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Abstract: Agent-based models have recently been proposed as potential tools to support urban
planning due to their capacity to simulate complex behaviors. The complexity of the urban
development process arises from strong interactions between various components driven by different
agents. AMEBA (agent-based model for the evolution of urban areas) is a prototype of an exploratory,
spatial, agent-based model that considers the main agents involved in the urban development process
(urban planners, developers, and the population). The prototype consists of three submodels (one
for each agent) that have been developed independently and present the same structure. However,
the first two are based on a land use allocation technique, and the last one, as well as their integration,
on an agent-based model approach. This paper describes the conceptualization and performance
of the submodels that represent urban planners and developers, who are the agents responsible
for officially launching expansion and defining the spatial allocation of urban land. The prototype
was tested in the Corredor del Henares (an urban–industrial area in the Region of Madrid, Spain),
but is sufficiently flexible to be adapted to other study areas and generate different future urban
growth contexts. The results demonstrate that this combination of agents can be used to explore
various policy-relevant research questions, including urban system interactions in adverse political
and socioeconomic scenarios.

Keywords: urban land allocation model; agent-based model; spatial simulation of urban growth;
urban planners; developers; urban modeling

1. Introduction

Urban growth is considered a complex phenomenon due to the strong interactions between different
economic, social, environmental, cultural, and institutional components. A deeper understanding of
how, why, and where these interactions occur is required in order to be able to plan the territory and
create better futures for a constantly growing population. Thus, urban planning is fundamental, as is
the need to comprehend and anticipate territorial changes. Modeling offers an alternative means to
achieve this due to its capacity to create different possible future scenarios and depict the consequences
of urban growth [1–3].

Recent decades have witnessed exponential growth in the use of exploratory models based
on different techniques (e.g., stochastic, artificial intelligence, and fuzzy tolerance) in the field of
simulation. Although cellular automata (CA) predominate [2], agent-based models (ABM) open new
perspectives. Both were originally developed in the field of artificial intelligence with the aim of
reproducing the knowledge and reasoning of several heterogeneous agents with the capacity for
autonomous action in a specific environment, who at the same time need to coordinate to jointly solve
planning problems [4].
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However, the use of modeling as a tool to support urban planning has remained limited due to
historical skepticism about modeling designed for this purpose [5–7]. Nevertheless, although few
ABMs have been employed to address urban issues, other cellular models such as CA have gained
more widespread acceptance [8–11]. This is confirmed in a review of urban simulation modeling
techniques by Triantakonstantis and Mountrakis [2], who found that more than 80% of the publications
analyzed had used a CA, whereas ABM only accounted for less than 10%. These statistics must be
placed in context, since CAs have a long history of being used for spatial modeling, whereas ABM are
comparatively new in this field. Nevertheless, CAs pose some problems, for example when considering
long distance interactions [3], thus paving the way for the use of ABM in the urban modeling arena.

ABM techniques are particularly suitable in this field to gain a better understanding of the urban
development process because they allow individual simulation of each agents’ behavior and show
how, in conjunction, their behavior produces changes in the territory in the form of urban growth.
Hence, ABM provides a good laboratory for developing new models of cities, since they elucidate how
different city elements interact and thus enable planners to better understand what might happen in
the future [3,12,13].

Another important issue to consider is the geographical scope of urban ABM, which varies
according to purpose and encompasses multiple spatial scales, although always considering individual
behavior. Thus, the literature contains models aimed at exploring local issues such as residential
mobility [14] or emergency situations [3,15], and others with a broader, regional scope, for example
those aimed at determining urban segregation or informal settlement formation [16–19]. Most have
been designed to simulate housing and land market dynamics [20–27]. Consequently, the application
of ABM has proved very versatile at different scales, including the sub-regional scale, here understood
as the geographical level between the municipal and regional scale.

