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Abstract: The L-space and P-space are two essential representations for studying complex
networks that contain different clusters. Existing network models can successfully generate
networks in L-space, but generating networks in P-space poses significant challenges. In
this study, we present an empirical analysis of the distribution of the number of a line’s
nodes and the properties of the networks generated by these data in P-space. To gain
insights into the operational mechanisms of the network of these data, we propose an
event–link model that incorporates new nodes and links in P-space based on actual data
characteristics using real data from marine and public transportation networks. The entire
network consists of a series of events that consist of many nodes, and all nodes in an
event are connected in the P-space. We conduct simulation experiments to explore the
model’s topological features under different parameter conditions, demonstrating that the
simulation outcomes are consistent with the theoretical analysis of the model. This model
exhibits small-world characteristics, scale-free behavior, and a high clustering coefficient.
The event–link model, with its adjustable parameters, effectively generates networks with
stable structures that closely resemble the statistical characteristics of real-world networks
that share similar growth mechanisms. Moreover, the network’s growth and evolution can
be flexibly adjusted by modifying the model parameters.

Keywords: complex network; event–link model; transport network; representation in
P-space; growing mechanism

1. Introduction
Complex networks have emerged as a powerful tool for analysis and modeling across

various disciplines [1–5], including sociology [6–8], biology [9–12], computer science [13],
transportation [14–16], and physics [17–19]. Their ability to help researchers better under-
stand and predict the behavior of complex systems has led to the growing adoption of
complex network theory in diverse network analyses [20]. The rapid development in this
field has resulted in numerous models, theories, and algorithms designed to capture the
unique characteristics and structures of various real-world networks [21–26].

Understanding the structure of complex systems and their underlying universal laws
has long been a focal point of research. By studying network generation mechanisms, we
can gain insights into how real networks function. Revealing the internal structure and
evolution of real-world networks through models has become a prominent topic in complex
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network research [27]. These models aim to represent real-world networks abstractly, such
as the classical regular network, random network [28], small-world network [29], and
scale-free network [30].

Studying how real networks operate through their generation mechanisms presents a
valuable research opportunity. Additionally, simulating these networks makes abstract con-
cepts more tangible and relatable. Empirical explorations have highlighted several common-
alities in real networks, network degree distributions often follow a power law [3,11,30–32],
and these networks typically exhibit high clustering coefficients and short average paths.
These characteristics have inspired researchers to develop general models to explain them.
Among the most noteworthy are the Watts–Strogatz (WS) model and the Barabási–Albert
(BA) model. The WS model, developed by Watts and Strogatz, bridges regular and random
networks, proving to be more representative of real networks. Examples include food
networks, airport networks, and word co-occurrence networks, which all show small-world
properties. The BA model, which was proposed by Barabási and Albert, demonstrates that
networks adhere to power-law distributions, where growth and preferential attachment
serve as two fundamental mechanisms for complex network evolution.

Classical evolutionary models have laid a significant foundation for understanding
real network systems, paving the way for studying complex network models. Various
optimized evolutionary models derived from these foundational concepts aim to describe
real-world networks in a more comprehensive manner [33]. From the perspective of net-
work clustering, Holmes [34] enhanced the BA model by introducing a triangle formation
mechanism, known as Triad Formation, into the preferential connection rule. This adap-
tation resulted in networks with high clustering. Inspired by the BA model, Lu et al. [35]
extended the “preferential connection” mechanism to the particle swarm organization
process, leading to scale-free network models characterized by high aggregation.

Several node aging models have been proposed when considering preferential attach-
ment within networks. Amaral [36] introduced a model based on the Southern California
power grid and actor cooperation networks, where node aging affects connectivity. The re-
search by Dorogovtsev [37,38] indicated that the probability of preferential connection
decreases with node age. Additionally, Saramäki [39] developed a local area network
model that allows new nodes to preferentially connect to an existing local network, exhibit-
ing scale-free properties. In terms of growth, Kim et al. [40] proposed a complex network
evolution model characterized by accelerated node growth, where the size of the growing
network expands linearly. Liu et al. [41] discovered that the rate of edge evolution in
many real-world networks is significantly greater than the rate of node increase, resulting
in a new network growth evolution model. Recognizing that it is impractical for a real
network to consistently add a fixed number of nodes during each period of its evolution,
Wang et al. [42] proposed a growth model for complex networks that enhances the accel-
erated increase in the number of nodes. In their model, the number of network nodes
grows geometrically, reflecting the evolving nature of real networks. Kharel introduced
a new degree-preserving growth model [43] that assumes that the total average degree
in the network remains constant, allowing for the generation of various models based on
different parameters.

