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Abstract: What guarantees the “peaceful coexistence” of quantum nonlocality and special relativity?
The tension arises because entanglement leads to locally inexplicable correlations between distant
events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic
consistency condition that is weaker than Bell locality but stronger than the no-signaling condition
meant to exclude superluminal communication. While justifications for the no-signaling condition
often rely on anthropocentric arguments, relativistic consistency is simply the requirement that
joint outcome distributions for spacelike separated measurements (or measurement-like processes)
must be independent of their temporal order. This is necessary to obtain consistent statistical
predictions across different Lorentz frames. We first consider ideal quantum measurements, derive
the relevant consistency condition on the level of probability distributions, and show that it implies
no-signaling (but not vice versa). We then extend the results to general quantum operations and
derive corresponding operator conditions. This will allow us to clarify the relationships between
relativistic consistency, no-signaling, and local commutativity. We argue that relativistic consistency
is the basic physical principle that ensures the compatibility of quantum statistics and relativistic
spacetime structure, while no-signaling and local commutativity can be justified on this basis.

Keywords: relativistic quantum theory; nonlocality; no-signaling; local commutativity; sequential
quantum measurements; time-order (in)dependence

1. Introduction

What guarantees the “peaceful coexistence” [1] of quantum nonlocality and special
relativity? The condition generally emphasized is that the (marginal) probabilities for
any local measurement A must be independent of other measurements B occurring at
spacelike separation:

P(A = α)
!
= P(A = α | B was measured) = ∑

β

P(A = α | B = β)P(B = β). (1)

This is not to be confused with Bell’s locality condition, which requires that correlations
between spacelike separated events can be explained (“screened off”) by conditionalizing
on suitable variables λ in their past:

P(A = α ∧ B = β | λ) = P(A = α | λ)P(B = β | λ), (2)

Bell’s theorem (see [2], Chs. 2, 16, 24) and the empirical violation of Bell inequalities
(e.g., [3]) establish that (2) is violated for certain nonlocal correlations that arise from joint
measurements on entangled systems.

Equation (1) is known as the no-signaling condition. The idea is that while an agent
cannot control the random outcomes of a quantum experiment to exploit the violations
of (2), they can decide which (if any) measurement B to perform and thus, if (1) were vio-
lated, communicate superluminally by influencing the statistics of the distant measurement
A (see Section 3.3.2 for more details).
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But why exactly is no-signaling (as opposed to Bell-locality) necessary and/or sufficient
to avoid head-on contradictions between special relativity and the statistical predictions of
quantum theory? By and large, two lines of argument are pursued in the literature.

The first is quasi-axiomatic. It has become standard to refer to the light-cone structure
of relativistic spacetime as its causal structure, and presentations of the theory often include
a basic principle to the effect that events can be causally influenced only by events in or on
their past light-cones. Against this backdrop, there are attempts to argue that a violation
of (1), but not a violation of (2), amounts to a “causal influence” (See, e.g., [1,4–7]. In
some cases, a distinction is made between violations of parameter independence and outcome
independence in the context of Bell’s theorem. For standard quantum theory, where λ = ψ,
parameter independence is equivalent to no-signaling. For a critical discussion of this
distinction, see [8]).

Aside from the fact that we find these attempts uncompelling, the problem with the
approach is two-fold. First, it is unnecessary to include such a causality principle among
the fundamental axioms of relativity theory. Special (and also general) relativity can be
understood as a theory about the geometric structure of spacetime without invoking causal
notions. Second, it is advisable to do so since centuries of philosophical debate show how
difficult and contentious the analysis of causal notions is. More importantly, in any concrete
physical sense, the compatibility of relativity and quantum theory can hardly depend on
which philosophical analysis one endorses, say, on whether one accepts Reichenbach’s
common cause principle or insists on an interventionist theory of causation (see [9] for an
overview of these debates in the context of quantum nonlocality).

The structure of Minkowski spacetime per se does not rule out faster-than-light sig-
naling. Maudlin [10] gives an extensive account of possible physical processes that are
superluminal but compatible with relativistic spacetime structure. Even tachyons can be
easily implemented in a relativistic theory [11,12]. Strictly speaking, the relativity principle—
i.e., the equivalence of all inertial Lorentz frames—implies only the existence of an invariant
velocity, not of a maximal one. This is to say that while “signals” are not necessarily the kind
of things that literally propagate through spacetime, even the superluminal propagation of
matter cannot be excluded a priori.

The other (slightly better) argument for (1) contends that special relativity does not rule
out superluminal signaling by postulate but by entailing that it would give rise to causal
paradoxes (see, e.g., [13–16]). This is due to the absence of an absolute temporal order
between spacelike separated events. Moving at suitable (subluminal) velocities relative to
each other, Alice could receive a signal from Bob and send a superluminal response that
reaches Bob before he sent out his original signal. The worry is now that the two agents
could agree on a communication protocol such as the following: Alice sends her signal
if and only if she receives one from Bob. Bob sends his signal if and only if he does not
receive one from Alice. This results in a grandfather-like paradox (in the present context
sometimes referred to as Tolman’s paradox after [17]).

One reason why such arguments remain unsatisfactory is that they are based on strong
but possibly fallible intuitions about free agency on the macro level. Even if Alice and Bob
were replaced by purely mechanical devices, the thought experiment assumes our ability to
build and set up such devices and ensure their reliable operation. Nature, however, could
always find ways to enforce its logical consistency, e.g., by making communication devices
malfunction or having all funding requests for superluminal communication experiments
denied. In less anthropomorphic terms, the point is that if a theory has microscopic states
that would allow superluminal signaling and we can conceive of macroscopic conditions
under which superluminal signaling results in inconsistent histories, it does not follow that
the theory allows for microscopic states that realize such paradoxical macro-conditions.
Inconsistent histories may simply not arise as solutions of the dynamical theory once all rel-
evant variables—including those describing the measurement devices, the experimentalists,
etc.—are taken into account (for an instructive analysis in the context of Wheeler–Feynman
electrodynamics, see [18]).
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That the causal-paradox argument may simply not go through is one thing. The more
basic issue is that the concept of “signaling” is somewhat anthropocentric to begin with,
which calls into question its suitability as a “fundamental” physical principle. As John
Bell said,

Do we then have to fall back on ‘no signaling faster than light’ as the expression
of the fundamental causal structure of contemporary theoretical physics? That is
hard for me to accept. For one thing we have lost the idea that correlations can be
explained, or at least this idea awaits reformulation. More importantly, the ‘no
signaling...’ notion rests on concepts which are desperately vague, or vaguely
applicable. The assertion that ‘we cannot signal faster than light’ immediately
provokes the question:
Who do we think we are? [2] (p. 245)

The following discussion takes a fresh look at the following question: What is a
necessary condition for avoiding contradictions between nonlocal quantum correlations and
the special-relativistic spacetime structure? We will identify a simple criterion of relativistic
consistency that is stronger than the no-signaling condition (1) but whose justification does
not rely on causal principles or anthropocentric reasoning. Instead, the rationale is simply
the following:

1. Relativistic spacetime structure includes no absolute temporal order between spacelike
separated events.

2. Statistical predictions for joint local measurements must be consistent across Lorentz
frames that disagree on the order of the measurements (with respect to coordi-
nate time).