The sub-regional scale is particularly suitable for urban planning, since urban growth and its
impacts can be better controlled at this level. This is especially useful in Spain, where planning is
legally proposed at municipal level, with few examples at regional scale [28]; however, it is at this latter
level where not only urban growth phenomena but also their territorial, environmental, and other
associated impacts could be managed more efficiently. The lack of legal instruments at sub-regional
scale has created serious problems, especially during the recent real estate boom [29–31].

Besides scale, a further advantage of ABM when simulating urban growth processes is their
capacity to reproduce the behavior, actions, and interactions of the multiple agents involved, who may
present diverse profiles (e.g., social, political, and economic). Urban planners and developers are
unquestionably among the most important agents in urban growth, since they decide the amount
of land to be converted to urban uses, as well as where development should first take place.
The population represents another important agent in this process, since the population’s behavior is
responsible for the demand for new housing, in this case occupying the available dwellings generated
by the two abovementioned agents.

Implementing an ABM that simultaneously considers both policy-making and the residential
development process poses an enormous challenge in modeling due to the large number of variables to
consider (accounting for both internal status and externalities), the spatial (sub-regional) and temporal
scale (behavior may occur at different time intervals), and above all, the combination of top-down
and bottom-up approaches. With respect to the spatial and temporal scale, it is assumed that these
are strictly linked to the kind of data used. Many models developed to study changes observed at the
urban level consider stylized data in a hypothetical world. Artificial cities and rules are constantly
being created in order to test these models and their underlying theories [21,22,26,32].

Although some independent allocation models have been used to simultaneously simulate
both levels of the planning process (policy-making by urban planners and residential expansion
by developers), only a few ABMs have been aimed at considering both when simulating urban
growth at the sub-regional scale [33–35]. Some of these have considered the environment or urban
planners as agents, albeit not with the same goal [18,20,36,37]. In contrast, many urban ABMs consider
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developers as agents, mostly focusing on land market dynamics [21–23,32]. Similar models have
accounted for both agents [36–39], although neither coincided with the purpose of modeling, which
is to test and explore the urban process or the system itself. The closest example would be the study
by Ligmann-Zielinska et al. [27], who developed a model using these three agents, although an
independent deterministic model rather than an ABM was developed separately in order to simulate
the typical top-down process of planning.

In line with these precedents, the objective of the present study was to create a model (AMEBA)
in order to address the abovementioned gaps by simulating the urban development process at the
sub-regional scale considering urban planners, developers, and the population, while simultaneously
addressing the challenge of acting at heterogeneous intervals. This paper discusses the first and
second submodels of the prototype, which adopt a more deterministic rather than stochastic approach,
and were thus based on an urban land allocation model. The population submodel represents a parallel
stage of this research and takes a stochastic approach to the occupation of newly developed areas,
rather than the territorial expansion presented here. Since this latter forms part of the final integrated
model, it is briefly introduced in the explanation of the model structure, but is not discussed further.

AMEBA has been developed as a prototype with three submodels developed independently on
the same ABM platform, endowing it with sufficient flexibility to be adapted to other study areas
and reproduce different future urban growth contexts. The submodels and the final prototype were
created, fed, and tested using empirical data on a specific area in Spain, the Corredor del Henares.
The sub-regional profile of the study area presents substantial socioeconomic and urban development
diversity, and thus represents a suitable area to test the model.

Following this introduction, Section 2 gives a conceptual overview of the prototype (with three
integrated submodels), and describes the study area, model structure, and other technical issues
(platform and database). Section 3 reports on the implementation of the submodels that address
territorial expansion (individually and in conjunction), the simulation experiments, and the validation
process. Section 4 concludes the paper with a discussion of the submodels’ capabilities and limitations,
and directions for future research.

2. Testing Area, Conceptual Model, and Data

As previously mentioned, ABM are suitable for studying complex issues, and therefore could
serve as a valuable tool to support urban planning processes. This section presents the conceptual
model of the prototype (AMEBA), describing its structure, platform, and database, as well as the
variables used to test the model in the study area.