Complex networks are fundamentally connected to graph theory [44,45]. Mathemat-
ically, a network is defined as a graph G(V, E) characterized by a set V of nodes and
a set E of edges [44,45]. Depending on the aim of the network analysis, the graph can
be represented in different types of representation spaces. The most commonly utilized
network representation spaces are L-space and P-space [46–49]. These two representations
are particularly prevalent in transportation networks, including railways [16,50–55], ship
transport [56], subways [57], and bus networks [15,58–62]. Similarly complex network
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construction occurs in urban expansion [63] and interpersonal relationships [64]. A trans-
portation network in physical L-space refers to the layout of infrastructure such as roads
and rail lines. In this context, nodes represent fixed locations, like intersections and sta-
tions, while edges denote direct physical connections between these locations. In contrast,
a transportation network from a passenger-centric perspective P-space focuses on the travel
experience. Here, nodes correspond to the origins and destinations of trips, and edges
represent direct travel paths, such as bus routes or subway lines, which are designed to
optimize service efficiency and accessibility. In networks modeled in P-space, stops are
treated as nodes, and edges connect every pair of stops that are part of the same route,
resulting in a complete subgraph. In L-space, however, stops are connected only to those
nearby along the route. This representation effectively transforms the distances and po-
sitions between nodes into a cohesive network structure, facilitating a deeper analysis of
network topology and dynamic behavior. It serves as a valuable tool for studying and
exploring real-world networks.

The P-space representation is similar to a hypergraph, which contains a series of
hyperedges. Each hyperedge contains nodes that are connected by this hyperedge [65,66].
Hypergraphs emphasize multimode in different nodes and multidimensional relation
between this nodes, using hyperdegree to indicate the number of lines connected to a par-
ticular node. In contrast, networks represented in P-space focus on single-mode topological
analysis, where the degree reflects the number of ports connected to a given port in the con-
text of studying transportation networks. Zhang [67] presented a growth model grounded
in hypergraph theory that incorporates a double-priority attachment mechanism. Moreover,
Wang [68] proposed a hypernetwork model. They set a fixed number m of notes nodes
connected to one existing node by hyperedges; the existing node is chosen proportional to
its hyperdegree. Guo [69] improved this model by changing the fixed number of nodes at
each step to a non-uniform distribution. They defined the positive integers ηN(t) and ϵN(t)
to represent the number of new nodes and existing nodes, respectively. Chen Avin [70]
proposed a conceptual framework characterized by an approximate model while positing
that not every step necessitates the inclusion of new nodes within the network. Rather,
there are instances in which existing nodes may interact to establish a novel hyperedge,
thereby enhancing the network’s structural complexity without the continual addition of
new components.

Most existing models rely on two main mechanisms: growth and preferential connec-
tion. It is clear that the processes used to add nodes in real networks are not fixed but follow
some specific distributions, and the connections formed by edges can also vary. Therefore,
assuming that real networks increase by a constant number of nodes during each period
or that nodes are added uniformly throughout the evolution process is unrealistic. We
aim to develop a more accurate network model based on real-world data by considering
the simultaneous growth of both edges and nodes and integrating these insights with
established high-aggregation network growth models.

In this study, we focus on the representation of these networks in P-space. We propose
a P-space-based model capable of replicating the characteristics of accurate data and
generating a network that resembles an actual system. In the P-space representation, all
nodes on a single line are interconnected within a complex network (shown in Figure 1),
this line can be regarded as the event that links all nodes, and a series of events can form a
network. To simulate the network generation mechanism, we utilized six datasets, one of
which is the worldwide marine transportation network (WMTN), while the other five are
public transport networks (PTNs). The new model network aligns more closely with the
growth mechanisms observed in real networks, demonstrating a high degree of similarity
and facilitating further exploration of the real world.
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The rest of this article is organized as follows. In Section 2, we introduce the data and
model. In particular, some characteristics of transport data are presented in Section 2.1,
and the construction of the model is described in Section 2.2. In Section 3, we provide
some topological properties of networks and models. Finally, the last section is devoted to
the conclusions.