While this line of argument may seem obvious, we are only aware of a single publication
by other authors that offers a similar reasoning, namely [16].

One can object that the concept of “measurements” is also vague and anthropocentric.
Indeed, we believe that a satisfactory reconciliation of nonlocality and relativity ultimately
requires a quantum theory that solves the measurement problem and explains nonlocal
correlations in terms of a coherent ontology of matter. (For promising approaches, see
e.g., [19–22]). Such a theory would no longer involve “measurements” as a basic concept,
and relativistic consistency would simply pertain to the distribution of matter in space
and time. But the scope of this paper is much more modest (and uncontroversial). It
concerns the compatibility of special relativity and the statistical predictions of the quantum
formalism wherever the latter applies and however it may be grounded in a more complete
or fundamental theory. To this end, we will speak about “measurements” and “measuring
devices”. This can be taken literally if one wants to stick to the minimal consensus about
the validity of the quantum formalism. It does not have to be taken literally, though. “If the
theory is to apply to anything but highly idealised laboratory operations..., ‘measurement-
like’ processes are going on more or less all the time, more or less everywhere” [2] (p. 216).
Our considerations will apply just as well to “measurement-like processes” that need not
involve any human agency.

2. Quantum Probabilities
2.1. Ideal Measurements

In the following sections, we will derive and discuss our main results in the framework
of ideal quantum measurements (the kind most familiar from textbook quantum mechanics).
Since our objective is to analyze two measurements at spacelike separation, we shall refer
to an “A-measurement” and a “B-measurement” (for more than two measurements, the
discussion generalizes in the obvious way). Their possible outcomes are denoted by α and
β, respectively. In the ideal measurement scheme, they range over some discrete subsets of
real numbers and are associated with orthogonal projections PA

α and PB
β acting on some

Hilbert space H.
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Via the spectral theorem, the outcomes and corresponding projections can be encoded
in self-adjoint operators (observables) A = ∑α αPA

α and B = ∑β βPB
β . If the measurements

are performed on a system with initial state ψ ∈ H, the outcome probabilities are given by
the Born rule

Pψ(A = α) = ∥Pα ψ∥2 and Pψ(B = β) = ∥Pβ ψ∥2 (3)

and final (post-measurement) states by

ψα :=
Pα ψ

∥Pα ψ∥ and ψβ :=
Pβ ψ

∥Pβ ψ∥ . (4)

Such ideal measurements with their (overly) simple projection postulate allow us
to introduce and discuss the relevant concepts in the most comprehensible manner. Our
results then generalize straightforwardly to the modern operationalist formalism with
positive operator-valued measures (POVMs), density operators, and completely positive
mappings. This is carried out in Section 4.

2.2. Time-Order Dependency

A prominent feature of quantum formalism is that it does not provide joint probability
distributions for observables that cannot be measured simultaneously [23]. However, if
such measurements are performed successively, quantum theory is perfectly capable of
predicting joint probabilities for their outcomes, only that the probabilities will depend on
the order in which the measurements occur.

We can demonstrate this time-order dependency with ideal spin measurements. Let
H ∼= C2 and σi with i = x, y, z be the Pauli matrices with eigenstates defined by the relations
σi | ↑i⟩ = +1| ↑i⟩ and σi | ↓i⟩ = −1| ↓i⟩, respectively. The probabilities associated with an
ideal measurement of the spin component i are given by the two projections Pi

↑ = |↑i ⟩⟨↑i |
and Pi

↓ = |↓i ⟩⟨↓i |, which define a PVM (projection-valued measure). One might now ask
for joint probabilities, e.g., the probability

Pψ(σx = +1 ∧ σz = −1) (5)

that successive measurements will find x-spin up and z-spin down if two particles are initially
prepared in the state ψ ∈ H. But (5) is not well-defined or, rather, underdetermined. Since
σx and σz are not simultaneously measurable, one must specify the order in which the two
spin measurements are carried out.

Always well-defined are conditional probabilities such as

Pψ(σz = −1 | σx = +1), (6)

meaning the probability of obtaining σz = −1, given that a preceding measurement on the
initial state ψ had the outcome σx = +1 (and assuming that the free time evolution between
the two measurements can be neglected, which we shall always assume for simplicity).
According to the quantum formalism, this probability is obtained from the Born rule

using the final state of the first measurement, viz. ψx
↑ :=

Px
↑ ψ

∥Px
↑ ψ∥ , as the initial state of the

subsequent σz-measurement:

Pψ(σz = −1 | σx = +1) = Pψx
↑ (σz = −1) =

〈
Px
↑ ψ
∣∣∣Pz

↓Px
↑ ψ
〉

〈
Px
↑ ψ
∣∣∣Px

↑ ψ
〉 =

〈
ψ
∣∣∣Px

↑ Pz
↓Px

↑ ψ
〉

〈
ψ
∣∣∣Px

↑ ψ
〉 . (7)

These conditional probabilities suggest that we introduce the notation

Pψ(σx = +1
⇀
∧ σz = −1) := Pψ(σz = −1 | σx = +1)Pψ(σx = +1) (8)
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for the joint probability when the measurement of the x-spin component comes first, and

Pψ(σx = +1
↼
∧ σz = −1) := Pψ(σx = +1 | σz = −1)Pψ(σz = −1) (9)

when the measurement of the z-component precedes the x-spin measurement.
To compute the probabilities (8) and (9) for, say, the initial state ψ = | ↑x⟩, we use the

relations | ↑x⟩ = 1√
2
(| ↑z⟩+ | ↓z⟩) and | ↓z⟩ = 1√

2
(| ↑x⟩ − | ↓x⟩). Equation (8) now yields

Pψ(σx = +1
⇀
∧ σz = −1) = Pψ(σz = −1 | σx = +1)Pψ(σx = +1) =

=

〈
ψ
∣∣∣Px

↑ Pz
↓Px

↑ ψ
〉

〈
ψ
∣∣∣Px

↑ ψ
〉 〈

ψ
∣∣∣Px

↑ ψ
〉
= ⟨↑x | Px

↑ Pz
↓Px

↑ | ↑x⟩ = ⟨↑x | Pz
↓ | ↑x⟩ =

=
1
2
(⟨↑z |+ ⟨↓z |) Pz

↓ (| ↑z⟩+ | ↓z⟩) =
1
2

.

