 
related to multiple classifications. The findings of the classification are frequently convo-
luted when handling data with repeating characteristic. Currently, mature kernel function 
parameters are picked using subjective human experience, and, thus, feature some ran-
domness. It is imperative to ensure that kernel functions possess suitable forms and pa-
rameters when dealing with problems in various domains. 

The population optimization algorithm exhibits high efficacy and excellent optimi-
zation effects when applied in optimizing support vector machine parameters. As a result, 
it is extensively used in supporting vector machine algorithm optimization. The northern 
goshawk optimization algorithm demonstrates rapid convergence and formidable opti-
mization abilities. This technique can assist the kernel function in finding the optimal pa-
rameter when combined with the SVM algorithm. It performs a critical role in enhancing 
the training speed and diagnostic accuracy of the SVM algorithm for various fault vibra-
tion signals of wind turbine gearboxes. 
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2.2.2. Northern Goshawk Optimization Algorithm 
The mathematical model used by the NGO algorithm to model the identification and 

pursuit of prey by northern goshawks can be succinctly defined as follows [35]: 
Phase 1. Global search 
During phase 1, the goshawk locks onto prey at random before launching a rapid 

attack. This stage can be considered a global search and can be described using the fol-
lowing mathematical model: 

( )
( )

, , ,, 1
,

, , ,

, ,

, ,
i

i

i j i j i j P inew P
i j

i j i j i j P i

x r p Ix F F
x

x r x p F F





+ −
=

+ − ≥

<
 (11) 

, 1 , 1

, 1

, ,
, ,

new P new P
i i i

i new P
i i i

x F F
X

x F F




<
≥

=  (12) 

Phase 2. Local search 
During phase 2, the prey will make an effort to flee if the goshawk is in close prox-

imity to its prey. The goshawk’s pursuit of the prey will persist to prevent its escape; 
therefore, a local search strategy is employed. The mathematical model for this phase is 
as follows: 

( ), 2
, , ,2 1new P

i j i j i jx x R r x= + −  (13) 
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3. Experimental Analysis 
3.1. Data Acquisition 

The Mechanical Failure Simulation Experiment System (MFS), produced by SQI, of-
fers detailed data on category four gearbox failures. This system is adept at replicating a 
variety of typical malfunctions found in mechanical equipment. It features a modular test 
stand, specifically engineered for simulating prevalent gear and bearing failures observed 
in wind turbine drive systems, thus ensuring both power and reliability. Refer to Figure 9 
for an illustration of the system’s primary elements, which include an elaborate test rig 
for simulating mechanical failures and devices for data gathering. Figure 10 shows the 
gear fault diagnosis research kit, which includes normal state (NOR), missing tooth fault 
(MTF), broken tooth fault (BTF), and surface wear fault (SWF). 

The motor speed was set to 1200 rpm, and the vibration indications obtained from 
the sensors along the y-axis on the planetary gear were chosen to run under no load dur-
ing the experiment. There were four operating conditions tested: NOR; MTF; BTF; and 
SWF. There are 200 samples in the dataset divided into 4 groups, and each group contains 
50 subsamples of 2048 sampling points each. The set of samples for each fault state is seg-
regated into two categories: 35 samples designated for training and 15 for testing in fault 
diagnosis scenarios. (See Table 8). Figure 11 illustrates the waveforms of the vibration in-
dications of the gearbox under four distinct operating conditions. The horizontal coordi-
nate indicates the duration of the captured clip in seconds s, and the vertical coordinate 
shows the vibration acceleration of the gearbox in the unit of gravity acceleration g in 
Figure 11. 
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Figure 9. Mechanical failure simulation experiment system. 

    
(a) (b) (c) (d) 

Figure 10. Four states of gear: (a) normal state; (b) broken tooth fault; (c) missing tooth fault; (d) 
surface wear fault. 

   
(a) (b) 

  
(c) (d) 

Figure 11. Waveform in four states: (a) normal state; (b) broken tooth; (c) missing tooth; (d) surface 
wear. 
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Table 8. Description of the MFS gearbox dataset. 