L-Space

P-Space

Figure 1. An example of one shipping line converted in to graph in L-space and P-space. The line goes
from Ulsan, through the other four seaports, and back to Ulsan. The corresponding network contains
five nodes and five edges within L-space, while P-space consists of 10 edges.

2. Data and Model
2.1. Data

The shipping data used in this study were collected from 42 prominent maritime
shipping companies, such as COSCO, ANL, APL, HNM, etc., comprising 632 seaports and
2283 shipping lines (routes). We studied the properties of these data in L-space in [14].
However, P-space is more concerned with the change in routes rather than the conversion
between ports. The public transport data were collected from bus routes from China’s five
largest cities. Compared to air and metro, marine and bus routes contain a more diverse
number of nodes. Information on the data is shown in Table 1. In this study, we use nodes
to represent stations and seaports.

Data processing format: In this study, we present information gathered regarding
lines that connect seaports or bus stations. Each line is made up of ports or bus stations,
and each is assigned a unique identifier. A line may traverse the same port multiple
times, indicating that the line’s length is equal to or greater than the number of ports it
encompasses. It is important to note that ports may have different names across various
companies, which should be considered when identifying them.

To quantitatively analyze the transport data, we utilize complex networks to visually
represent both types. In this representation, edges signify stations or ports involved in the
same line, while nodes represent stations or ports that are located on a line. The process
of transforming a line into a network in P-space is shown in Figure 1. By mapping this
information, we can obtain the largest giant component of graph representing these nodes.
Then, we generate a worldwide marine transport network and public transport network.
The properties of these networks will be discussed further in Section 3.
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Table 1. The number of lines Nl and nodes N, average line length ⟨L⟩, maximum line length of a
marine line Lmax, and average probability ⟨p⟩ of a new node in the lines of the worldwide marine
transportation lines and public transport lines of China’s five largest cities.

Properties Marine Beijing Shanghai Guangzhou Shenzhen Chongqing

Nl 2284 1817 1449 1522 1036 915
N 632 12,579 13,133 8416 5691 4505
⟨L⟩ 6.98 25.77 21.75 23.84 30.25 17.19

Lmax 22 95 85 74 102 60
⟨p⟩ 0.0395 0.268 0.416 0.232 0.182 0.286

2.2. Model

Empirical exploration: Understanding the fundamental properties of the data is
essential for developing a model that accurately represents real-world networks. With this
knowledge, we can construct a network evolution model based on the data. For instance,
we need to examine the distribution of participating nodes within the dataset or determine
the relationship between the numbers of new and existing nodes involved in each event.
This approach will enable us to create a coherent and consistent network. Consequently,
conducting some empirical exploration is necessary. Figure 2 shows the distribution of the
number of ports and stations on a single line, respectively. In both cases, the frequency is
notably higher near some fixed-value stations or ports in one line, while it tends to be lower
for lines that contain a large number of ports or stations. Moreover, the distribution of the
ports or stations in one line within this interval can be effectively modeled with a normal
distribution represented by the equation p ∝ e−(x−µ)2/(2σ2). The fitting parameters µ and σ

represent the mean and standard deviation. Both values of marine and public transport
lines are shown in Figure 2. These two parameters are essential to the network construction
process. However, it should be noted that the parameter µ is not the average number of
the line nodes. Because the range of both sides of µ in the probability of the number of
line’s nodes is not symmetrical, the left range is from 2 to the peak, while the right range is
from the peak to nmax. The minimum number of nodes on the line is 2, but the maximum
number of nodes on the line depends on the actual need for data simulation, which is
defined as nmax. Furthermore, not all data follow a normal distribution with respect to the
number of nodes. Some data, such as computer science collaboration networks, follow a
power-law distribution [64], while the number of participants in historical events conforms
to an exponential distribution [71].