(10)

On the other hand, Equation (9) evaluates as

Pψ(σx = +1
↼
∧ σz = −1) = Pψ(σx = +1 | σz = −1)Pψ(σz = −1) =

=

〈
ψ
∣∣∣Pz

↓Px
↑ Pz

↓ ψ
〉

〈
ψ
∣∣∣Pz

↓ ψ
〉 〈

ψ
∣∣∣Pz

↓ ψ
〉
= ⟨↑x | Pz

↓Px
↑ Pz

↓ | ↑x⟩ =

=
1
2
(⟨↑z |+ ⟨↓z |) Pz

↓Px
↑ Pz

↓ (| ↑z⟩+ | ↓z⟩) =
1
2
⟨↓z | Px

↑ | ↓z⟩ =

=
1
4
(⟨↑x | − ⟨↓x |) Px

↑ (| ↑x⟩ − | ↓x⟩) =
1
4

.

(11)

In summary, we have

Pψ(σx = +1
⇀
∧ σz = −1) =

1
2

while

Pψ(σx = +1
↼
∧ σz = −1) =

1
4

and thus,
Pψ(σx = +1

⇀
∧ σz = −1) ̸= Pψ(σx = +1

↼
∧ σz = −1). (12)

Of course, this has to do with the non-commutativity of the operators σx and σz, but we
will return to this topic later.

The fact that joint probability distributions for the outcomes of successive measure-
ments can depend on the temporal order of the measurements lies behind many of the
features of quantum probabilities that are often described as “non-classical”. In particular,
we found

Pψ(σz = −1 | σx = +1)Pψ(σx = +1) ̸= Pψ(σx = +1 | σz = −1)Pψ(σz = −1), (13)

while it seems to follow from the definition of conditional probability that both sides are
equal and correspond to Pψ(σx = +1 ∧ σz = −1) = Pψ(σz = −1 ∧ σx = +1). In fact, (13) is
neither mysterious nor in contradiction with standard probability theory if one appreciates
that measurements change the state of the measured system in ways that can affect the
statistics of subsequent measurements. As a consequence, the conditional probabilities on
the left- and right-hand side of (13) correspond to different joint distributions (those on the
left- and right-hand side of (12), respectively).

The possible time-order dependence of joint distributions motivates the following
definition for general ideal quantum measurements.
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Definition 1 (Time-dependent joint probabilities). We denote joint outcome probabilities for
sequential measurements A and B, which can depend on the time order of the measurements, by

Pψ(A = α
↼
∧ B = β) := Pψ(A = α | B = β)Pψ(B = β) (14)

and

Pψ(A = α
⇀
∧ B = β) := Pψ(B = β | A = α)Pψ(A = α) (15)

where the conditional probability

Pψ(A = α | B = β) = Pψβ(A = α) (16)

always refers to the probability of obtaining the outcome α in the A-measurement given that an
immediately preceding B-measurement had the outcome β. Analogously,

Pψ(B = β | A = α) = Pψα(B = β). (17)

Equation (14) is thus the joint probability for the outcomes A = α and B = β if the B-measurement
precedes the A-measurement, while (15) is the joint probability if the A-measurement is performed
first. As demonstrated above, it cannot be assumed a priori that these joint probabilities coincide.
Instead, we have

Pψ(A = α
↼
∧ B = β) ̸= Pψ(A = α

⇀
∧ B = β) (18)

for an important class of joint measurements (in particular, those described by non-commuting
observables). In a relativistic context, this is unproblematic as long as the two measurement events
are timelike- or lightlike-related. If the B-measurement occurs in or on the past light-cone of the
A-measurement, the relevant distribution is Pψ(A = α

↼
∧ B = β); if the A-measurement occurs in

or on the past light-cone of the B-measurement, the relevant distribution is Pψ(A = α
⇀
∧ B = β).

The issue becomes much more subtle if the two experiments are performed at spacelike
separation. In this case, there is no absolute temporal order between the two measurement
events. Which occurs first (or whether they occur simultaneously) depends on the Lorentz
frame. This already suggests very strongly that time-order dependent statistics (18) must
be excluded for spacelike separated measurements, and we will discuss in more detail why
they would indeed imply physical inconsistencies.

Notably, though, the (at least formal) mechanism that can lead to time-order dependent
statistics is also operative for spacelike separated measurements on entangled systems: a
measurement A (with a definite outcome α) on part of an entangled system changes the
state in a way that affects probabilities for measurement outcomes B = β on another part
of the system. That is, in general,

Pψ(A = α | B = β) = Pψβ(A = α) ̸= Pψ(A = α), (19)

which is precisely how nonlocality is manifested in standard quantum theory.
The physical status of this “change”, i.e., the state reduction ψ → ψβ, is beyond

the scope of our discussion, which does not presuppose any particular interpretation of
the wave function or its “collapse”. Our key assertions can be understood on a purely
operational level as pertaining to displayed results of measurements and their statistics
predicted by the quantum algorithm.

That said, it is beyond question for the authors that the state reduction must be
understood as physically substantial in one way or the other. This is indeed the moral of
the EPR argument (together with the violation of Bell’s inequality): Assume the perfect
anti-correlations for the spin-singlet state, and consider a frame in which the measurement
on particle 1 precedes the measurement on particle 2. Measuring, say, z-spin +1 on particle
1, we can infer that a z-spin measurement on particle 2 will yield the outcome −1. So,
either this outcome was determined in advance (independently of any measurement), or
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it is, in some way, dynamically determined by the measurement performed on particle 1.
Bell’s theorem rules out the first option. Hence, there must be some dynamical influence
between the spacelike separated measurement events—even though different observers
will disagree on their temporal order and, thus, on the “direction” of the influence (For
excellent discussions, see [24–26]).

How this tension between nonlocality and relativity can be resolved—and the nonlocal
correlations explained by a precise Lorentz-invariant quantum theory that solves the
measurement problem—is a much harder question. Our goal here is only to identify
and justify a precise condition that guarantees consistent statistical predictions across all
Lorentz frames.

3. Relativistic Consistency
3.1. Relativistic Consistency of a Single Quantum Measurement

A basic requirement of relativistic quantum theory is that the Hilbert space associated
with the relevant quantum systems carries a unitary representation of the Poincaré group.
Here, we will focus on unitary representations U(Λ) of Lorentz boosts Λ.