2.1. Testing Area

The metropolitan area of Madrid has become one of the most dynamic areas of urban growth
in the Iberian Peninsula and Europe [40]. It has three main urban growth corridors, each with their
own defining characteristics (Figure 1). The study area encompassed 18 municipalities in the Region
of Madrid selected from the northeast corridor, known as the Corredor del Henares, which runs from
Madrid to Guadalajara (the capital of the neighboring region). This area is home to almost 600,000
inhabitants [41], covers 624 km2, and is strongly influenced by its proximity to the city of Madrid.
In addition, it is a particularly dynamic area in urban and demographic terms, with substantial internal
sociodemographic and urban development differences. This complexity is further increased by the
lack of regulation aimed at solving territorial problems at the regional level, rendering it an ideal
laboratory to test the prototype reported here.
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Figure 1. Urban corridors in the region of Madrid and study area. 

The general urban growth trends identified in the main Spanish cities in the period of economic 
wealth (1997–2007) indicate rapid and chaotic urban development. This coincided with the housing 
bubble, subsequently followed by a stable period of consolidation [42–44]. Such trends have been 
witnessed in many other European urban areas in countries, such as Italy, Croatia, and France, mainly 
associated with their principal cities and coastal zones [45,46]. 

2.2. Prototype Structure, Platform and Database 

The urban growth process at the regional scale could be theoretically and logically described as 
a three-stage process involving three types of agent: urban planners, developers, and the population 
[47]. The first two are responsible for the territorial expansion itself, while the latter represents the 
occupation of the territory, and all three converge to shape a complex urban system. The urban 
growth process starts with the identification of new potential urban areas by urban planners in line 
with national, regional, and local policies. In the second stage, developers choose where to promote 
new residential developments. Finally, the population selects where to live based on their individual 
preferences and according to their income possibilities. Although other elements may also be 
involved in the urban development process (such as infrastructure expansion or political guidelines), 
these would have been difficult to include in our model, so we decided to limit our agents to these 
three. Each of them is considered in an independent submodel with different characteristics. The first 
represents the typical deterministic, top-down process, while the second may be considered a 
transition between deterministic and stochastic approaches, and the third could be considered the 
closest representation of an ABM as we understand it (using a bottom-up approach), where complex 
interactions between agents are represented stochastically. The three of them are coordinated 
separately before subsequent integration in a final model, where outputs and inputs feed each other 
continuously. It is worth mentioning that the model is explicitly spatial, so all variables are spatially 
distributed. 

The prototype is intended to be as useful as possible, and therefore it was constructed using an 
adaptable structure of submodels, each covering a critical variable in the urban growth process. This 
approach was adopted in response to the low impact that urban growth simulations have had on 
real-life planning processes, due to their closed architecture and the high amount of data needed to 
run them, not commonly available in many regions or countries [2]. 

As presented in Cantergiani et al. [48] the submodels are described below: 
The first submodel (urban planner) simulates the urban planner´s decision-making process, which 

consists of selecting new areas for urban development according to physical restrictions (e.g., protected 
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The general urban growth trends identified in the main Spanish cities in the period of economic
wealth (1997–2007) indicate rapid and chaotic urban development. This coincided with the housing
bubble, subsequently followed by a stable period of consolidation [42–44]. Such trends have been
witnessed in many other European urban areas in countries, such as Italy, Croatia, and France, mainly
associated with their principal cities and coastal zones [45,46].

