
Academic Editors: Irwin King and

Ziqiao Meng

Received: 10 March 2025

Revised: 28 March 2025

Accepted: 3 April 2025

Published: 7 April 2025

Citation: Du, J.; Wei, Q.; Wang, Y.;

Bai, X. GBsim: A Robust GCN-BERT

Approach for Cross-Architecture

Binary Code Similarity Analysis.

Entropy 2025, 27, 392. https://

doi.org/10.3390/e27040392

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

GBsim: A Robust GCN-BERT Approach for Cross-Architecture
Binary Code Similarity Analysis
Jiang Du, Qiang Wei, Yisen Wang * and Xingyu Bai

School of Cyber Science and Engineering, Information Engineering University, Zhengzhou 450001, China
* Correspondence: xdeason@126.com

Abstract: Recent advances in graph neural networks have transformed structural pattern
learning in domains ranging from social network analysis to biomolecular modeling. Nev-
ertheless, practical deployments in mission-critical scenarios such as binary code similarity
detection face two fundamental obstacles: first, the inherent noise in graph construction
processes exemplified by incomplete control flow edges during binary function recovery;
second, the substantial distribution discrepancies caused by cross-architecture instruc-
tion set variations. Conventional GNN architectures demonstrate severe performance
degradation under such low signal-to-noise ratio conditions and cross-domain operational
environments, particularly in security-sensitive vulnerability identification tasks where
feature instability or domain shifts could trigger critical false judgments. To address these
challenges, we propose GBsim, a novel approach that combines graph neural networks
with natural language processing. GBsim employs a cross-architecture language model to
transform binary functions into semantic graphs, leverages a multilayer GCN for structural
feature extraction, and employs a Transformer layer to integrate semantic information,
generates robust cross-architecture embeddings that maintain high performance despite
significant distribution shifts. Extensive experiments on a large-scale cross-architecture
dataset show that GBsim achieves an MRR of 0.901 and a Recall@1 of 0.831, outperforming
state-of-the-art methods. In real-world vulnerability detection tasks, GBsim achieves an
average recall rate of 81.3% on a 1-day vulnerability dataset, demonstrating its practical
effectiveness in identifying security threats and outperforming existing methods by 2.1%.
This performance advantage stems from GBsim’s ability to maximize information preserva-
tion across architectural boundaries, enhancing model robustness in the presence of noise
and distribution shifts.

Keywords: graph neural network robustness; binary code similarity analysis; cross-
architecture embedding; hybrid deep learning

1. Introduction
Binary Code Similarity Analysis (BCSA) is a significant and challenging technology. It

can effectively identify and match binary functions, enabling the detection of code reuse
and potential security threats. It has already played a crucial role in application scenarios
that include vulnerability discovery [1], malicious code detection and classification [2],
software plagiarism detection [3], and patch analysis [4]. With the extensive use of open
source software and the common occurrence of code reuse, the importance of BCSA has
become increasingly critical, providing essential support for maintaining software security.
However, given the increasingly complex software ecosystem, the development of robust
and accurate BCSA methods has become a pressing need.

Entropy 2025, 27, 392 https://doi.org/10.3390/e27040392

https://doi.org/10.3390/e27040392
https://doi.org/10.3390/e27040392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e27040392
https://www.mdpi.com/article/10.3390/e27040392?type=check_update&version=1

Entropy 2025, 27, 392 2 of 23

In recent years, the rapid advancements in deep learning technology have introduced
innovative solutions for BCSA. Numerous studies have focused on the use of deep learning
models for the extraction of features and comparison of binary functions, successfully
identifying similar binary functions between different compilers, optimization levels, and
Instruction Set Architectures (ISA), even under certain obfuscation techniques [5–10]. These
efforts underscore the potential for deep learning in this domain. However, despite notable
progress, current deep learning-based BCSA methods still face significant challenges in
practical applications, particularly in cross-architecture scenarios, where performance
bottlenecks are especially evident.

Firstly, the representation of binary functions across different architectures poses
a critical robustness challenge for graph neural networks (GNNs) in BCSA. Different
instruction set architectures represent distinct data distributions with varying instruction
sets, register usage patterns, and calling conventions. This architectural diversity creates a
fundamental distribution shift problem, where GNNs often struggle to maintain consistent
performance. Existing methods typically rely on features specific to a single architecture or
expert-defined heuristics, severely limiting their robustness and generalization capabilities
when analyzing binary code across different architectures. Consequently, developing
graph representations with enhanced cross-architecture robustness remains a formidable
challenge in this domain.

Secondly, in the context of GNN applications for BCSA, a significant challenge lies in
understanding the relationship between model complexity and resilience to architectural
variations. While more complex GNN architectures theoretically offer greater represen-
tational capacity, they may also be more susceptible to overfitting architecture-specific
patterns rather than capturing the underlying structural similarities that persist across
different instruction sets. Our experiments demonstrate this non-linear relationship be-
tween model complexity and cross-architecture performance, highlighting the importance
of balancing model capacity with generalization capabilities when developing robust
graph-based approaches for binary similarity analysis.

Lastly, in the task of BCSA, a critical challenge lies in the trade-off between efficiency
and accuracy during the comparison phase, particularly in the choice of comparison
strategies. Researchers often encounter a scenario where they are presented with a library
of binary functions that have already been embedded and a newly acquired binary function
that has yet to be embedded. The task at hand is to generate the embedding representation
of the new function using the same method and then perform similarity comparisons
within the function library. In this one-to-many search scenario, the performance and
computational cost of the comparison algorithm play a crucial role, even more so than the
vectorization method of binary functions. The design of the comparison algorithm directly
impacts the efficiency and accuracy of the search process, especially in large-scale function
libraries, where its effectiveness determines the feasibility of practical applications. It is
obvious that existing methods struggle to balance accuracy and efficiency well [11]. When
building models, comparison-based BCSA methods [12–14] use a pair of binary functions
as the key input and carefully analyze their similarity. Although it is true that this can
ensure relatively high accuracy, the resulting high computational cost cannot be ignored.
In contrast, embedding-based BCSA methods [5,8,10,15–18] work on a different principle.
They take only a single binary code as input and use special encoding strategies to turn
the advanced features of the binary code into an embedding space. Subsequently, vector
distance metrics such as the cosine distance are employed to approximately evaluate the
similarity of function pairs within this space. Since each input function only needs to be
encoded once and is combined with the fast neighbor search algorithm, these methods have
great scalability and can quickly process large amounts of data. However, compared with

Entropy 2025, 27, 392 3 of 23

comparison-based methods, embedding-based methods, which focus only on extracting
features from a single function, exhibit noticeably lower accuracy.

With the aim of overcoming the hurdles outlined earlier, this paper puts forward a
cross-architecture binary function embedding and comparison approach underpinned by a
hybrid layer network.

To address the challenge of cross-architecture binary representation, this paper pro-
poses a construction method of a cross-architecture assembly language model based on
word vectors. The control flow graph (CFG) of a binary function is regarded as a sequence
of sentences. Then, natural language processing (NLP) techniques are employed to generate
word vectors for each instruction. The sentence vectors of the basic blocks are generated by
average pooling, and these basic block vectors serve as node features. Moreover, the rela-
tionships among basic blocks are depicted by the edges of the graph, thereby constructing
a cross-architecture binary function representation. Furthermore, a hybrid layer network
composed of GCN [19] and BERT [20] is used to extract structural and semantic features
from binary functions, generating robust cross-architecture embeddings. This innovative
approach addresses the issue of inconsistent binary code representations caused by architec-
tural differences, providing a unified and robust way to handle cross-architecture scenarios.
The motivation for choosing the GCN+BERT combination lies in enhancing graph represen-
tation robustness against architectural variations and structural noise while demonstrating
the power of foundational models. Rather than pursuing complex state-of-the-art architec-
tures, we deliberately selected the pioneering GCN model from the GNN domain and the
pioneering BERT model from the NLP domain as representative approaches to handle struc-
tural and semantic information, respectively. This choice was guided by the hypothesis that
even these early influential models, when effectively combined to leverage both structural
and semantic information, could achieve robust cross-architecture performance. Indeed,
our experimental results confirm that this approach reaches state-of-the-art (SOTA) levels
even with these foundational models, demonstrating that model combination strategy can
be more important than model complexity for achieving robustness. This not only validates
our approach but also indicates significant room for improvement when more advanced
GNN and transformer models are incorporated within our framework, offering promising
directions for future research on robust graph representation learning.

With regard to the challenge of understanding the relationship between model com-
plexity and performance, this paper conducts comprehensive investigations. By varying
the complexity of the language model and the hybrid layer network (composed of GCN
and BERT), we systematically study the impact of model complexity on performance. The
experimental results demonstrate that increasing model complexity does not always lead to
significant performance improvements and may even degrade performance in some cases.
Through adjusting the number of GCN and BERT layers as hyperparameters, we validate
the non-linear relationship between model complexity and performance, providing insights
into selecting the optimal model complexity for practical applications. This approach
ensures a balance between model complexity and performance while acknowledging the
inherent trade-off with efficiency.