If one and the same experiment is described in two different Lorentz frames—the lab
frame Σ or a “boosted” frame Σ′ = ΛΣ, moving uniformly relative to the lab—several
theoretical structures can and will transform in a nontrivial manner. What must remain
invariant, however, are the macroscopic records of measurement outcomes, say, the number
α = 3 displayed on a screen or indicated by a pointer on a scale. From the perspective
of Σ′, the measurement device will appear distorted (by Lorentz contraction), but it must
not display a different number (leaving aside purely optical effects such as parallax). Such
macroscopic measurement records are the minimal ontological consensus; they (if nothing
else) constitute objective facts for which quantum theory yields statistical predictions.

In the lab frame Σ, we denote the prepared initial state by ψ. For an ideal quantum
measurement, each possible outcome α is associated with a projection PA

α . The family (PA
α )α

corresponds to the spectral decomposition of a self-adjoint operator A (“observable”). In
the moving frame Σ′, the initial quantum state takes the form U(Λ)ψ. Operationally, the
transformation ψ 7→ ψ′ = U(Λ)ψ corresponds to a Lorentz boost of the preparation device.
The projections are transformed as PA

α 7→ PA′
α = U(Λ) PA

α U†(Λ) and, accordingly, A 7→
A′ = U(Λ) A U†(Λ). Operationally, this corresponds to a boost of the measuring device.

If the whole experiment performed in the lab is described in Σ′, i.e., both the prepara-
tion device and the measurement device are (passively) boosted, one obtains the following
quantum predictions for outcomes A′ = α:

Pψ′
(A′ = α) =

〈
ψ′
∣∣∣PA′

α ψ′
〉
=
〈

ψ
∣∣∣U†(Λ)U(Λ) PA

α U†(Λ)U(Λ)ψ
〉
=

=
〈

ψ
∣∣∣PA

α ψ
〉
= Pψ(A = α).

(20)

The unitary representation of Lorentz boosts thus guarantees that we obtain the same
statistical predictions whether the experiment is described in Σ or in Σ′.

We emphasize again that A = α and A′ = α refer to the same measurement outcome
“α” as recorded by some macroscopic instrument. This is not to be confused with the
situation where only the measured system is (actively) boosted, and we observe, for
example, a redshifted energy spectrum in the lab frame. Macroscopic measurement records
are what they are, independent of the coordinate system or the observer’s state of motion.
Accordingly, their statistics (i.e., frequencies) must be the same in all Lorentz frames.

We just saw that, for an individual quantum measurement, a unitary representation
of Lorentz boosts is necessary and sufficient for consistent statistical predictions across
different Lorentz frames. It is no longer sufficient when we consider joint measurements on
entangled systems. As argued before, we must, in addition, require time-order independent
statistics if the measurement events are spacelike separated.
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The reader may already anticipate that this is closely related to the local commutativity of
operators, which is commonly taken as an axiom in relativistic quantum (field) theory. This
relationship will be discussed in Section 4 (when one goes beyond projective measurements,
it is much less trivial than it may seem). First, we continue to discuss the relevant condition
on the level of probability distributions, which are closer to the physical content of the
theory than abstract operator conditions.

3.2. Relativistic Consistency of Spacelike Separated Measurements

Suppose that in the laboratory frame Σ, the A-measurement on an entangled system
with initial state ψ is followed by a B-measurement at spacelike separation. Consider a
second Lorentz frame Σ′ in which the order of the measurements is reversed. Consistent
statistical predictions now require

Pψ(A = α
⇀
∧ B = β)

!
= Pψ′

(A′ = α
↼
∧ B′ = β), (21)

so that observers in both frames agree on the joint probabilities of macroscopic measurement
outcomes, even if they disagree on the temporal order of the measurements.

Equation (21) is necessary and sufficient for consistent statistical predictions for mea-
surements outcomes across different Lorentz frames. It is also necessary (though not
sufficient) to ensure the consistency of individual measurement outcomes. If (21) was vio-
lated, predicted relative frequencies of outcomes in the unprimed reference frame would
differ from those predicted in the primed frame. If none of the frames are privileged
(and the theory empirically adequate), this would entail that if the experiment is repeated
sufficiently often, there must be individual runs in which a pointer points to some number
(say, “3”) in Σ but to a different number (say, “7”) in Σ′. In other words, a violation of (21)
would imply inconsistent facts in different Lorentz frames.

A unitary representation of Lorentz boosts gets us part of the way. Analogously to (20),
they ensure

Pψ′
(A′ = α

↼
∧ B′ = β) =

= Pψ′
(A′ = α | B′ = β)Pψ′

(B′ = β) = Pψ′
β(A′ = α)Pψ′

(B′ = β) =

=
〈

ψβ

∣∣∣U†(Λ)U(Λ) PA
α U†(Λ)U(Λ)ψβ

〉
·
〈

ψ
∣∣∣U†(Λ)U(Λ) PB

β U†(Λ)U(Λ)ψ
〉
=

=
〈

ψβ

∣∣∣PA
α ψβ

〉
·
〈

ψ
∣∣∣PB

β ψ
〉
= Pψβ(A = α)Pψ(B = β) =

= Pψ(A = α | B = β)Pψ(B = β) = Pψ(A = α
↼
∧ B = β).

(22)

(Without loss of generality, we can consider Lorentz frames in which the measurements
take place in such short intervals that the free time evolution in between is negligible.
Assuming that measurement records are stable, the derived identity must then hold in
arbitrary frames. See [27] (p. 172) for a more detailed and general derivation).

(22) means that it suffices to require time-order independent statistics in a single
Lorentz frame, i.e.,

Pψ(A = α
↼
∧ B = β)

!
= Pψ(A = α

⇀
∧ B = β), (23)

since (22) and (23) are equivalent to (21).

Definition 2 (Relativistic Consistency Condition). We call

Pψ(A = α
↼
∧ B = β) = Pψ(A = α

⇀
∧ B = β) (24)

the relativistic consistency condition, which must hold for all possible outcomes α and β and any
spacelike separated measurements A and B.
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Recalling Definition 1 of the time-ordered joint probabilities, (24) can also be written as

Pψ(A = α | B = β)Pψ(B = β) = Pψ(B = β | A = α)Pψ(A = α) (25)

or, equivalently,

Pψβ(A = α)Pψ(B = β) = Pψα(B = β)Pψ(A = α). (26)

This illustrates again why nonlocality makes relativistic consistency a nontrivial matter.
For entangled systems, we generally have

Pψ(A = α | B = β) ̸= Pψ(A = α) and Pψ(B = β | A = α) ̸= Pψ(B = β). (27)

Nonetheless, the products on the left- and right-hand sides of (25) must coincide if nonlo-
cality is not to lead to inconsistencies in a relativistic setting.