Upon examining the data, it becomes clear that the number of nodes is less than the
average number of stations multiplied by the number of lines. In the context of real-world
social development, we can observe that both familiar and novel nodes often accompany the
emergence of new events over time. Therefore, when constructing a network in a structured
manner, it is essential to consider both old and new nodes within a single line. In this
analogy, a line represents an event, while stations (seaports) correspond to the nodes involved.
This approach allows us to evaluate whether the progression of these events is coherent by
analyzing the proportion of new nodes introduced within each event. By connecting all nodes
from a single event, we create a complex network derived from a series of events. This type of
network bears resemblance to those constructed in P-space. We propose that the probability
of the proportion of new nodes is denoted as p, and we define p as follows:

p(i) =
nni
ni

. (1)

where ni represents the total number of nodes (seaports or stations) in the i-th event (line),
and nni represents the number of new nodes involved in the i-th event. Figure 3 shows the
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distribution of the proportion p of new nodes in different lines, and most of these values
are equal to 0. We can use the total number of stations (seaports) after removing duplicates,
divided by the value of the total number of stations (seaport) in lines, to calculate the
average probability of new points joining the network.

⟨p⟩ = N
∑i ni

(2)

where N represents the total number of stations (seaports). The results shown in Table 1
are mostly minor. Due to the limited availability of suitable stations and seaports, many
nodes selected for connection are already linked by other lines.
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Figure 2. The distribution of the number of stations in each line of the worldwide marine transporta-
tion lines (a) and bus lines of Beijing (b), Shanghai (c), Guangzhou (d), Shenzhen (e), and Chongqing
(f). The variable n represents the number of nodes in a single line, while p indicates the probability of
this kind of line among all lines. The red lines represent the normal distribution function, with mean
µ and standard deviation σ shown as N(µ, σ2) in the corresponding image.
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Figure 3. The distribution of the proportion of new nodes in different lines of the marine lines (a) and
Beijing bus lines (b).

Model construction: Based on the above analysis, we propose a simplified data-driven
dynamic model, which is referred to as the event–link model (EL model). The evolution
mechanism of the network within this dynamic model is as follows: We begin with a simplified
initial network and then select a set of nodes to fully connect, incorporating both new and
existing nodes. This process resembles an event that includes newly joined and familiar nodes.
This method of adding links and nodes to the network aims to replicate the effects observed
in our manually obtained statistical data. It is also important to consider the number of nodes
selected each time, the number of new nodes introduced, and the choice of existing nodes.
The algorithms of the model can be introduced as follows. (1) We define the number of initial
nodes nmax (nmax is determined by the maximum number of nodes in each line), and the
initial network G is generated by fully connecting the initial nodes.

(2) In the subsequent time step i, we generate ni nodes and define the subset S as
a collection of these ni nodes. The value of ni is determined by the normalized scale
(ratio) of the corresponding distribution depending on real-world circumstances, such as
normal or exponential distributions. For example, we should use the normal distribution
when we want to study a transport network and use an exponential distribution when
studying event data, as each event contains a different number of nodes. The value of ni

falls within the interval (2, nmax), with nmax representing the maximum number of nodes
and 2 representing the minimum number of nodes in an event. (3) The subset S consists
of two components: the number of new nodes nni and the number of existing nodes noi,
where nni = p × ni.

(4) Based on the previous step, we select the number of existing nodes noi, which
is calculated as noi = ni − nni. The selection mechanism follows a preferential
attachment approach based on the BA model while utilizing the degree distribu-
tion. (5) The new nodes in the set S are added to the network G and are labeled
n + 1, n + 2, . . . , (n + nni)). Regarding the connection, the nodes in the set S are fully
interconnected. (6) Steps (2) through (5) are repeated.

(7) The process ends when the number of nodes in the network G exceeds the total
number of unique nodes N present in the actual data.

Here, the network G can be adjusted by adjusting the five parameters of n, p, nmax

and the distribution of the number of nodes in each event that have two parameters, mean
µ and standard deviation σ. The process of network generation by the EL model is shown
in Figure 4. The main idea of this model is that new nodes join the network by fully
connecting to both existing nodes and new nodes. The existing nodes are chosen with
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a probability proportional to their degree. In this model, we can construct a simulated
network G(V, E) corresponding to each parameter derived from the actual data.

Figure 4. EL models are used to generate flow diagrams of complex networks. the green arrows
represent the process of network evolution. The red nodes represent an existing network, the gray
nodes are not included in the network, and the green nodes, which were chosen in this step, contain
the joining and existing nodes. Finally, a complex network with 14 nodes and 41 edges is generated.
The probability of an existing node being selected is proportional to its degree.