In response to the challenge of balancing accuracy and efficiency during the compari-
son phase, a two-stage search algorithm is devised. In the initial stage, cosine distances
are utilized to preliminarily select candidates for obviously dissimilar functions during the
function search process, eliminating options with significant differences. Subsequently, a
more accurate comparison-based method is employed to complete the final comparison.
This approach combines the efficiency of the embedding-based method in the first stage and
the high accuracy of the comparison-based method in the final stage, effectively reconciling
the trade-off between accuracy and efficiency in the BCSA domain.

Entropy 2025, 27, 392 4 of 23

In summary, our contributions are as follows.

• We propose a cross-architecture assembly language model construction method and
design a GNN-based binary function embedding approach that demonstrates en-
hanced robustness to architectural variations, addressing the fundamental challenge
of creating reliable graph representations across different instruction set architectures.

• We systematically investigate the relationship between GNN complexity and cross-
architecture performance through comparative experiments on language models of
varying complexities and hyperparameter configurations, revealing key insights into
developing more robust graph models for binary similarity analysis.

• We develop a two-stage search algorithm that enhances both the accuracy and efficiency
of graph-based binary code similarity analysis, effectively balancing the trade-off
between performance and computational cost in practical security applications.

• We make GBSim available to the research community at https://github.com/kidding1
412/GBsim, facilitating further research on robust GNNs for binary code analysis.

2. Background
BCSA presents significant challenges for GNNs, especially in terms of robustness. Un-

like standard graph applications, binary code graphs exhibit extreme structural variations
and feature inconsistencies across different compilation settings, forming an ideal testbed
for evaluating and improving GNN robustness. The robustness challenges in BCSA stem
primarily from two sources: cross-architecture compilation and varying optimization levels,
which introduce substantial distributional shifts in both graph structure and node features.

In the work of binary code similarity analysis, cross-architecture and cross-optimization
are crucial elements that cannot be overlooked. When compiling the source code, it first
goes through a compiler that parses and checks it. Then, depending on the architecture of
the target instruction set and the chosen optimization level, the compiler transforms the
source code into binary functions, a process where cross-architecture and cross-optimization
can greatly impact the outcome.

2.1. Cross-Architecture Perspective

Different instruction set architectures, such as x86 and ARM, have a profound impact
on the final generated binary code due to significant differences in instruction sets, register
usage, and calling conventions. Taking the BIO_printf function in the OpenSSL library
as an example, as depicted in Figure 1, the CFG of the binary function compiled with O0
optimization under the x86 architecture shows significant structural differences compared
to that of the binary function compiled with O3 optimization under the ARM architecture.
The characteristics of the x86 instruction set determine that its binary code exhibits specific
node connections and process flows in the CFG. In contrast, due to the uniqueness of its
own instruction set, the corresponding CFG of the ARM architecture is completely different
in structure, with obvious distinctions in aspects such as node composition and branch
distribution, which fully reflects the structural changes brought about by cross-architecture
to binary code.

These structural transformations across architectures create a fundamental robust-
ness challenge for graph neural networks. When a GNN is trained on graphs from one
architecture and tested on another, it encounters a significant distributional shift that con-
ventional GNN models struggle to handle. This represents a practical manifestation of the
out-of-distribution generalization problem widely discussed in robust machine learning
research.

https://github.com/kidding1412/GBsim
https://github.com/kidding1412/GBsim

Entropy 2025, 27, 392 5 of 23

push rbp

mov rbp, rsp

sub rsp, 0F0h

mov [rbp+var_E8], rdi

mov [rbp+var_F0], rsi

mov [rbp+var_A0], rdx

mov [rbp+var_98], rcx

mov [rbp+var_90], r8

mov [rbp+var_88], r9

test al, al

jz short loc_14B77F

movaps [rbp+var_80], xmm0

movaps [rbp+var_70], xmm1

movaps [rbp+var_60], xmm2

movaps [rbp+var_50], xmm3

movaps [rbp+var_40], xmm4

movaps [rbp+var_30], xmm5

movaps [rbp+var_20], xmm6

movaps [rbp+var_10], xmm7

mov rax, fs:28h

mov [rbp+var_B8], rax

xor eax, eax

mov [rbp+var_D0], 10h

mov [rbp+var_CC], 30h

lea rax, [rbp+arg_0]

mov [rbp+var_C8], rax

lea rax, [rbp+var_B0]

mov [rbp+var_C0], rax

lea rdx, [rbp+var_D0]

mov rcx, [rbp+var_F0]

mov rax, [rbp+var_E8]

mov rsi, rcx

mov rdi, rax

call BIO_vprintf

mov [rbp+var_D4], eax

mov eax, [rbp+var_D4]

mov rsi, [rbp+var_B8]

xor rsi, fs:28h

jz short locret_14B801

call __stack_chk_fail leave

retn

STP X29, X30, [SP,#-0xB0+var_60]!

ADRP X9, #__stack_chk_guard_ptr@PAGE

MOV W11, #0xFFFFFFD0

MOV X29, SP

LDR X9, [X9,#__stack_chk_guard_ptr@PAGEOFF]

STR Q0, [SP,#0x60+var_s0]

ADD X12, SP, #0x60+var_s80

STR Q1, [SP,#0x60+var_s10]

MOV W10, #0xFFFFFF80

ADD X8, SP, #0x60+var_50

STR Q2, [SP,#0x60+var_s20]

STR Q3, [SP,#0x60+var_s30]

STR Q4, [SP,#0x60+var_s40]

STR Q5, [SP,#0x60+var_s50]

STR Q6, [SP,#0x60+var_s60]

STR Q7, [SP,#0x60+var_s70]

STP X2, X3, [SP,#0x60+var_s80]

MOV X2, X8

STP X4, X5, [SP,#0x60+var_s90]

STP X6, X7, [SP,#0x60+var_sA0]

LDR X3, [X9]

STR X3, [SP,#0x60+var_8]

MOV X3, #0

STR X12, [SP,#0x60+var_18]

ADD X3, SP, #0x60+arg_0

STP X3, X3, [SP,#0x60+var_28]

STP W11, W10, [SP,#0x60+var_10]

LDP X4, X5, [SP,#0x60+var_28]

STP X4, X5, [SP,#0x60+var_50]

LDP X4, X5, [SP,#0x60+var_18]

STP X4, X5, [X8,#0x10]

BL BIO_vprintf

ADRP X1, #__stack_chk_guard_ptr@PAGE

LDR X1, [X1,#__stack_chk_guard_ptr@PAGEOFF]

LDR X2, [SP,#0x60+var_8]

LDR X3, [X1]

SUBS X2, X2, X3

MOV X3, #0

B.NE loc_FCD74

LDP X29, X30, [SP+0x60+var_60]

RET

BL .__stack_chk_fail

sub rsp, 0D8h

test al, al

mov [rsp+0D8h+var_A8], rdx

mov [rsp+0D8h+var_A0], rcx

mov [rsp+0D8h+var_98], r8

mov [rsp+0D8h+var_90], r9

jz short loc_11F8C6

movaps [rsp+0D8h+var_88], xmm0

movaps [rsp+0D8h+var_78], xmm1

movaps [rsp+0D8h+var_68], xmm2

movaps [rsp+0D8h+var_58], xmm3

movaps [rsp+0D8h+var_48], xmm4

movaps [rsp+0D8h+var_38], xmm5

movaps [rsp+0D8h+var_28], xmm6

movaps [rsp+0D8h+var_18], xmm7

mov rax, fs:28h

mov [rsp+0D8h+var_C0], rax

xor eax, eax

lea rax, [rsp+0D8h+arg_0]

mov rdx, rsp

mov [rsp+0D8h+args.overflow_arg_area], rax

lea rax, [rsp+0D8h+var_B8]

mov [rsp+0D8h+args.gp_offset], 10h

mov [rsp+0D8h+args.fp_offset], 30h

mov [rsp+0D8h+args.reg_save_area], rax

call BIO_vprintf

ret = rax

mov rcx, [rsp+0D8h+var_C0]

xor rcx, fs:28h

jnz short loc_11F91C

call ___stack_chk_failadd rsp, 0D8h

retn

x86_O0 x86_O3 ARM_O3

Figure 1. Impact of cross-architecture and cross-optimization on the binary code of BIO_printf
function.