Types 
Number of Training 

Sets 
Number of Prediction 

Sets 
Working Condition 

(Speed—Load) 
Normal 35 15 1200 rpm—0 Nm 

Broken tooth 35 15 1200 rpm—0 Nm 
Missing tooth 35 15 1200 rpm—0 Nm 
Surface wear 35 15 1200 rpm—0 Nm 

Totality 140 60 1200 rpm—0 Nm 

3.2. Feature Extraction  
The MHFDE_TANSIG and other entropy values for the experimental dataset of 200 

samples were calculated as shown in Figure 12. Figure 6 in Section 2.1.4 displays the pa-
rameters and mapping function of different entropy algorithms. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. Different types of entropy value. (a) MHFDE_TANSIG; (b) MHFDE_LOGSIG; (c) 
MHFDE; (d) HFDE; (e) MHDE; (f) HDE. 
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It is evident that the various mappings of MHFDE are inconsistent in distinguishing 
gearbox conditions upon comparing MHFDE_TANSIG, MHFDE_LOGSIG, and MHFDE. 
There is partial overlap on different scales alternately, and the error is low when using the 
TANSIG or NCDF mapping functions in MHFDE. However, the broken lines undergo 
more obvious aliasing when the mapping function is LOGSIG, indicating that this map-
ping is less effective than TANSIG and NCDF in dealing with the gearbox signal. MHDE, 
HDE, and HFDE exhibit varying degrees of overlap and fluctuation in broken lines across 
different scales. The HDE algorithm, in particular, has a significantly high error rate. This 
highlights the need for optimizing feature entropy expression performance based on fluc-
tuating dispersion entropy and improved hierarchical processing. 

3.3. Intelligent Diagnosis 
As a first step, we use the northern goshawk algorithm to optimize the two key pa-

rameters c and g of SVM, where c is optimized in the range [0.01, 10], g is optimized in the 
range [1, 800], and screening iterations are set to 20. 

We compare particle swarm optimization (PSO), genetic algorithm (GA), and NGO 
to demonstrate the superiority of the NGO algorithm in optimizing SVM classification. 
The population size and iteration number of each algorithm are 5 and 20, respectively, 
and the fitness function is minimizing local sample entropy. 

Figure 13 displays the optimization iteration curves for the three algorithms. 

 
Figure 13. Three algorithms optimize the iteration curve. 

Figure 13 shows that the proposed optimum is reached after six iterations and its 
optimal solution is superior to the other two algorithms, proving the efficiency and per-
formance of NGO in the optimization process. NGO-optimized SVM parameters for c and 
g are 2.037 and 1.485, respectively. NGO–SVM is used to classify defect features derived 
from different entropy methods. The diagnostic results of the SVM test set for intelligent 
diagnostic models are shown in Figure 14. The vertical coordinate in Figure 14 represents 
the forecast result, which is the classification of the prediction set data after the optimized 
model has been trained on the training set. Furthermore, the values 1, 2, 3 and 4 on the 
vertical coordinate represent the four operating conditions of the gearbox: NOR; BTF; 
MTF; and SWF. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. SVM test set diagnostic results. (a) MHFDE_TANSIG; (b) MHFDE_LOGSIG; (c) MHFDE; 
(d) HFDE; (e) MHDE; (f) HDE. 

The diagnostic accuracies of the six entropy methods are as follows: 98.33%; 90%; 
96.67%; 96.67%; 96.67%; and 91.67%, respectively, based on the results presented in Figure 
14. MHFDE_TANSIG has the highest accuracy of all entropy models. It can be seen that 
none of the six entropy algorithms misclassify BTF or classify other faults as BTF from the 
distribution of misclassifications in the diagnostic results, indicating that BTF can be fully 
distinguished from other faults in the feature set of the entropy algorithms. The remaining 
misclassifications are all concentrated between MTF and SWF except that the first three 
entropy methods all misclassify NOR samples into MTF at one time, while only 
MHFDE_TANSIG shows no misclassification between these two types of defect states. It 
can be seen that the proposed method is superior to other entropy methods and can effec-
tively discriminate different fault states of gearboxes. 
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The same fault characteristics extracted in Section 3.2 were entered into the NGO–
SVM model to identify faults ten times, with the objective of evaluating the performance 
of the intelligent diagnostic method and to prevent random interference. Figure 15 illus-
trates the diagnostic outcomes of multiple classifications, while Table 9 provides the max-
imum, minimum, and average accuracy rates. 

 
Figure 15. The diagnostic results of multiple classifications. 

Table 9. Diagnostic accuracy of intelligent diagnostic models. 

Entropy Value 
Accuracy (%) 

Maximum Minimum Average 
MHFDE_TANSIG 100.00 95.00 98.00 
MHFDE_LOGSIG 96.67 88.33 92.00 

MHFDE 98.33 93.33 96.33 
MHDE 100.00 93.33 96.17 
HFDE 100.00 88.33 95.50 
HDE 91.67 80.00 87.17 

The MHFDE_TANSIG intelligent diagnostic model’s maximum, minimum, and av-
erage accuracies are 100%, 95%, and 98%, respectively, according to Table 9. These accu-
racies of the MHFDE_TANSIG intelligent diagnostic model are higher than other intelli-
gent diagnostic models, proving the superiority of this intelligent diagnostic model. 