3.3. From Relativistic Consistency to No-Signaling

Relativistic consistency (24) is the desired condition that ensures the peaceful coex-
istence of quantum nonlocality and Einsteinian relativity. It is weaker than Bell locality
(which is violated by quantum correlations) but stronger than the no-signaling condition.
That is,

Locality ⇒ Relativistic Consistency ⇒ No-Signaling,

while the converse implications do not hold.

3.3.1. Locality Would Imply Relativistic Consistency (but Not Vice Versa)

Locality (loc) implies relativistic consistency since

Pψ(A = α
↼
∧ B = β | λ) = Pψ(A = α | B = β, λ)Pψ(B = β | λ)

loc
=

= Pψ(A = α | λ)Pψ(B = β | λ)
(28)

and analogously

Pψ(A = α
⇀
∧ B = β | λ) = Pψ(B = β | A = α, λ)Pψ(A = α | λ)

loc
=

= Pψ(B = β | λ)Pψ(A = α | λ).
(29)

Hence, also Pψ(A = α
↼
∧ B = β) = Pψ(A = α

⇀
∧ B = β) as one averages (28) and (29) over

λ. On the other hand, the standard EPRB example shows that relativistic consistency does
not imply locality.

3.3.2. Relativistic Consistency Implies No-Signaling

We now show that (24) implies the no-signaling condition (1). We continue to focus on
standard (ideal) measurements before showing in Section 4 that the results extend straight-
forwardly to more general measurement schemes. For spacelike separated measurements
A and B on a system with initial state ψ, we have
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Pψ(B = β | A was measured) = ∑
α

Pψ(B = β | A = α)Pψ(A = α) =

= ∑
α

Pψ(A = α
⇀
∧ B = β)

RC
= ∑

α

Pψ(A = α
↼
∧ B = β) =

= ∑
α

Pψ(A = α | B = β)Pψ(B = β) =

= ∑
α

Pψβ(A = α)Pψ(B = β) = ∑
α

〈
Pβ ψ

∣∣Pα Pβ ψ
〉

∥Pβ ψ∥2 ∥Pβ ψ∥2 =

=

〈
Pβ ψ

∣∣∣∣∣
(

∑
α

Pα

)
Pβ ψ

〉
=
〈

Pβ ψ
∣∣Pβ ψ

〉
= ∥Pβ ψ∥2 = Pψ(B = β),

(30)

where we used that (Pα)α is a complete family of projections, i.e., ∑α Pα = 1. Hence, the
relativistic consistency condition implies the no-signaling condition (1).

The expression Pψ(B = β | A was measured) is thereby best understood within a
Lorentz frame in which the A-measurement occurs before the B-measurement. Pψ(B = β)
can be interpreted in two ways: either as outcome probabilities for the B-measurement when
no A-measurement occurs, or as computed in a frame in which the A-measurement occurs
afterward (Recall from (20) that Pψ′

(B′ = β) = Pψ(B = β) for any Lorentz boost). Under
the first interpretation, the no-signaling condition ensures that Alice cannot influence Bob’s
outcome statistics by deciding whether or not to perform the A-measurement. Since this
holds for any A, she also cannot influence Bob’s statistics by choosing which measurement
she performs (e.g., which spin component she measures in an EPRB experiment). Under the
second interpretation, where both measurements occur but the left- and right-hand sides
refer to different Lorentz frames, (1) is really a weaker relativistic consistency condition
necessary for the frame-independence of Bob’s outcome statistics.

3.3.3. No-Signaling Does Not Imply Relativistic Consistency

For a counterexample, consider the following distribution corresponding to an EPR
experiment in which the (anti-)correlations hold only in one direction.

P(↑L) =
1
2 P(↑L|↑R) = 0 P(↑R|↑L) =

1
2

P(↓L) =
1
2 P(↑L|↓R) = 1 P(↑R|↓L) =

1
2

P(↑R) =
1
2 P(↓L|↑R) = 1 P(↓R|↑L) =

1
2

P(↓R) =
1
2 P(↓L|↓R) = 0 P(↓R|↓L) =

1
2

We have
Pψ(↑L

⇀
∧ ↓R) = P(↓R|↑L)P(↑L) =

1
2
· 1

2
=

1
4

Pψ(↑L
↼
∧ ↓R) = P(↑L|↓R)P(↓R) = 1 · 1

2
=

1
2

.

Hence, Pψ(↑L
⇀
∧ ↓R) ̸= Pψ(↑L

↼
∧ ↓R) and is a violation of relativistic consistency. And yet,

we can verify that the no-signaling conditions are satisfied:

P(↑L|↑R)P(↑R) + P(↑L|↓R)P(↓R) = 0 · 1
2
+ 1 · 1

2
=

1
2
= P(↑L) ✓

P(↓L|↑R)P(↑R) + P(↓L|↓R)P(↓R) = 1 · 1
2
+ 0 · 1

2
=

1
2
= P(↓L) ✓

P(↑R|↑L)P(↑L) + P(↑R|↓L)P(↓L) =
1
2
· 1

2
+

1
2
· 1

2
=

1
2
= P(↑R) ✓

P(↓R|↑L)P(↑L) + P(↓R|↓L)P(↓L) =
1
2
· 1

2
+

1
2
· 1

2
=

1
2
= P(↓R) ✓

The example is, of course, an artificial one, since the considered distribution should not
be realized in nature—or predicted by quantum theory—for spacelike separated measure-
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ments. Although the asymmetric EPR correlations do not violate no-signaling conditions,
they would entail inconsistent statistics in different Lorentz frames that disagree on the
order of the two measurements.

3.3.4. Discussion

As we already complained about in the introduction, the usual motivation for the
no-signaling condition is rather anthropocentric. Quantum nonlocality means that there
is a sense in which local measurements on entangled systems are influenced by other
measurements at spacelike separation. For spacelike separated measurements on entangled
systems, we generally have

Pψ(B = β | A = α) = Pψα(B = β) ̸= Pψ(B = β), (31)

and Bell’s theorem proves that this is not merely a correlation that can be explained by
the joint preparation of the system or other “common causes” in the past. The standard
argument is that we can live with this nonlocality (even in a relativistic world) because the
outcome of the A-measurement is (either effectively or fundamentally) random, i.e., not
under the control of the experimentalist. What the experimentalist can control is which—if
any—measurement A to perform. That this decision does not affect the statistics of the
distant B-measurement means precisely

Pψ(B = β | A was measured) = ∑
α

Pψ(B = β | A = α)Pψ(A = α) = Pψ(B = β), (32)

i.e., the no-signaling condition. The upshot of our analysis is that such anthropocentric
arguments are not only questionable but dispensable. The reason why Einsteinian relativity
can tolerate nonlocality but not signaling is that the latter but not the former implies
violations of relativistic consistency. In particular, we show that a violation of the no-
signaling condition (1) would indeed entail contradictions in a relativistic theory. The
reason, however, is not that it would defy some principle of causality or that faster-than-
light communication could be used to create paradoxes. The reason is simply that a
violation of the no-signaling condition implies inconsistent statistical facts in different
Lorentz frames.