2.2. Cross-Optimization Perspective

Even within the same architecture (such as x86), different optimization levels (such
as O0 and O3) can cause significant differences in binary code. It can be clearly observed
from the Figure 1 that the binary code of the BIO_printf function compiled with O0
optimization under the x86 architecture has a relatively intuitive and simple instruction
sequence, manifested as a more regular process and fewer optimization traces in the CFG.
However, when compiled with the O3 optimization level, the instructions of the binary
code undergo significant changes. Some redundant instructions are eliminated, and the
execution order and combination of instructions are optimized. This not only leads to
changes at the instruction level but also makes the structure of the binary function present
a more compact and complex form in the CFG, such as the merging of certain nodes and
the simplification of branches. These differences caused by cross-architecture and cross-
optimization pose numerous challenges to binary code similarity analysis work, and also
highlight the necessity and importance of an in-depth exploration of these factors in this
research field.

From a GNN robustness perspective, these optimization-induced transformations in-
troduce structural noise and feature instability that test the limits of graph neural networks’
generalization capabilities. A truly robust GNN must maintain consistent performance
despite these significant variations in graph topology and node attributes—a challenge
that mirrors the broader problems of graph perturbation robustness and structural noise
resistance in graph machine learning research.

3. Related Work
BCSA is a technique used to identify similarities between binary code fragments, such

as functions. The core principle involves extracting features from binary code (e.g., semantic
and structural features) and leveraging these features for similarity measurement, enabling
applications in vulnerability detection, malware classification, and code plagiarism de-
tection. With the advancement of deep learning techniques, BCSA has made significant

Entropy 2025, 27, 392 6 of 23

progress in feature extraction and similarity computation, allowing for the automatic
learning of complex code features and improving the accuracy of analysis.

3.1. Classification Based on Features

Existing BCSA methods can be broadly categorized into three types based on the deep
learning models they employ: semantic feature-based methods, structural feature-based
methods, and hybrid methods that combine semantic and structural features.

1. Semantic feature-based methods. These methods analyze instruction sequences using
NLP techniques to extract the functional semantics of binary code. For example, binary
instructions are treated as words in a sentence, and models such as Word2Vec [21],
RNN, LSTM, or BERT [20] are utilized to capture the contextual semantics of in-
structions [6,9,15]. However, these methods often overlook structural information,
leading to suboptimal performance in cross-architecture function representation. The
significant differences in instruction sets across architectures make it challenging to
capture cross-architecture similarities solely based on semantic features.

2. Strructural feature-based methods. These methods focus on the structural charac-
teristics of binary code, such as CFG and abstract syntax trees (ASTs) [22], and use
GNNs [8,14,23,24] to capture the execution logic and flow of the program. Neverthe-
less, these methods often rely on expert knowledge during feature extraction, such
as selecting call information or the in-degree/out-degree of basic blocks in CFGs as
node features. This reliance can introduce bias and limit the adaptability to diverse
code characteristics.

3. Hybrid methods. These methods aim to integrate the strengths of both semantic and
structural features by combining the semantics of the instruction with the information
about the structure of the code, allowing for a more complete representation of the
binary code [10,11,17,25]. While these hybrid approaches demonstrate promising
performance, their reliance on joint structural-semantic features introduces new ro-
bustness challenges under distribution shifts (e.g., unseen compiler environments).
Recent advancements in graph Out-Of-Distribution (OOD) detection, such as GOO-
DAT [26], provide methodological insights to improve generalization across archi-
tectural boundaries by identifying invariant subgraph patterns. However, hybrid
methods typically require complex models to separately extract semantic and struc-
tural information, resulting in high computational costs. Moreover, existing research
rarely discusses the trade-offs between model complexity and performance, which
restricts their scalability in practical applications.

3.2. Classification Based on Comparison Approaches

Based on the comparison approach, the BCSA methods can be divided into two
categories: embedding-based methods and comparison-based methods.

1. Embedding-based methods. These methods [8,10,15,17,27] map binary functions
into a low-dimensional embedding space using deep learning models and compute
similarity using distance metrics (e.g., cosine distance). The primary advantage of
embedding-based methods lies in their ability to precompute embeddings, making
them suitable for large-scale applications. However, their accuracy is often limited
because similarity computation relies solely on distance metrics between embedding
vectors, which may fail to capture complex inter-function relationships.

2. Comparison-based methods. These methods [12–14] directly analyze raw data or fea-
tures of two binary functions and compute similarity using deep learning models such
as CNNs, LSTMs, or attention mechanisms. Comparison-based methods generally
achieve higher accuracy, as they can directly model complex relationships between

Entropy 2025, 27, 392 7 of 23

functions. However, they incur higher computational costs, particularly when pro-
cessing large-scale datasets, making them less efficient for real-time or large-scale
inference.

4. GBsim Approach
This paper proposes a novel approach to analyzing binary code similarity, which

consists of four distinct stages. As illustrated in Figure 2, these stages form a comprehensive
pipeline that aims to address the challenges in this domain. Stage 1 involves the pretraining
process of the language model, establishing its fundamental capabilities. In Stage 2, the
pretrained language model specifically transforms CFGs of binary functions into function
feature graphs through pattern recognition and semantic analysis. Stage 3 employs a
hybrid neural network architecture to convert these function feature graphs into vectorized
embedding representations. Finally, Stage 4 performs similarity measurement through
vector space search operations. The following sections will dive into the details of each
stage, elucidating their functionalities and contributions to the overall methodology.

Figure 2. GBsim workflow. This figure depicts the four-stage methodology for binary code analysis,
including Pretrain, Block Embedding, Function Embedding, and Two-Stage Searching.

4.1. Pretraining

Within the research domain of cross-architecture code similarity analysis, achieving
an effective representation of binary functions across different architectures poses a central
challenge. Essentially, it lies in accurately discerning and capturing the commonalities
and differences inherent in the function characteristics under different ISAs. To address
this predicament, we meticulously devised a language model with the ability to capture
syntactic and semantic similarities among diverse ISAs, enhancing the robustness of our
approach to distribution shifts between architectures.

Specifically, with regard to the CFG of binary functions, we consider the content of
basic blocks as independent sentence units, and thus the CFG composed of numerous basic
blocks was perceived as a paragraph made up of multiple sentences. Based on this unique
perspective, we initiated the construction of a corpus, aiming to provide solid data support
for the subsequent training of the language model.

Entropy 2025, 27, 392 8 of 23

Prior to formal model construction, the data standardization process to circumvent the
Out-Of-Vocabulary (OOV) issue is of paramount importance. For the operands in assembly
instructions, including those of special types and those exhibiting multiple combination
forms, such as immediate values, addresses, variable names, function names, etc., we
specifically designed and implemented a special token replacement strategy to fulfill the
objective of unified and standardized processing.

This standardization process is crucial from an information theory perspective, as it ef-
fectively reduces the entropy in the representation space by removing irrelevant variations,
thus creating a more robust foundation for cross-architecture analysis.

To evaluate the impact of model complexity on BCSA performance, we concurrently
constructed language models using the onehot, Word2vec, and BERT methods. To ensure
compatibility with onehot encoding, we uniformly set the word vector dimension to 128, as
the vocabulary size after standardization was determined to be 117. When employing the
Word2vec model, we directly adopted its default parameter settings and precisely adjusted
the window size to 5. Meanwhile, when opting for the BERT model, we accurately selected
the BERT-based parameter combination.

4.2. Block Embedding

Upon completion of the pretraining process, we obtained an assembly language
model capable of being simultaneously compatible with different ISAs. Subsequently,
we performed basic block embedding through the assembly language model to derive
robust function feature graphs that maintain consistent representations across architectural
boundaries.

To compare the impact of language models with different complexities on the perfor-
mance of BCSA in subsequent experiments, we respectively utilized three types of language
models to obtain three corresponding function feature graphs. Firstly, we regarded each
basic block within the CFG of the binary function as a sentence and replaced each word
in the sentence with the word vector obtained from the corresponding language model.
Secondly, we performed average pooling on the sentences to aggregate and obtain a vector
representing the basic block. Finally, within the CFG, we replaced the corresponding basic
block with this vector while keeping the graph structure intact. In this way, we successfully
obtained the feature graphs of the functions. The specific process is illustrated in Figure 3.

Figure 3. The process of deriving function feature graphs from assembly language model.

The multilayer hybrid architecture is specifically designed to enhance the model’s
robustness against noisy graph structures commonly encountered in binary code anal-
ysis. By combining GCN’s ability to capture structural patterns with BERT’s semantic
understanding, this design creates complementary representations that remain stable even
when individual aspects of the code (either structure or semantics) are affected by noise or
architectural variations.

Entropy 2025, 27, 392 9 of 23

4.3. Function Embedding

After obtaining the feature graph of a binary function, we need to vectorize it to
generate the embedding representation of the function. As illustrated in Figure 4, we
propose a multilayer hybrid network architecture that integrates the GCN and BERT
models, combining structural and semantic information to generate embeddings for binary
functions. Our design is motivated by two principles: (1) the emerging consensus in
binary code analysis prioritizes the joint learning of structural (GNNs) and semantic (NLP)
features, and (2) foundational architectures like GCN and BERT provide robust baselines
to validate core ideas while resisting over-engineering. Specifically, a single hybrid layer
consists of n GCN layers and m BERT layers, and the entire hybrid network comprises
l such layers. Here, n, m, and l are hyperparameters of the GBsim model, with each
parameter ranging from 1 to 3. To evaluate the relationship between model complexity and
performance, we performed extensive testing on different combinations of n, m, and l to
explore the optimal configuration.