3.4. Public Gearbox Datasets 
We also selected the Southeast University (SEU) Gear Dataset and the University of 

Connecticut (UConn) Gear Dataset to confirm the superiority of the proposed intelligent 
diagnostic model in addition to the gearbox dataset that we collected ourselves from the 
mechanical failure simulation (MFS) experiment system. 

3.4.1. Southeast University Gear Dataset 
The gearbox dataset was acquired from Southeast University, China. The data were 

acquired from the Driveline Dynamic Simulator, which is a test rig comprising a motor, a 
motor controller, a planetary gearbox, a reduction gearbox, a brake, and a brake controller 
[42]. The test module was fitted with gears exhibiting various failure conditions to gener-
ate experimental data. 
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The motor speed was set to 1800 rpm, and the vibration indications obtained from 
the sensors along the y-axis on the planetary gear were chosen to run with a load of 7.32 
Nm during the experiment. The SEU Gear Dataset tested five operating conditions: 
healthy tooth; chipped tooth; missing tooth; surface fault; and root fault. There are 375 
samples in the dataset, divided into 5 groups, and each group contains 75 subsamples of 
2048 sampling points each. The set of samples for each fault state is segregated into two 
categories: 60 samples designated for training and 15 for testing in fault diagnosis scenar-
ios. (See Table 10). 

Table 10. Description of the SEU gearbox dataset. 

Types 
Number of Training 

Sets 
Number of Prediction 

Sets 
Working Condition 

(Speed—Load) 
Healthy tooth 60 15 1800 rpm—7.32 Nm 
Chipped tooth 60 15 1800 rpm—7.32 Nm 
Missing tooth 60 15 1800 rpm—7.32 Nm 
Surface fault 60 15 1800 rpm—7.32 Nm 

Root fault 60 15 1800 rpm—7.32 Nm 
Totality 300 75 1800 rpm—7.32 Nm 

The MHFDE_TANSIG value and other entropy values were calculated for the 375-
sample SEU Gear Dataset. The same fault characteristics were then entered into the NGO–
SVM model to identify faults ten times. In Figure 16 and Table 11, the diagnostic results 
of multiple classifications are shown. 

 
Figure 16. The diagnostic results of multiple classifications on SEU Data. 

Table 11. Diagnostic accuracy of intelligent diagnostic models on SEU Data. 

Entropy Value 
Accuracy (%) 

Maximum Minimum Average 
MHFDE_TANSIG 100.00  96.00  97.60  
MHFDE_LOGSIG 96.00  86.67  91.73  

MHFDE 98.67  93.33  96.00  
MHDE 97.33  92.00  94.80  
HFDE 97.33  88.00  93.60  
HDE 92.00  81.33  88.93  
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According to Table 11, the MHFDE_TANSIG intelligent diagnostic model’s maxi-
mum, minimum, and average accuracies are 100%, 96%, and 97.6%, respectively, which 
are higher than other intelligent diagnostic models. 

3.4.2. University of Connecticut Gear Dataset 
This section of the experiment uses the experimental dataset of gearbox vibration 

experiments from the University of Connecticut. The experimental apparatus comprises 
a two-stage reference gearbox, which includes gears on the input shaft of the first stage 
and the output shaft of the second stage. The magnetic brake is regulated by varying its 
input voltage. The vibration signals were captured with a 20 kHz sampling frequency us-
ing a dSPACE system [43].  

Simulated failure states were introduced for the gear of the first stage. The UConn 
Gear Dataset tested nine different gear work states, comprising five failure types (health, 
missing tooth, root crack, spalling, and chipping faults) and five wear levels (five different 
severities of chipping faults). There are 900 samples in the dataset, divided into 9 groups, 
and each group contains 100 subsamples of 2048 sampling points each. The set of samples 
for each fault state is segregated into two categories: 70 samples designated for training 
and 30 for testing in fault diagnosis scenarios. (See Table 12). 

Table 12. Description of the UConn gearbox dataset. 