2.2. Prototype Structure, Platform and Database

The urban growth process at the regional scale could be theoretically and logically described as a
three-stage process involving three types of agent: urban planners, developers, and the population [47].
The first two are responsible for the territorial expansion itself, while the latter represents the occupation
of the territory, and all three converge to shape a complex urban system. The urban growth process
starts with the identification of new potential urban areas by urban planners in line with national,
regional, and local policies. In the second stage, developers choose where to promote new residential
developments. Finally, the population selects where to live based on their individual preferences
and according to their income possibilities. Although other elements may also be involved in the
urban development process (such as infrastructure expansion or political guidelines), these would
have been difficult to include in our model, so we decided to limit our agents to these three. Each of
them is considered in an independent submodel with different characteristics. The first represents the
typical deterministic, top-down process, while the second may be considered a transition between
deterministic and stochastic approaches, and the third could be considered the closest representation
of an ABM as we understand it (using a bottom-up approach), where complex interactions between
agents are represented stochastically. The three of them are coordinated separately before subsequent
integration in a final model, where outputs and inputs feed each other continuously. It is worth
mentioning that the model is explicitly spatial, so all variables are spatially distributed.

The prototype is intended to be as useful as possible, and therefore it was constructed using
an adaptable structure of submodels, each covering a critical variable in the urban growth process.
This approach was adopted in response to the low impact that urban growth simulations have had on
real-life planning processes, due to their closed architecture and the high amount of data needed to
run them, not commonly available in many regions or countries [2].

As presented in Cantergiani et al. [48] the submodels are described below:
The first submodel (urban planner) simulates the urban planner´s decision-making process, which

consists of selecting new areas for urban development according to physical restrictions (e.g., protected
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areas, high slopes, or proximity to water bodies), distance to elements of interest (e.g., roads or
consolidated urban areas), and the amount of growth required to meet existing demand. These criteria
are set as parameters and can be modified at initialization to generate different scenarios.

The second submodel (developer) focuses on the developer’s decision-making process regarding
new residential developments. As part of their behavior, developers must decide where to build new
housing, how many new developments must be built, their capacity, and their target economic group.
This process takes into account the legal status of the territory (defined by urban planners in the first
submodel), as well as the areas that will optimize their profits.

The third submodel (population) simulates the process of residential location choice and
occupation by the population. In this case, different agents look for the best place to move according to
their purchasing power and location preferences, which may include distance to the public transport
network, education facilities, and other factors.

The flowchart in Figure 2 shows how the submodels are integrated and where the result of each
submodel feeds into the next in a chain-like process.
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Figure 2. Integrated decision model to simulate urban growth.

The conceptual model considers two components for the three agents: territorial availability (TA)
and spatial interest criteria (SIC). The first (TA) indicates potential areas taking into account spatial
restrictions. For urban planners, it considers the limits imposed by legal regulations (e.g., master plans,
law on protected areas) and physical urban development restrictions (e.g., along rivers, steep slopes)
to spatially delineate potential areas for development. For developers, TA restricts the area to those
classified as potentially urban. The second component (SIC) represents attractiveness, which indicates
the preferences of each agent regarding the distance to given spatial elements. For urban planners,
these include roads, public facilities, hazardous areas, agricultural productivity, and existing urban
fabric, while for developers they include roads, public transport stops, existing urban fabric, and status
of the existing residential stock. Due to the flexibility of each submodel of the prototype, several
variables can be selected to represent these components and run the model [47], although here we only
report those tested in the study area.

The platform used to develop the prototype was NetLogo v.5.3.1 (Center for Connected Learning
and Computer-Based Modeling, Northwestern University, Evanston-IL, IL, USA) [49], which met
the technical requirements and presents many advantages. To name a few, it has an intuitive and
simple interface, it is widely used for similar applications, it is user-friendly, and it is open source.
Moreover, it enables simple connection with geographical databases through a Geographic Information
System (GIS) extension, fundamental for spatial analysis. For instance, this connection facilitates the
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flexibility required for adaptation to other study areas, with different input data in terms of extension
or resolution.

The submodel interface consists of three sections: (i) an input box where geographical information
is called up and spatially represented in a visualization panel; (ii) an area where the user sets the initial
parameters that will define the scenarios to simulate; and finally (iii) a third area where the results are
represented in the form of graphs, spatial distribution, and an external matrix containing statistical
references (Figure 3).
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All submodels have a similar interface, differing only in the number and kind of external
parameters to be set, and obviously in the expected outputs. Since a set of parameters can be freely
modeled, users can adapt the model to their specific context and generate different future urban
growth scenarios.