During the construction of the network model, at each time step, a selection of nodes
will be connected to each other. This selection includes both new and existing nodes.
As time progresses, there may be instances where two already connected nodes are selected
again, resulting in another connection between them. We refer to this kind of edge as a
repeated edge (or repeated link). We define the repeated edge probability pe(t) for each
iteration at each time step in the following manner:

pe(t) =
Eexist

t
Et

. (3)

where t indicates the time step, while Et denotes the number of edges formed by the
selected nodes at time step t, and Eexist

t represents the number of edges that already exist in
network G and reconnect at time step t, with the condition Eexist

t ≤ Et.
As shown in Figure 5, a simulation of repeated edge probability was conducted,

and we find that the repeated edge probability pe(t) satisfies a log function of the following
form: pe(t) = 0.379 − 0.0419 log(t). After several simulations, we find that the probabilities
follow the formula pe(t) = a − b log(t), where a and b depend on the parameters in the
EL model, and t represents the time step. Generally speaking, higher parameters of the
average probability p of new points lead to smaller values of a and b. The probability of
edge duplications generated within a network decreases rapidly with each subsequent step
in the initial phase. This is because the network’s density tends to decline with growth if
the average degree remains relatively stable. So, we can estimate that the edge number E
is approximately equal to the average number of edges added in each step multiplied by
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the total number of steps in this model. The average number of edges is represented by

the normalization of the total expression x(x−1)
x e−

−(x−µ)2

2σ2 evaluated from x = 2 to x = nmax.
The number of steps corresponds to the parameter N in the EL model, divided by the
average number of nodes added in each step. Additionally, the edge count E should
equal to

E =
∑nmax

x=2
x(x−1)

2 e−(x−µ)2/2σ2

∑nmax
x=2 e−(x−µ)2/2σ2

N

p×∑nmax
x=2 xe−(x−µ)2/2σ2

∑nmax
x=2 e−(x−µ)2/2σ2

=
N ∑nmax

x=2
x(x−1)

2 e−(x−µ)2/2σ2

p ∑nmax
x=2 xe−(x−µ)2/2σ2 (4)

if the network is sparse and the number of events has a normal distribution. µ and σ

represent the mean and standard deviation of the normal distribution. If the line of actual
data has a high repetition rate, we can adjust the probability p in the EL model to obtain an
appropriate number of edges.

1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

t

p e
(t
)

Figure 5. Repeated link probability pe(t) changed with step t in the EL model with parameters of
N = 10,000, p = 0.25, and 20 connected nodes per step. The red line represents the fitted result, which
follows the equation pe(t) = 0.379 − 0.0419 log(t).

3. Simulation Results and Analysis
3.1. Comparison with Other Models

This study introduces several classical models for comparison to analyze the advan-
tages and disadvantages of the EL model more objectively and accurately. These models
include real networks, the Erdős–Rényi (ER) model, the configuration model, a small-world
network (based on the WS model), a network generated by the BA model, and an EL model.

The WMTN and PTNs represent co-occurrence networks generated from data of
a marine line and the public transport lines of China’s five prominent cities. Notably,
the original network from the data is not fully connected and contains several small
networks comprising two or three nodes, which have a minimal impact on the overall
structure. Therefore, we have chosen to analyze the giant connected components.

For the random network (ER model), we maintain the same number of nodes and
links as in the actual network, with a fixed connection probability between any two nodes.

The configuration model can be categorized into random networks of different orders
based on varying constraints during random scrambling. In this study, we utilize the one-
order configuration model, which is a simulated network with the same number of nodes
N and degree distribution P(k) as the original network. The random scrambling algorithm
randomly selects two edges ea,b and em,n in the network. If there are only two links between
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the nodes va, vb, vm, and vn, in the next step, we delete ea,b and em,n and create links ea,m and
eb,n, so that the configuration model is more consistent with the original network without
changing the degree distribution. This algorithm stabilizes each index more quickly with
a few scrambles and reduces the computational complexity. Based on calculations and
references from previous studies [72], the number of successful scrambles in the one-order
configuration model is set to the total number of edges E in the real networks.