Figure 4. Multilayer hybrid network. The multilayer hybrid network combines GCNs with the BERT
model and accomplishes the extraction of high-quality embeddings for binary functions by means of
multilayer stacking.

The GCN module updates node features based on the CFG. Let the control flow
graph be represented as a graph G = (V, E), where V denotes the set of nodes and E
denotes the set of edges. Each node represents a basic block. The GCN layer updates node
representations by aggregating information from neighboring nodes, as described by the
following equation:

H(l+1) = σ
(

D− 1
2 AD− 1

2 H(l)W(l)
)

(1)

Here, H(l) represents the node feature matrix at the l-th layer, H(0) denotes the initial
node features, A is the adjacency matrix of the graph, D is the degree matrix of A, W(l) is
the learnable weight matrix in the l-th layer, and σ is the activation function, such as ReLU.
This equation captures the structural information of the control flow graph by aggregating
information from neighboring nodes into the central node through graph convolution.

This equation captures the structural information of the control flow graph by aggregat-
ing information from neighboring nodes into the central node through graph convolution.
From a robustness perspective, this aggregation process helps mitigate the impact of
isolated structural anomalies that might appear in binary functions due to compilation
differences or partial recovery of control flow edges.

Entropy 2025, 27, 392 10 of 23

After passing through the GCN module, the sequence of node features is fed into the
BERT layers. To better adapt the BERT model to our framework, several modifications
were made:

• Removal of the embedding layer: The original embedding layer in BERT was removed
because all embedding operations were already handled by the prior function feature
graph generation. The resulting feature sequence can directly serve as input to the
BERT network layers.

• Elimination of the Next Sentence Prediction (NSP) task: The NSP task, designed for
natural language contexts to help the model understand inter-sentence relationships,
was removed. In our scenario, each function is treated as an independent “sentence”
input to BERT, and thus the concept of a “next sentence” does not logically apply.
Moreover, previous studies [28] have shown that removing the NSP task can improve
the performance of the model and simplify the computation in many cases. Therefore,
the NSP task was excluded from this model.

The modified BERT layer processes sequence information in a way that is invariant
to specific instruction set architectures, focusing instead on the underlying semantics of
the operations. This architectural choice significantly contributes to the model’s robustness
when handling cross-architecture binary code.

The BERT layer processes the serialized basic block features and generates embeddings
at the function level. Let the node feature sequence after GCN processing be denoted as
{h1, h2, . . . , hn}, which is entered into the BERT model’s word embedding layers. The
operation of the BERT layer can be described by the following equation:

Ei = BERT(h1, h2, . . . , hn), (2)

where Ei represents the semantic embedding of the i-th basic block after the BERT encoding
layer. If BERT is the last layer, its output CLS vector Ecls is used as the final embedding
of the function. If BERT’s output is not the last layer, its result will be used to update the
node features in the function feature graph and then continuously input to GCN for cyclic
processing.

4.4. Two-Stage Searching

In this study, the two-stage search algorithm plays a crucial role in balancing search
robustness and efficiency when comparing the similarity between binary functions. In the
first stage, the cosine distance is calculated between the query function and all functions in
the search pool, and the k nearest top results are selected as the candidate set. This initial
filtering provides a robust mechanism against outliers and noise in the search space.

In the second stage, a two-layer fully connected network is employed for a fine com-
parison. A single-layer fully connected network is not chosen because when mapping the
256-dimensional input vector (formed by concatenating two 128-dimensional vectors) to
1 dimension, it essentially computes the inner product with a 256 × 1 weight sequence,
which is prone to information loss. Although fully connected three-layer and above net-
works can handle complex relationships, they would significantly increase the complexity
of the model and the time cost, making them unsuitable for large-scale tasks.

The input of this two-layer fully connected network is a 1 × 256 concatenated vector.
The first layer reduces the 256 dimensions to 128 dimensions to reduce redundancy and
retain key information. After being activated by ReLU, the second layer further reduces the
128 dimensions to 1 dimension to output a similarity value. Finally, the Sigmoid function
is used to map the result in the range of 0 to 1, making the similarity score intuitive and
comparable.

Entropy 2025, 27, 392 11 of 23

4.5. Training

Within the GBsim framework, three crucial training procedures are mainly involved.
The first of these is the pretraining stage of the language model, whose corresponding
details have been elaborately expounded in the “pretraining” chapter.

Secondly, attention is focused on the training phase of the multilayer hybrid network.
During this process, we adopt TripletMarginLoss as the loss function, with its key parameter,
the margin, precisely set to 1.0, and apply it to the triplet structure composed of the
original function, the positive function, and the negative function. This loss function can
effectively drive the similarity between the original function and the positive function in
the embedding space to approach the maximum, while making every effort to minimize
the similarity with the negative function.

Third, emphasis is placed on the training of the two-stage comparison network. Given
that this network is specifically applied to search task scenarios, objective conditions make
it difficult for us to construct an ideal environment where the ratio of positive and negative
examples is strictly balanced at 1:1. In view of this, we employ the cross-entropy loss
function commonly used in classification tasks. Essentially, this task aims to perform a
binary classification on candidate functions one by one.

5. Experimental Setup
5.1. Baseline Comparisons

For this particular study, we have meticulously handpicked one exemplary baseline
approach from each of the three distinct BCSA technology pathways elucidated in Section 2.
These pathways, namely, methods based on semantic features, methods based on functional
structural features, and methods that combine semantic and structural features, each offer
unique perspectives and techniques in the realm of binary code similarity analysis.

Our focus was not only on the novelty and effectiveness of these baselines, but also
on their reproducibility and reliability. To this end, we deliberately chose baselines that
have emerged from top academic conferences, ensuring that they have been rigorously
vetted by the research community. Moreover, the availability of comprehensive official
code implementations was a key determinant, as it allowed us to minimize human-induced
errors and discrepancies during the replication process, thereby maintaining the highest
standards of scientific integrity.

SAFE [15]: This particular method falls under the umbrella of those based on semantic
features. At its core, SAFE harnesses the power of an RNN (Recurrent Neural Network)
architecture augmented with attention mechanisms. By taking assembly instructions as
input, it is capable of generating a highly representative and meaningful embedding of
the analyzed function. In our implementation, we adhered scrupulously to its official
PyTorch codebase, ensuring that every line of code was faithfully replicated. Throughout
our evaluation phase, the default parameter settings provided by the original authors were
maintained, guaranteeing an apples-to-apples comparison and a reliable assessment of its
performance.

Asteria-Pro [22]: As a representative of methods predicated on functional structural
features, Asteria-Pro exhibits a remarkable ability to exploit structural information to its
fullest potential. During the critical stages of 1-to-N searching, rapid prefiltering, and
the encoding of the function’s AST (Abstract Syntax Tree), Asteria-Pro demonstrates a
deep understanding and utilization of the inherent structural nuances within the code.
Our implementation of Asteria-Pro was based on its official code, with an unwavering
commitment to the default parameter settings. This ensured that we captured the essence
of the method as intended by its creators, allowing for a fair and accurate comparison.

Entropy 2025, 27, 392 12 of 23

jTrans [17]: Positioned at the intersection of semantic and structural features, jTrans
represents a novel amalgamation of ideas. It ingeniously adapts the concept of unique
positional vectors, a hallmark innovation of BERT-based NLP techniques, to decipher and
interpret jump information within functions. This adaptation empowers sequence-oriented
natural language models to process and make sense of the structural jumps that are an
integral part of code functions. In our implementation, we relied on the official jTrans
source code, leveraging the pretrained models available in the official repository.

5.2. Hardware and Software Environment

The experiments were carried out on an Ubuntu 22.04 system using Python 3.10 and
PyTorch 2.1.0, with CUDA 12.1 for GPU acceleration. The hardware was as follows:

One Nvidia L40 GPU with 48GB memory to accelerate matrix operations in GCN and
BERT layers, significantly reducing training time.

An AMD EPYC 9K84 96-Core Processor with 16 virtual CPUs for data preprocessing
and non-GPU computations.

A total of 150 GB RAM, ensuring smooth data loading and processing of large datasets
during training.

5.3. Dataset

We validated our model using the BINKIT [29] dataset, a comprehensive dataset de-
signed for tasks related to binary codes. It contains 243,128 binary files and 36,256,322 func-
tions, generated from 51 software packages in 1352 combinations of compiler configurations,
optimization settings, and target architectures (x86, ARM, MIPS). The dataset spans eight
processor architectures and multiple versions, considering the impact of diverse compiler
options on binary code.