Types Number of Training Sets Number of Prediction Sets 
Health 70 30 

Missing tooth 70 30 
Root crack 70 30 

Spalling 70 30 
Chipping tip_5 70 30 
Chipping tip_4 70 30 
Chipping tip_3 70 30 
Chipping tip_2 70 30 
Chipping tip_1 70 30 

Totality 630 270 

The MHFDE_TANSIG value and other entropy values were calculated for the 900-
sample UConn Gearbox Dataset. The same fault characteristics were then entered into the 
NGO–SVM model to identify faults ten times. In Figure 17 and Table 13, the diagnostic 
results of multiple classifications are shown. 
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Figure 17. The diagnostic results of multiple classifications on UConn Data. 

Table 13. Diagnostic accuracy of intelligent diagnostic models on UConn Data. 

Entropy Value 
Accuracy (%) 

Maximum Minimum Average 
MHFDE_TANSIG 98.15  94.07  96.15  
MHFDE_LOGSIG 90.74  86.67  88.78  

MHFDE 95.56  91.85  93.59  
MHDE 94.07  90.37  91.89  
HFDE 94.07  90.37  92.26  
HDE 90.74  86.67  88.93  

According to Table 13, the MHFDE_TANSIG intelligent diagnostic model’s maxi-
mum, minimum, and average accuracies are 98.15%, 94.07%, and 96.15%, respectively, 
which are higher than other intelligent diagnostic models. 

3.5. Result Analysis 
We record the average accuracy of different entropy algorithms for diagnosis under 

each of the three datasets (MFS Data, SEU Data, and UConn Data), as well as the average 
of each type of entropy algorithm recording the average accuracy under each of the three 
different data sources in Figure 18. 
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Figure 18. Accuracy of different entropy methods. 

The accuracy of HFDE surpasses that of HDE, and MHFDE exhibits a greater degree 
of accuracy than MHDE. This suggests that the fluctuation-based DE method outperforms 
the traditional DE method. The reason for this is that the FDE considers the relative rela-
tionship between signals, rather than the absolute relationship of the traditional DE. 

The accuracy of recognition is higher in MHFDE than in HFDE, and in MHDE than 
in HDE. This suggests that the modified hierarchical decomposition outperforms the tra-
ditional hierarchical decomposition. The improved method effectively addresses the dis-
advantage of the unimproved hierarchical decomposition, which is the diminution in 
length after layering. 

MHFDE_TANSIG has higher recognition accuracy than MHFDE_LOGSIG and 
MHFDE, indicating that the different mapped MHFDEs are inconsistent in distinguishing 
gearbox conditions and the TANSIG mapping is the most effective. This is because TAN-
SIG has better noise immunity than the other two mapping methods. 

Taken together, it is evident that MHFDE_TANSIG efficiently extracts the fault fea-
tures of various gearbox states, and the performance of its feature extraction is preferable 
to other comparative methods. 

4. Conclusions 
This paper presented a novel fault diagnosis model based on MHFDE_TANSIG and 

NGO–SVM, which was then applied to gearbox test data. The entropy method was em-
ployed to extract features from gearbox fault data, which was then combined with ma-
chine learning techniques to resolve the issue of identifying wind turbine gearbox faults 
via vibration signals. The following conclusions were reached: 
1. The MHFDE_TANSIG diagnostic model was found to have higher classification ac-

curacy than MHFDE_LOGSIG, MHFDE, MHDE, HFDE, and MDE from the fault di-
agnosis results of the gearbox vibration datasets. This demonstrates the effectiveness 
and superiority of the improved entropy algorithm in gearbox fault diagnosis. 

2. The data source chosen for the experiments in this paper is a gearbox vibration da-
taset that includes three different sources, and several repetitive experiments were 
conducted to obtain a high average recognition accuracy. The experimental results 
demonstrate the stability and generalization of the proposed diagnostic model. 

3. The experimental results indicate that the average identification accuracy of the 
MHFDE_TANSIG diagnostic model for gearbox faults is 97.25%. This provides a new 
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method for the fault diagnosis of gearboxes and also offers a novel approach to fault 
diagnosis in the field of rotating machinery. 

4. In this paper, the main application for the state analysis of wind turbine gearboxes is 
acceleration sensor information, which will lack the accuracy of the comprehensive 
assessment of the gearbox operating state. Consequently, it is essential to integrate 
the vibration, temperature, current, and voltage signals within the existing monitor-
ing system in order to enhance the assessment of operating conditions. This will fa-
cilitate the generation of more accurate and comprehensive results. Further research 
could be conducted from the perspective of information fusion of multiple monitor-
ing signals, utilizing the complementary characteristics of different sensor signals to 
analyze the operating characteristics of the gearbox, thereby facilitating fault moni-
toring. 
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