We generate a graph using the WS model by considering the “six degrees of separation”
theory. First, a lattice is created with a specified number of nodes N and a defined number
of neighbors. The edges of this lattice are then rewired randomly with a probability p.
In this study, we set N equal to the number of nodes in the actual network, with appropriate
nearest neighbors and a reconnection probability p of 0.2, representing an ideal small-world
network model that closely resembles a regular network.

The scale-free network generated by the BA model highlights that many real-world
networks exhibit degree distributions that follow a power-law distribution. In this model,
every node has connections based on a preferential attachment mechanism, meaning that
nodes with higher connectivity are more likely to receive new edges. In this configuration,
the total number N of nodes in this network corresponds to the number of nodes found in
the real-world counterparts. This structure allows for the emergence of hubs, which play a
crucial role in the robustness and efficiency of the network.

The last model is the event–link model. According to the algorithm introduced in the
previous section, a dynamic network with the same distribution of node numbers as marine
lines and public transport lines was simulated. It is important to note that the number of
nodes chosen for the EL model corresponds to the number of nodes derived from actual
data. Since the number of nodes is selected according to a normal distribution, the total
number of nodes in the model will be in the range [N, N + x], where N is the total number
of nodes in the data and x represents a variable number of additional nodes selected each
time. This minor adjustment is not expected to significantly affect the overall index results
of the modeled network. The results of each model can be found in Tables 3 and 4.

3.2. Topological Properties

We select some common network topologies to compare the functions of different network
models that contain the clustering coefficient C, the diameter of the network D, the average
shortest-path distance ⟨d⟩, assortativity and disassortativity r, and the average trapping time
⟨T⟩. The definitions and formulas are shown in Table 2. Tables 3 and 4 show the topological
properties of the WMTN, the Beijing PTN, and the networks generated by the ER model,
configuration model, WS model, and EL model, with similar values of N and E. N is the
number of nodes, and E is the number of edges. E = ⟨k⟩N/2, where ⟨k⟩ is the average degree
of all nodes.

Table 2. The definitions and formulas of the major topological properties of networks. ki is the degree
of node i, G△ is the number of triangles in the network, dij is the shortest path length of nodes i and j,
ji and ki represent the degree value of the two nodes corresponding to edge i, M represents the total
number of edges, s = ∑N

i=1 ∑N
j=1 wij, wij is the weight of nodes i and j (with a value equal to 1 in this

study), and λk is the k-th eigenvalue of the Laplacian matrix of the network.

Topological Quantities N Formula

C Clustering coefficient Ci =
3G△

∑n
i=1 (

ki
2 )

D Diameter of the network D = max
(
{dij}

)
⟨d⟩ Average shortest-path distance ⟨d⟩ = 1

N(N−1) ∑i ̸=j dij

r Assortativity and disassortativity r =
M−1 ∑i jiki−[M−1 ∑i

1
2 (ji+kj)]

2

M−1 ∑i
1
2 (ji

2+k2
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1
2 (ji+kj)]

2

⟨T⟩ Average trapping time ⟨T⟩ = s
N−1 ∑N

k=2
1
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C is the clustering coefficient, which indicates the degree of cohesion among people
in a network. In Tables 3 and 4, the clustering coefficients C of the WMTN and Beijing
PTN are close to 0.7; combined, they have a relatively small average shortest-path distance,
indicating that the WMTN and PTNs have small-world characteristics. Comparing the
WMTN and Beijing PTN with the networks simulated with models, it can be shown that
the clustering coefficient value C in the EL network is close to that of the actual data and
is larger than that in the other models. Combined with the analysis of the ⟨d⟩ variables,
this indicates that EL model’s network has small-world characteristics and is more suitable
for generating actual networks in P-space. The Watts–Strogatz (WS) model is designed
to capture the small-world properties of networks. However, to achieve a high mean
clustering coefficient (0.71) using the WS model, the reconnection probability must be
reduced to 0.001. This value is not reasonable, so the WS model fails to produce network
characteristics that closely resemble those of the actual data.