4. Operator Conditions

The goal of this final section is to extend our previous considerations to general
quantum measurements and derive operator conditions for relativistic consistency. This
will also allow us to address the subtle relationship between the formal condition of local
commutativity and the more physically transparent concept of relativistic consistency.

4.1. Quantum Operations

The most general description of state transformations in standard quantum theory is
condensed in the concept of a quantum operation W acting on quantum states ρ represented
by density operators. The states can thus be pure or mixed and quantum operations include,
in particular, unitary time evolutions, measurement(-like) processes, and the (effective)
evolutions of open quantum systems.

Mathematically, a quantum operation is a trace non-increasing, linear, completely
positive map acting on density operators (simply put, complete positivity means that the
map is still positive if the transformed system is described as a subsystem in some larger
Hilbert space). Since a density operator ρ has trace 1, its image W(ρ) under a quantum
operation W must have a trace in [0, 1]. Assuming TrH [W(ρ)] ̸= 0, the resulting state can
be normalized to a new density operator

ρ′ =
W(ρ)

TrH [W(ρ)]
, (33)
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which we call the final state. In any case, the transition ρ → ρ′ occurs with probability

P(ρ → ρ′) = TrH [W(ρ)]. (34)

For a detailed exposition of this formalism, see, e.g., [28,29].
In case of unitary transformations, Lindblad-type evolutions for open quantum sys-

tems, or non-selective measurements, the transition probability (34) equals 1, i.e., the
quantum operation is trace-preserving (and then also called a quantum channel). However,
our concern is with measurement(-like) processes that result in definite outcomes α and
corresponding final states ρ′ = ρα. These are described by quantum operations Wα with
nontrivial transition probabilities P(ρ → ρα) = Pρ(α) = TrH [Wα(ρ)].

According to the Choi–Kraus theorem [28,30,31], any quantum operation has an
operator sum representation (Kraus representation), meaning that there is a set of linear
bounded operators {Rαk} such that

ρ → ρα =
∑Kα

k=1 Rαk ρR†
αk

TrH
[
∑Kα

k=1 Rαk ρR†
αk

] =
∑Kα

k=1 Rαk ρR†
αk

TrH
[(

∑Kα
k=1 R

†
αk Rαk

)
ρ
] =:

∑Kα
k=1 Rαk ρR†

αk
TrH [Eα ρ]

. (35)

The operators Eα := ∑Kα
k=1 R

†
αk Rαk (where Kα may also be 1 or ∞) are called effects. They

are positive (and thus also self-adjoint) operators bounded from above by 1. In view of (34),
the state transformation (35) corresponding to the outcome α is realized with probability

Pρ(α) = TrH [Eα ρ]. (36)

The map α 7→ Eα generates a positive operator valued measure (POVM) with normalization
∑α Eα = 1 (corresponding to the normalization of the associated probabilities). For any ρ,
the POVM then defines a probability distribution over possible outcomes by (36).

For simplicity, we consider here only discrete measurements, i.e., assume that the
set of possible outcomes {α} is countable. On the level of POVMs, the generalization to
continuous measurements is standard, but the corresponding state transformations are
usually unclear. If there exists a corresponding completely positive state transformation
(whatever it may look like), the Choi–Kraus theorem still applies and provides a countable
operator sum representation. That said, we believe that all physical measurements are
actually discrete, while continuous measurements are merely mathematical idealizations.

Efficient Measurements

For simplicity, we shall focus on so-called efficient measurements, which means that the
associated state transformations (35) map pure initial states to pure final states. This is the
case if and only if each outcome α is associated with a single state transformation operator
Rα (that is, Kα = 1 for all α). Hence, we can drop in (35) the sums over k. This makes it
easier to see the connection to the textbook formalism and our discussion in the previous
sections. Generalizing to non-efficient measurements is straightforward by the linearity of
the convex sums.

For efficient measurements, we can write down the analog of (35) for pure initial states
ψ ∈ H:

ψ 7→ ψα =
Rα ψ

∥Rα ψ∥ =
Rα ψ√〈

ψ
∣∣R†

αRα ψ⟩
=

Rα ψ√
⟨ψ|Eα ψ⟩

. (37)

The corresponding transition probability is

Pψ(α) = ∥Rα ψ∥2 = ⟨ψ|Eα ψ⟩, with Eα = R†
αRα. (38)

By polar decomposition (recalling that Eα is a positive operator), the state transformer Rα

can be written as
Rα = Uα

√
Eα, (39)
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where Uα is a partial isometry. When Uα = 1 and Eα = Pα is an orthogonal projection
(E2

α = Eα =
√

Eα), we recover the ideal measurement scheme with

Rα ≡ Eα ≡ Pα, (40)

and the POVM defined by the projections {Pα} is a projection-valued measure (PVM)
corresponding to a self-adjoint observable A = ∑α α Pα.

Note, however, that not all projective measurements are ideal measurements. The
state transformers Rα = UαPα of a projective measurement can still involve, e.g., a unitary
rotation Uα ̸= 1 (sometimes called “measurement back action”). A projective measure-
ment is called reproducible iff Uα leaves the eigenspaces PαH invariant, meaning that the
measurement will yield the same outcome upon immediate repetition.

Table 1 gives a rough overview of important classes of efficient measurements (gener-
alizations to the non-efficient case are to be made in the obvious way).

Table 1. Some classes of efficient measurements. Conditions are meant to hold for all α (unless stated
otherwise).

Projective Measurements

Ideal Rα = Pα Uα = 1

Reproducible Rα = Uα Pα UαPαH = PαH

Non-Reproducible Rα = Uα Pα ∃α : UαPαH ̸= PαH

Non-Projective Measurements

Lüders Measurements Rα =
√

Eα Uα = 1

General Measurements Rα = Uα
√

Eα Uα

The general measurement formalism is particularly relevant for two reasons. First,
modern experimental techniques, such as indirect measurements, are, in general, non-
projective. Second, a careful analysis of the measurement process suggests that properties
like projectivity or reproducibility are never exactly realized in real-world experiments (at
least if the quantum nature of the measuring device is taken into account, see [22,32]). The
general measurement formalism can even be derived from such an analysis without the
need to postulate operators (ibid.; see also [33]).