For evaluation, we sampled 50,000 positive and 50,000 negative function pairs
(100,000 pairs total) from all architectures within BINKIT. Data were split into training,
validation, and test sets in a ratio of 8:1:1. This division ensured broad feature coverage
in the training set while retaining sufficient validation and test samples for robust model
tuning and performance evaluation.

In the function search task, we also constructed a function pool composed of
10,000 functions from the BINKIT dataset, which was used to evaluate the performance
of the model in binary function search tasks. To evaluate the model’s performance in
cross-optimization binary function search tasks, we also constructed a dedicated search
dataset specifically designed for cross-optimization scenarios. In particular, this is a purely
testing dataset, and no training has been conducted on it for any of the work.

The BINKIT dataset represents an ideal testbed for evaluating model robustness
under real-world distribution shifts. The diversity of compiler configurations, optimization
settings, and target architectures creates natural challenges that mirror practical scenarios
where binary code analysis must remain robust despite significant variations in how source
code is compiled.

5.4. Evaluation Metrics

We adopted MRR and Recall@1 as the primary evaluation metrics. These are highly
effective in ranking quality in retrieval tasks. To assess the impact of hyperparameter com-
plexity on performance, we also employed accuracy for quick and comparative analysis.

In binary software similarity analysis, real-world applications typically involve one-to-
many retrievals. Although traditional metrics such as ROC-AUC and accuracy are valuable
for evaluating binary classification and serve as foundational measures for one-to-many
retrieval, they have limitations in directly reflecting retrieval quality in such scenarios.

Entropy 2025, 27, 392 13 of 23

MRR evaluates the reciprocal rank of the positive example in the set of candidates,
precisely measuring the quality of the ranking of positive examples.

Recall@1 focuses on whether the positive example is correctly ranked first in the
candidate set, a critical metric for determining the model’s ability to swiftly and accurately
retrieve the target.

These metrics align closely with real-world applications of binary software similarity
analysis, providing a direct and reliable assessment of the model’s performance.

6. Evaluation
To validate the effectiveness and robustness of the GBsim model in addressing the

numerous challenges previously highlighted in the BCSA domain, particularly those related
to graph structure noise and cross-architecture distribution shifts, we designed a series of
experiments to answer the following research questions:

• RQ1: How does model complexity impact performance?
• RQ2: How does GBsim compare to SOTA solutions in terms of performance?
• RQ3: How does GBsim perform in real-world vulnerability search scenarios?
• RQ4: How does GBsim’s inference time cost compare to baseline models?
• RQ5: How does the two-stage search algorithm affect the trade-off between accuracy

and efficiency?

These questions aim to comprehensively evaluate GBsim’s capabilities across multiple
critical dimensions, including performance trade-offs, practical applicability, and efficiency
in real-world use cases.

6.1. Hyperparameter Sensitivity and Robustness Analysis (RQ1)

To evaluate the impact of model complexity on performance and robustness against
distribution shifts, we conducted experiments in models with varying numbers of GCN
layers, BERT layers, and hybrid layers, and different word embedding pretraining strategies.
The GCN, BERT, and hybrid layers were varied from 1 to 3, while word embeddings
were tested with three schemes: onehot, Word2Vec, and BERT. Accuracy was used as an
evaluation metric for model performance across different hyperparameters, as it provides a
simple and effective comparison in scenarios with numerous straightforward evaluations.
A total of 81 hyperparameter configurations were tested.

Figure 5 illustrates the performance of the models in various combinations of depths
of the deep learning layer. Each bar represents the average accuracy of the three embedding
schemes for a given combination. From the figure, we observe that a GCN depth of 1 con-
sistently yields the worst performance across configurations. Theoretically, a single-layer
GCN only captures the information of one-hop neighbors, which inadequately represents
the structural features of binary function CFGs. As model complexity increases, GCN’s
contribution to performance is generally positive. However, in all configurations with three
hybrid layers, models with two GCN layers outperform those with three layers, indicating
diminishing returns with additional GCN layers in highly complex networks. Models with
a single-layer GCN in high-complexity configurations consistently perform the worst.

This observation has significant implications for model robustness in cross-architecture
scenarios, as it suggests that finding the optimal GCN depth is crucial for extracting struc-
tural features that remain stable across different architectures while avoiding overfitting to
architecture-specific graph patterns.

Entropy 2025, 27, 392 14 of 23

1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3
Layers Combinations(BERT, Hybrid)

87

88

89

90

91

92

93

94

95

96

Av
er
ag
e
Ac
cu
ra
cy

Average Accuracy for Different Layers Combinations
GCN layers = 1
GCN layers = 2
GCN layers = 3

Figure 5. Different layers combinations by GCN layers. The labels on the x-axis (e.g., ‘1,1’) represent
combinations of BERT layers and Hybrid layers, where the first number is the number of BERT layers
and the second number is the number of Hybrid layers.

Figure 6 examines the impact of BERT layers on performance in different combinations
of GCN and hybrid layers. It is evident that as model complexity increases, single-layer
BERT models exhibit improved performance. However, when the GCN depth is 1, models
with three BERT layers perform poorly. This suggests that stacking additional BERT layers
does not compensate for the lack of sufficient structural information in the features. In
contrast, with adequate structural information, a single BERT layer achieves excellent
performance, reflecting efficient utilization of available features.

These results demonstrate the complex interplay between structural and semantic
robustness in our model. While BERT layers can enhance semantic understanding, their
effectiveness is contingent upon having sufficiently robust structural representations from
the GCN layers, highlighting the importance of balanced feature extraction for cross-
architecture robustness.

Figure 7 presents boxplots of performance across all network depth configurations
for different word embedding schemes, showing maximum, minimum, quartiles, and
medians. The onehot embedding consistently performs the worst, as it essentially relies
on statistical features derived from average pooling of basic block representations, which
is weaker in extracting semantic features compared to Word2Vec and BERT. The median
performance of BERT is almost identical to that of Word2Vec, with the interquartile range
of BERT outperforming that of Word2Vec. However, the best results are achieved with
Word2Vec, which also has a higher minimum performance than the other two models.
Although BERT is considered the next-generation model over Word2Vec in NLP, addressing
issues like polysemy and dynamic context, these advantages are less relevant in assembly
language. Assembly code, being a precise programming language, inherently avoids
polysemy. Additionally, standardized preprocessing eliminates extensive vocabulary size,
making the advantages of BERT in natural language processing less impactful for assembly
code embeddings.

Entropy 2025, 27, 392 15 of 23

1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3
LAYERS Combinations(GCN, Hybrid)

87

88

89

90

91

92

93

94

95

96

Av
er
ag

e
Ac
cu
ra
cy

Average Accuracy for Different Layers Combinations
BERT layers = 1
BERT layers = 2
BERT layers = 3

Figure 6. Different layers combinations by BERT layers. The labels on the x-axis (e.g., ’1,1’) represent
combinations of GCN layers and Hybrid layers, where the first number is the number of GCN layers
and the second number is the number of Hybrid layers.

These findings highlight an important observation regarding robustness in binary
code analysis: simpler language models like Word2Vec may sometimes offer greater sta-
bility across distribution shifts, as they focus on capturing core semantics while avoiding
overfitting to architecture-specific patterns that do not generalize well across different
instruction sets.

Figure 7. Performance of different language models.

In the subsequent evaluation, we will conduct experiments using the best-performing
GBsim configuration, which consists of a Word2Vec embedding model, a two-layer GCN, a
one-layer BERT, and a three-layer hybrid architecture.

Entropy 2025, 27, 392 16 of 23

6.2. Comparison with Baseline Models: Assessing Cross-Architecture Robustness (RQ2)

In this experiment, we evaluated the performance of the GBsim model and the baseline
models in binary function search tasks within the Binkit dataset. As shown in Figure 8,
all models exhibit a decreasing trend in Recall@1 as the pool size increases. When the
pool size is small, the Recall@1 values of all models are nearly 1.0. However, as the pool
size grows, the Recall@1 performance of the GBsim model decreases more slowly. This
indicates that as the pool size increases and the model performance declines, GBsim still
maintains the highest Recall@1 performance. It implies that the two-stage search strategy
plays an effective role in the function search scenario, achieving higher performance
than methods that merely calculate the cosine distance of vectors (such as jTrans and
SAFE). Although Asteria-Pro also employs a similar two-stage search strategy, the model
architecture combining GCN and BERT exerts a more effective function compared to the
method of extracting features from the abstract syntax tree.

The increasing pool size experiment serves as a progressive stress test for model ro-
bustness, as larger pools introduce more potential distractors and increase the difficulty of
maintaining accurate matches. GBsim’s superior performance as pool size grows demon-
strates its enhanced resilience to noise and distribution shifts in increasingly challenging
search environments.