In the WMTN, the network diameter D is 5, which is greater than the value for three
of the simulated networks. However, the EL and configuration models have the same
diameter (D = 5) as that of the WMTN. The Beijing PTN’s diameter is greater than those of
all of the simulated networks, but the diameters of the EL model and configuration model
are closest to that of the Beijing PTN. The average shortest-path distance can represent the
tightness of a network’s connections. Regarding ⟨d⟩, there is little difference between each
model and the real network, and the values of the actual network are slightly greater than
those of the simulated networks. Generally, a small-world network has a shorter length
⟨d⟩ and a larger clustering coefficient C. All of these models can generate a network with
some small-world properties. However, the EL model can generate a network with all
small-world properties.

The variable r denotes the Pearson correlation coefficient (−1 < r < 1) of the degree
of two nodes that are connected in a network, and it is used to represent the heterogeneity
of the network (assortativity and dissortativity) [11,73–75]. As r approaches 1, it suggests
that the network exhibits an associative structure, where nodes of higher degrees are more
likely to be connected to other nodes of high degrees. Conversely, if r tends toward −1, this
indicates disassortativity, meaning that nodes with higher degrees tend to connect with
nodes of lower degrees. The r values of all networks are close to 0, meaning that they have
no obvious assortativity or dissortativity properties.

Among the topological properties, the average trapping time (ATT) ⟨T⟩ is the average
first-pass time from any node random walk to another node in the network, representing
the connectivity of the network [76,77]. The ⟨T⟩ values of the actual network and models
were calculated. Both the EL and null networks had values similar to those of the actual
data and larger than those of the other networks.

Table 3. Topological properties of the WMTN and networks generated by the ER, configuration,
WS, BA, and EL models with similar node and edge numbers. N is the number of nodes, ⟨k⟩ is the
average degree, C is the clustering coefficient, D is the diameter of the network, ⟨d⟩ is the average
shortest-path distance, r is the assortativity, and ⟨T⟩ is the average trapping time. The bold values
indicate that the EL model can generate a network more similar to the data.

Topological Quantities N ⟨k⟩ C D ⟨d⟩ r ⟨T⟩
WMTN 632 33.72 0.7099 5 2.426 −0.1201 1357

ER 632 33.72 0.0538 3 2.102 0.0002 334.4
Configuration 632 33.72 0.3510 5 2.239 −0.1925 1275

WS 632 34 0.3902 3 2.392 −0.0041 338
BA 632 33.52 0.1324 3 2.113 −0.0.017 427
EL 632 34.62 0.7399 5 2.279 −0.1396 1326
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Table 4. Topological properties of the Beijing bus network and the networks generated by the ER,
configuration, WS, BA, and EL models with similar node and edge numbers. N is the number of
nodes, ⟨k⟩ is average degree, C is the clustering coefficient, D is diameter of the network, ⟨d⟩ is the
average shortest-path distance, r is the assortativity, and ⟨T⟩ is the average trapping time. The bold
values indicate that the EL model can generate a network more similar to the data.

Topological Quantities N ⟨k⟩ C D ⟨d⟩ r ⟨T⟩
Beijing PTB 12,557 87.31 0.7488 7 3.606 0.06447 17,628

ER 12,557 87.31 0.00692 3 2.534 0.00271 6424
Configuration 12,557 87.31 0.02939 5 2.524 −0.02007 16,300

WS 12,557 88 0.3832 4 2.782 0.000306 6467
BA 12,557 87.84 0.0291 3 2.422 0.00197 8475
EL 12,565 87.03 0.7624 5 2.521 −0.01056 19,737

A comparison of the actual data and the results of the EL models of the other
four PTNs is shown in Table 5. All of the simulated networks have properties similar to
those of actual data. In short, the WMTN and PTNs exhibit small-world characteristics;
the EL model can simulate similar properties, and its various topological quantities are
close to those of the actual data.

Table 5. Topological properties of the Shanghai PTN, Guangzhou PTN, Shenzhen PTN, Chongqing
PTN, and networks generated by the EL model with similar node and edge numbers. N is the number
of nodes, ⟨k⟩ is the average degree, C is the clustering coefficient, D is the diameter of the network,
⟨d⟩ is the average shortest-path distance, r is the assortativity, and ⟨T⟩ is the average trapping time.

