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The concepts of computation and information are becoming increasingly important,
both in everyday life and in the sciences. They are at the core, for instance, of our modern
understanding of the fundamentals of human and artificial cognition [1]. Social scien-
tists have been using computational and informational concepts and techniques in their
analyses of dynamic social systems with increasing frequency [2]. The same goes for
physics. Computational and information-theoretic concepts and principles are, arguably, as
important for understanding modern physics as the more traditional concepts and prin-
ciples that have shaped the field to date [3,4]. This is true both in applied and theoretical
physics. Examples include using quantum mechanical systems to perform computations
and transmit information [5,6]; the use of information-theoretic concepts to characterize the
structure of spacetime and gravitational phenomena [7,8]; informational axiomatisations
and interpretations of quantum theory [9]; and many others.

It is with pleasure that we introduce this Special Issue of Entropy, entitled Information-
Theoretic Concepts in Physics, whose aim is to provide readers with a snapshot of some of the
important foundational and philosophical research at the cutting edge of this important
area of physics. The seven papers included in this Special Issue cover a variety of subjects,
including the nature of quantum correlations and quantum contextuality, informational
and information-based approaches to interpreting quantum mechanics and its associated
conceptual puzzles, causal perspectivalism, determinism, and free agency. A brief summary
of each contribution can be found below.

In Bounding Quantum Correlations: The Role of the Shannon Information in the Informa-
tion Causality Principle [10], Natasha Oughton and Christopher G. Timpson consider the
information causality principle, which has been suggested as a candidate law of nature
in [11]. They demonstrate that when formulated with respect to an alternative measure of
information—namely, one of the Rényi measures—the principle no longer yields a correct
value for the Tsirelson bound [12]. Oughton and Timpson conclude, on the basis of this
and other arguments, that the information causality principle is of limited significance for
foundations.

In A New Logic, a New Information Measure, and a New Information-Based Approach to
Interpreting Quantum Mechanics [13], David Ellerman argues that the essence of the mathe-
matics of quantum mechanics is the linearized Hilbert space version of the mathematics of
partitions. In his article, Ellerman lays out the key mathematical concepts involved in the
progression from logic, to logical information, to quantum theory—of distinctions versus
indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguisha-
bility, which he argues run throughout the mathematics of quantum mechanics.

In Broken Arrows: Hardy–Unruh Chains and Quantum Contextuality [14], Michael Janas
and Michel Janssen consider a family of non-maximally entangled states of pairs of particles,
originally conceived of by Lucien Hardy and William G. Unruh, that give rise to correla-
tions which cannot be accounted for in a local hidden-variable theory, and which nicely
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illustrate, according to Janas and Janssen, the phenomenon of quantum contextuality. Using
a framework originally inspired by Jeffrey Bub and Itamar Pitowsky and developed in
detail in [15], Janas and Janssen construct and analyze what they call “Hardy–Unruh chains”
in terms of fictitious systems which mimic the behaviour of spin-1/2 particles.

In Classical Information and Collapse in Wigner’s Friend Setups [16], by Veronika Baumann,
the author considers the famous “Wigner’s friend” thought experiment, whose protago-
nists are an observer—the friend—and a superobserver—Wigner—who treats the friend,
together with her lab, as a quantum system. The so-called “Wigner’s friend paradox” points
to the prima facie tension between the ways in which Wigner and his friend each describe
what appear to be the identical physical circumstances, and within this context, one can
prove a number of so-called “local friendliness inequalities”, similar to Bell’s theorem. In
her article, Baumann shows how one can regulate the accessibility of information about
Wigner’s friend’s measurements by controlling the properties of a (quasi) classical com-
munication channel between the two of them, and how this provides a smooth transition
between the various physical descriptions of the experiment.

In The Measurement Problem Is a Feature, Not a Bug—Schematising the Observer and the
Concept of an Open System on an Informational, or (Neo-)Bohrian, Approach [17], Michael E.
Cuffaro expands upon the sense in which the informational approach to interpreting the
formalism of quantum mechanics, originated by Bub, Pitowsky and others, and most
recently developed in [15], is (neo-)Bohrian. Cuffaro argues that on this approach, quantum
mechanics represents what Bohr called a “natural generalization of the ordinary causal
description”, in the sense that the idea (which philosophers of science writing in other
contexts have argued for on the grounds of practical and epistemic necessity) that under-
standing a theory as a theory of physics requires one to “schematize the observer” within
it, is elevated in quantum mechanics to the level of a postulate. After introducing and
motivating this view, Cuffaro considers it, and the quantum mechanical generalization of
the concept of an open system, in the light of one of Einstein’s arguments that the theory
is incomplete.

In Physical Grounds for Causal Perspectivalism [18], Gerard J. Milburn, Sally Shrapnel and
Peter W. Evans demonstrate how the asymmetry that is characteristic of causal relations
can be grounded in the internal physical states of a special kind of open and irreversible
physical system which they refer to as a causal agent: an autonomous physical system,
maintained in a steady state, far from thermal equilibrium, with special subsystems for
interacting and learning from the environment. In this context, the authors show that the
learning of causal relations is driven by the thermodynamic principle that the error rate be
minimized when the dissipated power is minimized, and they argue that the dependence
of causal relations on such ‘hardware’ constraints constitutes a novel demonstration of
causal perspectivalism.

Finally, in Free Agency and Determinism: Is There a Sensible Definition of Computational
Sourcehood? [19], Marius Krumm and Markus P. Müller question whether free agency is
compatible with determinism. It has been suggested that the principle of “computational
irreducibility” hints at a positive answer, as this principle implies that, in general, there are
no computational shortcuts for predicting the future behaviour of agents, which would
seem to explain why deterministic agents often appear to act freely. In their paper, the
authors introduce a variant of computational irreducibility which appeals to what Krumm
and Müller call “computational sourcehood”—the phenomenon that the successful pre-
diction of a process’ behaviour typically involves an almost exact representation of the
relevant features of that process—and they consider what would be required to formalize
the notion.
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