Figure 8. Performance of GBsim and baseline models.

A detailed analysis in Table 1 reveals that GBsim outperforms its competitors in both
the MRR and Recall@1 metrics with a pool size of 10,000. Specifically, GBsim achieves an
average MRR of 0.901 and an average Recall@1 of 0.831. Compared to the best-performing
baseline model, Asteria-Pro (MRR = 0.875, Recall@1 = 0.810), GBsim improves Recall@1 by
2.59 percentage points and MRR by 2.97 percentage points.

In particular, as the optimization span increases (from O0 to O3), the performance of all
models exhibits a decreasing trend. This indicates that different optimization levels indeed
introduce significant challenges to binary function comparison tasks. Despite these chal-
lenges, GBsim consistently maintains superior performance across all optimization levels,
demonstrating its robustness and effectiveness in handling cross-optimization scenarios.
This highlights the advantage of GBsim’s design, which leverages a cross-architecture lan-
guage model and a hybrid layer combining GCN and BERT to extract both structural and

Entropy 2025, 27, 392 17 of 23

semantic information of functions, resulting in high-quality binary function embeddings.
This design enables GBsim to effectively capture high-quality function semantics in cross-
architecture and cross-optimization scenarios, significantly enhancing the robustness and
accuracy of binary code similarity analysis. From an information theory perspective, this
suggests that GBsim’s hybrid architecture more effectively preserves the essential semantic
and structural information that remains invariant across optimization transformations.

Table 1. Performance comparison of different models across optimization levels. MRR and Recall@1
of GBsim and baselines across different optimization levels (O0, O1, O2, O3) with Poolsize = 10,000.
“Avg.” represents the average performance across all optimization level pairs.

MRR Recall@1

O0, O3 O1, O3 O2, O3 Avg. O0, O3 O1, O3 O2, O3 Avg.

SAFE 0.381 0.698 0.724 0.691 0.352 0.644 0.707 0.603
jTrans 0.639 0.844 0.872 0.827 0.617 0.812 0.869 0.787
Asteria-Pro 0.726 0.897 0.924 0.875 0.709 0.851 0.872 0.810
GBsim 0.876 0.912 0.951 0.901 0.819 0.903 0.916 0.831

6.3. Real-World Vulnerability Scenarios(RQ3)

To rigorously evaluate GBsim’s performance in vulnerability detection, we constructed
a dataset focused on vulnerabilities in OpenSSL version 1.0.1. Specifically, we meticulously
selected 20 CVEs (Common Vulnerabilities and Exposures) from this version and pin-
pointed the corresponding vulnerable functions. During the data preprocessing phase, we
ensured data quality by filtering out functions with compilation errors or an insufficient
number of basic blocks. Subsequently, through cross-architecture and cross-optimization
compilation techniques, we generated a function set comprising 142 binary functions, all
sourced from vulnerable samples. Additionally, we constructed a complementary set of
358 functions from the same OpenSSL version that are not associated with any vulnerabili-
ties, resulting in a pool of 500 functions in total.

For evaluation, 100 vulnerable functions were randomly sampled and compared
against all functions in the pool. The highest similarity match for each comparison was
used to calculate the recall rate. As summarized in Table 2, GBsim achieved a recall of
81.3%, surpassing the best baseline, jTrans (recall = 79.2%), by a margin of 2.1 percentage
points. These results highlight GBsim’s remarkable advantage in vulnerability detection,
demonstrating its superior recall performance compared to other baseline models. This
strongly validates GBsim’s capability to precisely identify vulnerable functions in tasks
involving OpenSSL version 1.0.1, further establishing its robustness in vulnerability de-
tection. This suggests that GBsim could achieve even better performance in real-world
vulnerability search tasks by replacing GCN and BERT with state-of-the-art GNN and
NLP models.

Table 2. Recall comparison of different models. Recall values for different models in real-world
vulnerability.

SAFE jTrans Asteria-Pro GBsim

recall 0.238 0.792 0.768 0.813

6.4. Comparison of Efficiency: Balancing Robustness and Computational Cost (RQ4)

We evaluated the inference cost of GBsim in datasets of varying sizes and compared it
with baseline models. Since different baseline models use distinct preprocessing methods

Entropy 2025, 27, 392 18 of 23

and pretraining approaches (e.g., BERT-like models versus Word2Vec-based models), we
excluded the time cost associated with model preparation. This exclusion is reasonable
because these processes are typically performed only once during training and do not affect
the inference phase. Our analysis focused solely on the inference cost of each model on the
test set.

We measured the runtime on test datasets of different sizes. As shown in Table 3,
GBsim’s inference time is comparable to that of jTrans and is slightly faster. GBsim employs
a complex function embedding network and a comparison network, which results in
slightly longer inference times compared to simpler models. However, this complexity
is a necessary trade-off for its superior performance in vulnerability detection tasks, as
demonstrated in our earlier experiments. If more advanced and efficient GNN and NLP
components are integrated into GBsim, its inference efficiency could be further improved
without compromising its accuracy.

This analysis reveals an important trade-off between computational efficiency and
robustness in binary code similarity models. While GBsim requires slightly more computa-
tional resources than simpler models, this investment translates directly into significantly
improved robustness across distribution shifts, making it a worthwhile compromise for
critical security applications where reliability under varying conditions is paramount. From
an information theory perspective, the additional computational cost can be viewed as the
necessary resource investment to extract and process the invariant information that enables
robust cross-architecture similarity detection.

Table 3. Inference time (in seconds) for different models across varying pool sizes.

Pool Size SAFE jTrans Asteria-Pro GBsim

100 0.04 0.12 0.08 0.11
1000 0.31 1.44 0.77 1.62
5000 1.22 4.29 3.27 4.03

10,000 2.03 8.93 5.46 7.12

6.5. The Effectiveness of the Two-Stage Search Approach (RQ5)

To validate the impact of the two-stage search approach on model performance, we
designed an ablation experiment to verify its effectiveness. Using the GBsim model with
the optimal hyperparameter combination, we established two control groups. The first
group directly employs cosine similarity calculations on the vector representations of binary
functions for the search task, named GBsim-cos. The second group uses a fully connected
network (FCN) in its entirety with the same configuration as GBsim for comparison-based
searching, named GBsim-FCN. Since the control groups do not involve the two-stage
comparison, they are trained using the same training dataset as GBsim, without the need
to train the two-stage comparison network. The experiments were carried out on a search
test set with a pool size of 10,000. The results are shown in Table 4.

Table 4. Performance and efficiency comparison of GBsim variants. Comparison of inference time (in
seconds) and MRR for GBsim and its variants (GBsim-cos and GBsim-FCN) on a search pool size of
10,000.

GBsim GBsim-cos GBsim-FCN

time 5.46 4.33 7.94
MRR 0.901 0.822 0.905

Entropy 2025, 27, 392 19 of 23

Table 4 presents a comparison of inference time (in seconds) and MRR for GBsim and
its variants (GBsim-cos and GBsim-FCN) in a set of search tests with a pool size of 10,000.
Specifically, GBsim achieves an inference time of 5.46 s and an MRR of 0.901; GBsim-cos has
an inference time of 4.33 s and an MRR of 0.822, while GBsim-FCN exhibits an inference
time of 7.94 s and an MRR of 0.905.

As shown in the table, GBsim shows superior performance in MRR, significantly
outperforming GBsim-cos (MRR = 0.822), which relies solely on cosine similarity. Compared
to GBsim-FCN (MRR = 0.905), which depends entirely on a fully connected network,
GBsim achieves comparable performance with a shorter inference time. Although GBsim-
FCN has a slightly higher MRR than GBsim, its inference time is significantly longer
(7.94 s). In contrast, GBsim strikes a better balance between performance and efficiency
through its two-stage search strategy. Specifically, GBsim sacrifices only approximately
0.44% in MRR (from 0.905 to 0.901) while achieving a 31.2% improvement in efficiency
(reducing the inference time from 7.94 s to 5.46 s). This further validates the effectiveness
of the GBsim design, which combines the rapid filtering of cosine similarity with the fine-
grained comparison of a fully connected network, enabling high accuracy and significantly
enhancing search efficiency. This design makes GBsim highly competitive in practical
applications, particularly in large-scale binary function search tasks, where it can efficiently
and accurately complete the task.

7. Discussion
The experimental results of GBsim not only validate its effectiveness in cross-

architecture binary code similarity analysis but also provide important conclusions through
systematic experiments, offering valuable insights for future research.

7.1. Experimental Conclusions

1. Effectiveness of early model components. The experiments of GBsim demonstrate
that even early pioneering model components (such as GCN and BERT) can achieve
excellent performance in binary code similarity analysis tasks, as long as they effec-
tively combine structural information (extracted by GCN) and semantic information
(learned by BERT). This conclusion suggests that the key to model design lies not
in using the latest components but in how to effectively integrate the strengths of
different feature extraction methods.