4.2. Time Order and Relativistic Consistency

Let us consider again the situation of an A-measurement followed (in a given Lorentz
frame) by a B-measurement. If the A-measurement results in the outcome α, the state

transforms according to (37), i.e., ψ 7→ ψα = RA
α ψ

∥RA
α ψ∥ . The conditional probability of

obtaining B = β in the subsequent measurement is thus

Pψ(B = β | A = α) = Pψα(B = β) =

〈
ψ
∣∣∣ (RA

α )
†EB

β RA
α ψ
〉

∥RA
α ψ∥2 . (41)

We see that the joint probabilities for A = α and B = β, when the A-measurement occurs
first, are encoded in the operator (RA

α )
†EB

β RA
α . More precisely,

Pψ(A = α
⇀
∧ B = β) = Pψ(B = β | A = α)Pψ(A = α) =

=

〈
ψ
∣∣∣ (RA

α )
†EB

β RA
α ψ

〉
∥RA

α ψ∥2 ∥RA
α ψ∥2 =

〈
ψ
∣∣∣ (RA

α )
†EB

β RA
α ψ

〉
.

(42)
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Analogously, we have

Pψ(A = α
↼
∧ B = β) =

〈
ψ
∣∣∣ (RB

β)
†EA

α RB
β ψ
〉

.

A Lorentz boost Λ acts on states and operators (effects and state transformers) as

ψ
Λ−→ U(Λ)ψ, EA

α
Λ−→ U(Λ)EA

α U†(Λ), and RA
α

Λ−→ U(Λ)RA
α U†(Λ). In analogy to (20)–(22),

we can thus derive the relativistic consistency condition

Pψ(A = α
↼
∧ B = β) = Pψ(A = α

⇀
∧ B = β) (43)

for spacelike separated measurements, for which we now obtain explicit expressions〈
ψ
∣∣∣ (RB

β)
†EA

α RB
β ψ
〉
=
〈

ψ
∣∣∣ (RA

α )
†EB

β RA
α ψ
〉

. (44)

Since this must hold for all ψ ∈ H and the operators (RB
β)

†EA
α RB

β and (RA
α )

†EB
β RA

α are
self-adjoint, the identity must hold between the operators themselves. We thus obtain the
following:

Definition 3 (Relativistic Consistency Operator Conditions). The conditions

(RB
β)

†EA
α RB

β = (RA
α )

†EB
β RA

α (45)

are the relativistic consistency operator conditions. They must hold for all α and β whenever
the A- and B-measurements are spacelike separated to guarantee relativistic consistency of the
statistical predictions.

4.3. No-Signaling

Summing (45) over α and β, respectively, yields

∑
β

(RB
β)

†EA
α RB

β
RC
= ∑

β

(RA
α )

†EB
β RA

α = (RA
α )

†

(
∑
β

EB
β

)
︸ ︷︷ ︸

=1

RA
α = (RA

α )
† RA

α = EA
α ,

∑
α

(RA
α )

†EB
β RA

α
RC
= ∑

α

(RB
β)

†EA
α RB

β = (RB
β)

†

(
∑
α

EA
α

)
︸ ︷︷ ︸

=1

RB
β = (RB

β)
† RB

β = EB
β .

(46)

These are precisely the no-signaling conditions in operator form, since they are necessary
and sufficient for

Pψ(A = α) =
〈

ψ
∣∣∣EA

α ψ
〉 (46)

=

〈
ψ

∣∣∣∣∣
(

∑
β

(RB
β )

†EA
α RB

β

)
ψ

〉
= ∑

β

〈
ψ
∣∣∣ (RB

β )
†EA

α RB
β ψ
〉
=

= ∑
β

〈
ψ
∣∣∣ (RB

β )
†EA

α RB
β ψ
〉

〈
ψ
∣∣∣EB

β ψ
〉 〈

ψ
∣∣∣EB

β ψ
〉
= ∑

β

Pψ(A = α | B = β)Pψ(B = β) =

= Pψ(A = α | B was measured)

(47)

and analogously for the marginal distribution of the B-measurement outcomes. The opera-
tor conditions for relativistic consistency thus imply the operator conditions for no-signaling.
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Definition 4 (No-Signaling Operator Conditions). The conditions

EA
α = ∑

β

(RB
β)

†EA
α RB

β for all α

EB
β = ∑

α

(RA
α )

†EB
β RA

α for all β
(48)

are the no-signaling operator conditions. They guarantee that quantum nonlocality cannot be used
to send superluminal signals by acts of measurement.

For completeness, we state the general form of the operator conditions that also apply
to mixed states and non-efficient measurements. Their detailed derivation can be found
in [27].

Definition 5 (Operator Conditions, General Form).

(a) The general form of the relativistic consistency operator conditions is

Lβ

∑
l=1

(RB
β,l)

† EA
α RB

β,l =
Kα

∑
k=1

(RA
α,k)

† EB
β RA

α,k (49)

for all α and β, whenever the A- and B-measurements are spacelike separated.

(b) The general form of the no-signaling operator conditions is

EA
α = ∑

β

Lβ

∑
l=1

(RB
β,l)

† EA
α RB

β,l

EB
β = ∑

α

Kα

∑
k=1

(RA
α,k)

† EB
β RA

α,k

(50)

for all α and all β, respectively.

4.4. Local Commutativity

From (45), we also begin to see what local commutativity has to do with relativistic
consistency. The relativistic consistency operator conditions are automatically satisfied if
the effects of a local measurement commute with the state transformers of any spacelike
separated measurement. That is,

[EA
α ,RB

β ] = [EB
β ,RA

α ] = 0 for all α, β (51)

whenever A and B are spacelike separated. Since then,

(RB
β)

†EA
α RB

β
(51)
= (RB

β)
†RB

β EA
α = EB

β (RA
α )

†RA
α =

= (RA
α EB

β )
†RA

α
(51)
= (EB

β RA
α )

† RA
α = (RA

α )
†EB

β RA
α .