Topological Quantities N ⟨k⟩ C D ⟨d⟩ r ⟨T⟩
Shanghai PTN 13,037 57.38 0.7772 11 4.103 0.1599 19,998

EL of Shanghai PTN 13,039 58.82 0.7792 5 2.688 0.01723 16,717
Guangzhou PTN 8363 86.53 0.7409 7 3.470 0.2546 14,477

EL of Guangzhou PTN 8366 87.47 0.7490 4 2.424 −0.00458 12,913
Shenzhen PTN 5671 164.0 0.6363 6 2.748 0.1757 9829

EL of Shenzhen PTN 5693 158.2 0.7378 4 2.180 −0.09621 12,043
Chongqing PTN 4479 60.96 0.7591 8 3.509 −0.223 8450

EL of Chongqing PTN 4511 58.84 0.7740 5 2.479 −0.02537 7354

Degree distribution of the simulation: To further evaluate the compatibility of EL
model with actual networks, we present the degree distributions for all six networks
(WMTN and five PTNs) along with their parameters within the EL models, as illustrated
in Figure 2. The node degree, denoted as k, signifies the number of edges connected to
each node, which directly indicates the number of stations (or seaports) that can be reached
from a given station (or seaport) without changing buses (or ships). The P(k) represents
the probability that a node has a degree of k. As shown in Figure 6, both the WMTN and
PTNs demonstrate scale-free characteristics, exhibiting power-law degree distributions
in medium-to-large degree ranges that affirm the universality of scale-free networks. No-
tably, this distribution diverges slightly from a traditional power-law distribution, instead
reflecting a positive exponential power-rate distribution to the left of its peak probability
point. This phenomenon arises when generating complex networks from real data, where
a set of nodes are fully interconnected. The distribution of the line lengths indicates that
there are relatively few very short lines, leading to a small number of nodes with a minimal
degree. A closer examination of the red scatter points in Figure 6 reveals that the EL model
portrays a long-tail degree distribution. This overall degree distribution aligns well with
the actual network, reinforcing the credibility and plausibility of the EL model. The peak
degree probability directly correlates with the distribution of the number of stations along
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the route, and the EL model successfully replicates a similar distribution to that of the
actual data.
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Figure 6. Degree distribution in the marine lines (a) and the bus lines of Beijing (b), Shanghai (c),
Guangzhou (d), Shenzhen (e), and Chongqing (f). The inset shows the results on a log–log scale. The
blue dots are statistical results from actual networks, and the red dots are the results of networks
simulated by the EL model. The red lines represent the fitted lines of degree between (2, peak) of the
actual data, and the orange lines represent the fitted lines of degree in the range of (peak, largest) of
the actual data. The corresponding fit functions are shown in the figure. P and k are defined in the text.
The p-values of all six orange lines are (8.38 × 10−20, 4.10 × 10−52), (1.13 × 10−11, 1.53 × 10−204),
(3.85 × 10−22, 1.90 × 10−158), (1.08 × 10−16, 2.85 × 10−105), (6.05 × 10−30, 2.41 × 10−229), and
(4.64 × 10−32, 1.68 × 10−222). All the values are far less than 0.05, indicating that all the data adhere
to a power law distribution within the appropriate range.

4. Conclusions
In this study, we address the issue of the normal distribution of numbers of nodes and

edges in current network models based on actual data. We propose a novel network model
called the EL model, which permits the number of nodes added to the network at each step
to follow a normal or exponential distribution, among others. By detailing the construction
process of this network model, we demonstrate its enhanced suitability for generating and
connecting real-world networks.
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Through simulations of the WS network, ER network, BA network, and configuration
model, we compare the topological properties of these models with those of the EL network.
Our findings indicate that the degree distribution of the nodes in the new model exhibits a
power-law characteristic, while the network features a higher clustering coefficient C and
a shorter average path length ⟨d⟩, aligning more closely with the characteristics of actual
networks. Additionally, the model can generate a network with a similar degree distribution
that aligns with the actual network in P-space. The simulation results emphasize the
model’s strong applicability and authenticity. Our new model possesses both small-world
and scale-free properties, making it more appropriate for real-world networks than the BA
and WS models.

Additionally, by adjusting the model parameters N, p, µ, σ, and nmax, we can construct
relevant real-world networks, enabling the modeling of various complex systems. In our
future research, we aim to explore whether this network can more effectively address
various real-world network problems, such as communities on the mesoscopic level [78]
and robustness in food web networks [79,80].
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