2. Special characteristics of assembly language models. In the construction of assembly
language models, the experimental results of GBsim show that Word2Vec outperforms
BERT. This may be because the optimizations of BERT in natural language processing
(such as dynamic context and polysemy handling) are not fully applicable to assembly
language. The precision and limited vocabulary of the assembly language make
simpler embedding methods such as Word2Vec more advantageous. This finding
provides important guidance for future choices in the design of assembly language
models.

3. Relationship between model complexity and performance. The experiments also
reveal that model performance does not improve monotonically with increasing
complexity. The excessive stacking of layers (e.g., more than two GCN layers) may
lead to performance degradation, especially in highly complex networks. This can
be attributed to the over-smoothing effect in GNNs: most CFGs in binary code are
small-scale, where excessive GCN layers cause indistinguishable node representations.
This phenomenon highlights the need to strike a balance between model complexity
and performance in binary code analysis model design, avoiding over-engineering.

Entropy 2025, 27, 392 20 of 23

7.2. Interpreting Results Through the Lens of Robustness

The experimental results of GBsim provide valuable insights into GNN robustness in
binary code analysis. From an information theory perspective, the balance between model
complexity and performance can be understood as finding the optimal point where the
model captures sufficient information to make accurate predictions without overfitting
to noise or architecture-specific details. The superior performance of simpler Word2Vec
embeddings over BERT suggests that in domains with limited vocabulary and precise
semantics, simpler models may extract more robust representations by focusing on the most
essential information while discarding irrelevant variations. Additionally, the observed
performance plateau with increasing GCN layers indicates that there exists an information
saturation point beyond which additional structural processing introduces more noise than
signal, potentially degrading the model’s robustness to distribution shifts.

7.3. Limitations of GBsim

Despite its outstanding performance in experiments, GBsim still has some limitations
that need to be addressed in future research.

1. High computational cost. The hybrid architecture of GBsim (GCN+BERT) incurs com-
putational overhead due to the inherent complexity of jointly processing graph struc-
tures and semantic sequences, which imposes GPU memory and latency constraints in
large-scale deployments. While this limitation may affect real-time applications, our
architectural choices were motivated by a methodological focus: to validate that struc-
tural and semantic fusion itself, even instantiated through foundational models, can
fundamentally advance binary code embedding. Specifically, GCN and BERT serve
as paradigmatic instantiations of structural graph modeling and contextual seman-
tic representation, respectively. Their selection prioritizes conceptual transparency
over computational optimization, establishing a lower-bound performance baseline
for the proposed fusion paradigm. As both domains evolve (e.g., RoBERTa [28]’s
optimized pretraining), adopting more efficient variants could mitigate these costs
without altering the core methodology. Our contribution thus lies not in pushing
model-specific efficiencies, but in demonstrating that structural-semantic synergy
enables qualitatively new embedding capabilities.

2. Limited generalization ability. The performance of GBsim can be degraded in unfa-
miliar datasets, indicating there is room for improvement in its robustness against
extreme distribution shifts. One potential solution is to construct more extensive
datasets covering diverse compiler configurations, optimization levels, and instruc-
tion set architectures. Additionally, integrating domain adaptation techniques (e.g.,
feature alignment between seen/unseen ISAs) or contrastive learning objectives could
enhance cross-architecture generalization. Leveraging large language models (e.g.,
GPT) to align binary/source code semantics may further boost out-of-distribution
robustness through richer program understanding. While the current framework fo-
cuses on demonstrating cross-architecture feasibility, future extensions incorporating
meta-learning paradigms could specifically address rapid adaptation to novel ISAs.

7.4. Future Directions

The success of GBsim provides new information for the analysis of binary code sim-
ilarity, while its limitations point to future research directions. By optimizing model
architectures (including explainable graph neural networks [30] for transparent similarity
judgments), expanding datasets, and integrating large language models, we can enhance
accuracy, efficiency, and operational trustworthiness, which are particularly critical in
vulnerability detection scenarios where false positives may incur severe security conse-

Entropy 2025, 27, 392 21 of 23

quences. These improvements will bring greater value to software security analysis through
interpretable pattern discovery and risk-controlled decision making.

8. Conclusions
In this paper, we introduce GBsim, a novel approach to the embedding of binary

functions that addresses key robustness challenges in the detection of binary code similar-
ity. By integrating natural language processing techniques with graph neural networks,
GBsim constructs a robust cross-architecture assembly language model and a multilayer
hybrid network that remains stable despite significant distribution shifts between dif-
ferent architectures and optimization levels. Our extensive experiments on the BINKIT
dataset demonstrate that GBsim significantly outperforms state-of-the-art baseline models
across multiple metrics, including MRR and Recall@1, while also excelling in real-world
vulnerability detection tasks.

Specifically, GBsim achieved an MRR of 0.901 and a Recall@1 of 0.831 with a pool
size of 10,000, surpassing the best-performing baseline model, Asteria-Pro (MRR = 0.875,
Recall@1 = 0.810), by 2.97 and 2.59 percentage points, respectively. This performance
advantage becomes even more pronounced at larger pool sizes, highlighting GBsim’s
scalability and robustness. In real-world vulnerability detection scenarios, GBsim achieved
a recall rate of 81.3% on the OpenSSL 1.0.1 dataset, outperforming jTrans (recall = 79.2%)
by 2.1 percentage points. These results underscore GBsim’s capability to precisely identify
vulnerable functions, making it a powerful tool for real-world security applications.

The hyperparameter sensitivity analysis revealed that the optimal configuration of
GBsim consists of a Word2Vec embedding model, a two-layer GCN, a one-layer BERT,
and a three-layer hybrid architecture. This configuration strikes a balance between model
complexity and performance, as evidenced by the diminishing returns observed with
additional GCN layers in highly complex networks. Furthermore, our evaluation of
inference costs showed that GBsim’s runtime is comparable to that of jTrans, with inference
times of 7.12 s for a pool size of 10,000, despite its more complex architecture. This efficiency,
combined with its superior accuracy, makes GBsim a practical solution for large-scale binary
code analysis.

These findings demonstrate that GBsim not only achieves state-of-the-art performance
in standard settings but also maintains exceptional robustness under challenging real-world
conditions where distribution shifts between training and deployment environments are
inevitable.

In summary, GBsim not only provides an effective solution for cross-architecture bi-
nary code similarity detection, but also offers valuable insights into the robustness of graph
neural networks when applied to complex structural data with inherent noise and distribu-
tion shifts. By addressing these fundamental robustness challenges, GBsim establishes a
new benchmark for reliable binary code analysis in security-critical applications.

Author Contributions: Conceptualization, J.D.; methodology, J.D.; project administration, Q.W.;
software, J.D. and X.B.; visualization, X.B.; writing—original draft preparation, J.D.; writing—review
and editing, Y.W.; investigation, J.D. and X.B.; resources, Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Key R & D Program of China under Grant No.
2020YFB2010900 and the Program for Innovation Leading Scientists and Technicians of Zhong Yuan
under Grant No. 224200510002.

Informed Consent Statement: Not applicable.

Entropy 2025, 27, 392 22 of 23

Data Availability Statement: The dataset used in this study was obtained from BINKIT [29]. The code
for dataset processing, model training, and evaluation is publicly available on GitHub at https:
//github.com/kidding1412/GBsim (accessed on 2 February 2025), enabling other researchers to
access and reuse it for further studies.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. David, Y.; Partush, N.; Yahav, E. FirmUp: Precise Static Detection of Common Vulnerabilities in Firmware. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, 24–28 March 2018; Shen, X., Tuck, J., Bianchini, R., Sarkar, V., Eds.; ACM: New York, NY, USA,
2018; pp. 392–404. [CrossRef]

2. Hu, X.; Shin, K.G.; Bhatkar, S.; Griffin, K. MutantX-s: Scalable Malware Clustering Based on Static Features. In Proceedings of the
2013 USENIX Annual Technical Conference, USENIX ATC 2013, San Jose, CA, USA, 26–28 June 2013; Birrell, A., Sirer, E.G., Eds.;
USENIX Association: Berkeley, CA, USA, 2013; pp. 187–198.