Bearing in mind the regional scale and main drivers of urban growth in the context cited and
other similar contexts, a considerable effort was made to compile the most appropriate alphanumerical
and geographical information, always considering the territorial component. Although they might
form part of the process, statistical components were only incorporated into the model when they
could be spatially represented (such as price and income distribution). Other variables, such as traffic
flows, global climate change, mobility, and time variation, were not included at this stage for the
abovementioned reasons, although we recognize they must play a partial role in the evolution of the
phenomenon studied.

The input data used to implement the submodels were selected to reflect the drivers of urban
growth, empirical knowledge of urban growth trends in the study area [47,48,50,51], and the most
commonly used variables in other studies [8,33]. These latter included the municipal boundaries
(surface), zoning status (surface), and housing distribution (pixel) used by agents to assess specific
environments and conditions, as well as the other spatial information indicated in Table 1 below.
These were represented by pixels measuring 50 × 50 m. Once data had been collected, they were
transformed into determinants for subsequent use in the model.
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Table 1. Description of determinants, based on input data, incorporated into the prototype.

Data Layer Scale Origin Determinant and Description

Census zones and associated
statistical data 1:1000 INE (2001)

Distance to consolidated urban zones
Contributes to determination of

agents’ preferences

Zoning status 1:50,000

Department of Environment,
Housing and Land Use

Planning, Region of Madrid
(2006)

Land classification (reclassified as urban,
non-building, and potentially urban)
Functions as the legal constraint on

agents’ actions

Natural Protected Zones
(Spanish initials: ENP) 1:50,000

Environment Database of
Spanish Ministry of the

Environment (2012)
Restricted areas (sum of individual

restrictions spatially distributed)
These act as a mask under which agents

cannot intercedeBuffer along main water bodies 1:25,000 BCN 25/CNIG, IGN (2008)

Slope (origin: Digital Terrain Model) 1:50,000 BCN 25/CNIG, IGN (2012)

Land use and land cover 1:100,000 CORINE Land Cover Project
of IGN (2000–2005)

Agricultural productivity generated from
reclassification of the land use database

Agents state their preferences according to
the high, medium, or low level

of productivity

Urban facilities (health and
education, public transport, locally

unwanted land uses)
1:25,000

NomeCalles Database of
Statistical Institute of Region

of Madrid (2005)

Distance to each type of facility
This may indicate a higher or lower level

of interest

Cadastral data containing
information at parcel level (code,

municipality, use, year of
construction, area, centroid, etc.)

1:1000

General Directorate for Land
Register, Ministry of Finance
and Public Administration

(2006)

Aggregated data by pixel represent the
initial residential building distribution

Agents behave according to the
existing buildings

Network of national and
regional roads 1:25,000 BCN 25/CNIG, IGN (2008)

Accessibility calculated as distance to the
road network

This may indicate a higher or lower level
of interest

INE: National Statistics Institute; BCN: National Cartographic Database; CNIG: National Center for Geographical
Information; IGN: National Geographic Institute; ENP: Protected Natural Spaces.

3. Implementation of the Territorial Expansion Simulation

3.1. Urban Planner Submodel

The urban planner submodel simulates regional urban growth and represents the most general
scale of the three submodels, indicating areas where it is legally permissible to construct new residential
buildings. This submodel presents a simple and deterministic structure, since the behavior of urban
planners generally reflects a top-down approach whereby decisions are made within a general plan
by an institutional agent rather than by individuals (or by an individual representing an institution).
Nonetheless, the allocation model was developed in NetLogo in order to facilitate integration into
future submodels that might simulate agents’ behavior using the bottom-up approach.