(52)

(Based on similar considerations, ref. [16] lands on a stronger commutativity condition—the
local commutativity of state transformers, i.e., [RA

α ,RB
β ] = 0 in our notation—which is also

sufficient for relativistic consistency). We further see that (51) implies

[EA
α , EB

β ] = [EB
β , EA

α ] = 0 for all α, β, (53)

i.e., the local commutativity of effects. For projective measurements, where {EA
α } and

{EB
β} are spectral decompositions of self-adjoint observables Â and B̂, (53) is equivalent
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to [Â, B̂] = 0. Notably, though, (53) does not imply (51), which is hence the more general
local commutativity condition (Indeed, an effect need not even commute with its own state
transformer, while it trivially commutes with itself: Consider, for example, a projective
measurement with outcomes α, orthogonal projections Eα = |α⟩⟨α|, and state transformers
Rα = |ω⟩⟨α| = |ω⟩⟨α||α⟩⟨α| ≡ UαEα with partial isometries Uα = |ω⟩⟨α|. This can be seen
as a toy model of a measurement in which the particle is absorbed after producing the
outcome α, which is implemented by mapping all states into the vacuum |ω⟩ orthogonal to
all |α⟩. We have R†

αRα = Eα but [Eα , Rα] = −|ω⟩⟨α| = −Rα ̸= 0).
Since some of the literature refers to local commutativity as “locality”, we also empha-

size that it must not be confused with locality in the sense of Bell’s theorem. Indeed, the
EPRB experiment indicates a violation of Bell locality, even though the spin observables for
different particles trivially commute.

So far, we have in terms of operator conditions:

Relativistic Consistency
(RB

β)
†EA

α RB
β = (RA

α )
†EB

β RA
α

for all α, β +3

No-Signaling
EA

α = ∑β(RB
β)

†EA
α RB

β for all α

EB
β = ∑α(RA

α )
†EB

β RA
α for all β

Local Commutativity
[EA

α ,RB
β ] = [EB

β ,RA
α ] = 0

for all α, β

`h 6>

(54)

As a mathematical postulate, local commutativity is the most practical choice. It is often
justified by appealing to no-signaling, either explicitly or implicitly, by saying something
like “a measurement should not be disturbed by others occurring at spacelike separation”
(Of course, they are disturbed in the sense of nonlocality, just not in a way that affects their
marginal outcome distributions). However, as argued throughout this paper, the relativistic
consistency condition is the one that can be physically justified from first principles.

It would be nice if one could close the circle in (54), i.e., show that the no-signaling
operator conditions imply local commutativity, so that all three conditions—local commu-
tativity, relativistic consistency, and no-signaling—turn out to be equivalent on the level
of operators. This would mean, in particular, that probability distributions which satisfy
no-signaling but violate relativistic consistency cannot arise from quantum operations. The
issue is, however, a subtle one.

A very general result about the equivalence of local commutativity and no-signaling
is the following theorem (see [34] for a proof). For any effect EB

β and any set of state

transformers {RA
α }, the following two conditions are equivalent:

(i) Commutativity of effect and state transformers:

[EB
β ,RA

α ] = [EB
β , (RA

α )
†] = 0 for all α (55)

(ii) No-signaling condition for EB
β and (EB

β )
2 with respect to {RA

α }:

EB
β = ∑

α

(RA
α )

†EB
β RA

α and (EB
β )

2 = ∑
α

(RA
α )

†(EB
β )

2 RA
α (56)
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This implies, in particular, the equivalence of local commutativity and no-signaling
for projective measurements (Lüders theorem), since (EB

β )
2 = EB

β if the POVM elements
are projectors.

The theorem settles the equivalence of no-signaling and local commutativity altogether
if one takes for granted—as algebraic approaches (e.g., [35]) implicitly do—that the squared
effects (EB

β )
2 correspond to some local measurement C in the same spacetime region as

B. In this case, no-signaling entails both conditions in (56) anyway if the A-measurement
is spacelike separated from the B and C measurements. The problem is that the physical
interpretation of the squared effects (EB

β )
2 is, in general, unclear, and it is doubtful that

they always correspond to some meaningful measurement-like process (This is different for
common observables B = ∑β β Pβ, where B2 = ∑β β2 Pβ can simply be associated with the
same measurement process as B by rescaling the outcome values according to β 7→ β2). We
can still impose no-signaling conditions for them—or for entire local algebras of operators
while we are at it—but why should operators have to satisfy no-signaling conditions if they
do not correspond to any possible process or event that could occur in nature?

If the state transformers RB
β = UB

β

√
EB

β are normal operators (commute with their

adjoints), (EB
β )

2 has an immediate physical interpretation as the effect associated with
obtaining the outcome β twice if the B-measurement is immediately repeated. Indeed, the
corresponding effect would be

(RB
β)

†EB
β RB

β = (RB
β)

†(RB
β)

†RB
βRB

β = (RB
β)

†RB
β(RB

β)
†RB

β = (EB
β )

2. (57)

But not all measurements have normal state transformers (for an instructive counterexam-
ple, see the particle absorption toy model with Rα = |ω⟩⟨α| in the remark above). It might
even be that no real-world measurements actually do and that all “textbook measurements”
are merely idealizations. Certainly, many real-world experiments can be described by
normal state transformers or projective effects for all practical purposes (FAPP). However, if
one appeals to rigorous mathematical results (in order to justify the physical status of local
commutativity), FAPP may not be good enough.

Several other results proving the necessity of local commutativity for no-signaling
and/or relativistic consistency for certain classes of operators can be found in Chapter
3 of [27] and the references therein. The problem remains that the class of operators
corresponding to “local measurement-like processes that could occur in nature” eludes
a precise mathematical definition, so there is always the risk of assuming too much or
proving too little.

On the other hand, there exist formal counterexamples to the implication
E = ∑α(Rα)† ERα ⇒ [E,Rα] = 0 ∀α (e.g., [34,36]), but their physical significance is
at least equally questionable. They are, moreover, only partial counterexamples to the
implication No-Signaling ⇒ Local Commutativity. A full (formal) counterexample would
require two complete sets of state transformers {RA

α }, {RB
β}, and corresponding POVMs

{EA
α }, {EB

β} such that all no-signaling conditions (48) are satisfied, while (51) is violated for
at least one pair of outcomes α, β.

While this discussion hardly exhausts the topic, we hope it makes clear that local
commutativity is, in the first place, an abstract condition whose mathematical convenience
tends to obscure the fact that it has no direct physical interpretation. This is in contrast to the
relativistic consistency condition, whose physical meaning is simply that joint statistics for
spacelike separated measurements must be consistent across different Lorentz frames. The
best justification for postulating local commutativity in a relativistic quantum theory is that
it is at least sufficient and, for many classes of relevant measurements, also necessary for
relativistic consistency. In any case, from a physical and conceptual point of view, relativistic
consistency (rather than local commutativity or no-signaling) should be understood as the
fundamental condition for a peaceful coexistence of quantum theory and special relativity.
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