3. Luo, L.; Ming, J.; Wu, D.; Liu, P.; Zhu, S. Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison with
Applications to Software and Algorithm Plagiarism Detection. IEEE Trans. Softw. Eng. 2017, 43, 1157–1177. [CrossRef]

4. Gao, D.; Reiter, M.K.; Song, D.X. BinHunt: Automatically Finding Semantic Differences in Binary Programs. In Proceedings of the
Information and Communications Security, 10th International Conference, ICICS 2008, Birmingham, UK, 20–22 October 2008;
Chen, L., Ryan, M.D., Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5308, pp. 238–255. [CrossRef]

5. Ding, S.H.H.; Fung, B.C.M.; Charland, P. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against
Code Obfuscation and Compiler Optimization. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 19–23 May 2019; pp. 472–489. [CrossRef]

6. Tian, D.; Jia, X.; Ma, R.; Liu, S.; Liu, W.; Hu, C. BinDeep: A Deep Learning Approach to Binary Code Similarity Detection. Expert
Syst. Appl. 2021, 168, 114348. [CrossRef]

7. Duan, Y.; Li, X.; Wang, J.; Yin, H. DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing. In Proceedings
of the Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2020. [CrossRef]

8. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural Network-based Graph Embedding for Cross-Platform Binary Code
Similarity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017; pp. 363–376. [CrossRef]

9. Zuo, F.; Li, X.; Young, P.; Luo, L.; Zeng, Q.; Zhang, Z. Neural Machine Translation Inspired Binary Code Similarity Comparison
beyond Function Pairs. In Proceedings of the 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, CA, USA, 24–27 February 2019; The Internet Society: Reston, VA, USA, 2019.

10. Yu, Z.; Cao, R.; Tang, Q.; Nie, S.; Huang, J.; Wu, S. Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity
Detection. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, 7–12
February 2020; AAAI Press: Menlo Park, CA, USA, 2020; pp. 1145–1152.

11. Wang, H.; Gao, Z.; Zhang, C.; Sun, M.; Zhou, Y.; Qiu, H.; Xiao, X. CEBin: A Cost-Effective Framework for Large-Scale Binary
Code Similarity Detection. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2024), Vienna, Austria, 16–20 September 2024. [CrossRef]

12. Liu, B.; Huo, W.; Zhang, C.; Li, W.; Li, F.; Piao, A.; Zou, W. αDiff: Cross-Version Binary Code Similarity Detection with DNN.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, 3–7 September 2018; Huchard, M., Kästner, C., Fraser, G., Eds.; ACM: New York, NY, USA, 2018; pp. 667–678. [CrossRef]

13. Lageman, N.; Kilmer, E.D.; Walls, R.J.; McDaniel, P.D. BinDNN: Resilient Function Matching Using Deep Learning. In Proceedings
of the Security and Privacy in Communication Networks—12th International Conference, SecureComm 2016, Guangzhou, China,
10–12 October 2016; Proceedings. Deng, R.H., Weng, J., Ren, K., Yegneswaran, V., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; Volume 198, pp. 517–537. [CrossRef]

14. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph Matching Networks for Learning the Similarity of Graph Structured Objects.
In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019;
Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: London, UK, 2019; Volume 97, pp. 3835–3845.

15. Massarelli, L.; Luna, G.A.D.; Petroni, F.; Baldoni, R.; Querzoni, L. SAFE: Self-Attentive Function Embeddings for Binary Similarity.
In Proceedings of the Detection of Intrusions and Malware, and Vulnerability Assessment—16th International Conference,
DIMVA 2019, Gothenburg, Sweden, 19–20 June 2019; Proceedings. Perdisci, R., Maurice, C., Giacinto, G., Almgren, M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2019; Volume 11543, pp. 309–329. [CrossRef]

https://github.com/kidding1412/GBsim
https://github.com/kidding1412/GBsim
http://doi.org/10.1145/3173162.3177157
http://dx.doi.org/10.1109/TSE.2017.2655046
http://dx.doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1109/SP.2019.00003
http://dx.doi.org/10.1016/j.eswa.2020.114348
http://dx.doi.org/10.14722/ndss.2020.24311
http://dx.doi.org/10.1145/3133956.3134018
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn
http://dx.doi.org/10.1145/3238147.3238199
http://dx.doi.org/10.1007/978-3-319-59608-2_29
http://dx.doi.org/10.1007/978-3-030-22038-9_15

Entropy 2025, 27, 392 23 of 23

16. Massarelli, L.; Luna, G.; Petroni, F.; Querzoni, L. Investigating Graph Embedding Neural Networks with Unsupervised Features
Extraction for Binary Analysis. In Proceedings of the Workshop on Binary Analysis Research (BAR) 2019, San Diego, CA, USA, 24
February 2019. [CrossRef]

17. Wang, H.; Qu, W.; Katz, G.; Zhu, W.; Gao, Z.; Qiu, H.; Zhuge, J.; Zhang, C. jTrans: Jump-Aware Transformer for Binary Code
Similarity Detection. In Proceedings of the ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, Republic of Korea, 18–22 July 2022; Ryu, S., Smaragdakis, Y., Eds.; ACM: New York, NY, USA, 2022;
pp. 1–13. [CrossRef]

18. Pei, K.; Xuan, Z.; Yang, J.; Jana, S.; Ray, B. Trex: Learning Execution Semantics from Micro-Traces for Binary Similarity. arXiv
2020, arXiv:2012.08680.

19. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
20. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186. [CrossRef]

21. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013.

22. Yang, S.; Dong, C.; Xiao, Y.; Cheng, Y.; Shi, Z.; Li, Z.; Sun, L. Asteria-Pro: Enhancing Deep Learning-based Binary Code Similarity
Detection by Incorporating Domain Knowledge. ACM Trans. Softw. Eng. Methodol. 2024, 33, 1:1–1:40. [CrossRef]

23. Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; Wang, W. SimGNN: A Neural Network Approach to Fast Graph Similarity
Computation. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM 2019,
Melbourne, VIC, Australia, 11–15 February 2019; Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K., Eds.; ACM: New York,
NY, USA, 2019; pp. 384–392. [CrossRef]

24. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J. VulSeeker: A Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary.
In Proceedings of the 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), Montpellier,
France, 3–7 September 2018; pp. 896–899. [CrossRef]

25. Wang, H.; Gao, Z.; Zhang, C.; Sha, Z.; Sun, M.; Zhou, Y.; Zhu, W.; Sun, W.; Qiu, H.; Xiao, X. CLAP: Learning Transferable Binary
Code Representations with Natural Language Supervision. In Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2024), Vienna, Austria, 16–20 September 2024; . [CrossRef]

26. Wang, L.; He, D.; Zhang, H.; Liu, Y.; Wang, W.; Pan, S.; Jin, D.; Chua, T. GOODAT: Towards Test-Time Graph Out-of-Distribution
Detection. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Vancouver, CB, Canada,
20–27 February 2024; Wooldridge, M.J., Dy, J.G., Natarajan, S., Eds.; AAAI Press: Washington, DC, USA, 2024; pp. 15537–15545.
[CrossRef]

27. Luo, Z.; Wang, P.; Wang, B.; Tang, Y.; Xie, W.; Zhou, X.; Liu, D.; Lu, K. VulHawk: Cross-architecture Vulnerability Detection with
Entropy-based Binary Code Search. In Proceedings of the 30th Annual Network and Distributed System Security Symposium,
NDSS 2023, San Diego, CA, USA, 27 February–3 March 2023; The Internet Society: Reston, VA, USA, 2023.

28. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

29. Kim, D.; Kim, E.; Cha, S.K.; Son, S.; Kim, Y. Revisiting Binary Code Similarity Analysis Using Interpretable Feature Engineering
and Lessons Learned. IEEE Trans. Softw. Eng. 2022, 49, 1661–1682. [CrossRef]

30. Zhang, H.; Wu, B.; Yuan, X.; Pan, S.; Tong, H.; Pei, J. Trustworthy Graph Neural Networks: Aspects, Methods, and Trends. Proc.
IEEE 2024, 112, 97–139. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14722/bar.2019.23020
http://dx.doi.org/10.1145/3533767.3534367
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.1145/3604611
http://dx.doi.org/10.1145/3289600.3290967
http://dx.doi.org/10.1145/3238147.3240480
http://dx.doi.org/10.1145/3650212.3652145
http://dx.doi.org/10.1609/AAAI.V38I14.29480
http://dx.doi.org/10.1109/TSE.2022.3187689
http://dx.doi.org/10.1109/JPROC.2024.3369017

	Introduction
	Background
	Cross-Architecture Perspective
	Cross-Optimization Perspective

	Related Work
	Classification Based on Features
	Classification Based on Comparison Approaches

	GBsim Approach
	Pretraining
	Block Embedding
	Function Embedding
	Two-Stage Searching
	Training

	Experimental Setup
	Baseline Comparisons
	Hardware and Software Environment
	Dataset
	Evaluation Metrics

	Evaluation
	Hyperparameter Sensitivity and Robustness Analysis (RQ1)
	Comparison with Baseline Models: Assessing Cross-Architecture Robustness (RQ2)
	Real-World Vulnerability Scenarios(RQ3)
	Comparison of Efficiency: Balancing Robustness and Computational Cost (RQ4)
	The Effectiveness of the Two-Stage Search Approach (RQ5)

	Discussion
	Experimental Conclusions
	Interpreting Results Through the Lens of Robustness
	Limitations of GBsim
	Future Directions

	Conclusions
	References