The expected result is useful for any urban planner, and represents a laboratory that allows the
selection of new areas for reclassification as potentially urban (Figure 4), generated from their decision
regarding the most suitable areas according to criteria that may differ depending on the agent’s profile.
Rather than testing the model with different types of urban planner, we only considered one type
presenting different profiles that in turn could generate numerous scenarios.
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Besides defining the amount of land for potential reclassification as urban, the interface allows
the user to set initial conditions that characterize each profile (Figure 5). Hence, the interface settings
allow the user to establish weights for variables such as distance to urban areas, locally unwanted
land uses (e.g., hazardous waste dumps, prisons, and trash disposal plants), road infrastructures, and
health/education services, and to define priority areas for potential reclassification as urban according
to their agricultural productivity.
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Figure 5. Variables that can be set when initializing the model to define different urban planner profiles.

The agent must convert the amount of land specified by the user in the interface, and the
simulation outcomes should show where these changes will take place. The model mechanism works
as follows: from among the non-restricted surface areas—limited according to user selection from
among the three available options—urban planners first analyze those areas with the highest values of
interest. These values are graduated using the average of the weights indicated on the sliders at the
interface for each pixel (Figure 5). Then, the last coefficient (agricultural productivity) is set, and the
model assumes that the proposed percentage is homogeneously distributed spatially and randomly
throughout each area according to its agricultural productivity, defined as high (forest and natural
areas), medium (agricultural areas), or low (all other categories) based on a reclassification of the
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CORINE Land Cover land use categories considered artificial [52]. The final selection is then taken as
the best option.

Having described and implemented the conceptual model in NetLogo, the simulation experiments
conducted to test the prototype are reported below. Several authors have suggested that the
validation process should consist of different components: verification, validation, and a sensitivity
analysis [12,53–58]. However, since this paper presents a prototype of an ABM, it focuses less on
predicting the future and more on understanding and exploring the behavior of the urban system
and reproducing specific scenarios. Consequently, only verification of correct model construction and
validation by comparing the results with real data will be discussed further. Verification (also known as
internal validation) refers to the correctness of the internal structure, ensuring that the model has been
developed in a formally correct manner (e.g., system diagrams, units of measurement, and equations)
in accordance with a specified methodology [58]. This implies corroborating that the implemented
model conforms to the specifications by running it after changing some initial parameters, as done
by other modelers [33]. Statistical validation, or just validation, refers to determining if the model is
correct by checking whether it achieves the expected level of accuracy in its predictions. This involves
analyzing whether the structure of the model is appropriate for its intended purpose from a conceptual
and operational point of view by comparing results to real data.

The goal of these procedures was twofold: on the one hand, to confirm that the results of specific
scenarios could help determine whether the model had been correctly constructed, and on the other,
to confirm that the model has the capacity to generate the expected simulation, given the scale, available
data, and initial set of conditions.

For verification, three different contexts were set for each model by varying some of the initial
parameters (e.g., adopting a sustainable, economically conservative, or speculative approach), so that
they were sufficiently diverse to generate different outputs. It is important to note that throughout this
paper, the term “scenarios” is used to refer to different future contexts, rather than according to the
definition of scenario in the strict sense of the term. Moreover, all of the prototype submodels represent
tools in the form of open possibilities that can reproduce different urban development scenarios (as
reported here) and generate a sequence of products that could be used for a validation process such as
a sensitivity analysis, employed by many scientists for this purpose [16,18,36]. We propose to conduct
such an analysis on the final model once all three submodels have been integrated.

Hence, although very different results could arise from minor changes in these initial conditions,
the usefulness of the simulations resides in the fact that they were not aimed at identifying or analyzing
specific urban growth shapes or statistics for the Corredor del Henares, but at determining whether the
model was correctly constructed. If this latter were to be demonstrated, it would support the notion
that ABM constitute a powerful tool for use in real situations and would confirm that the prototype
achieves the proposed goal. The flexibility and high number of setting options increase the possibility
of employing this tool in different contexts and using real data on other areas.

For the validation process, we compared the results of the different simulations (of the two
submodels once integrated) with the corresponding urban land data available for the study area,
and obtained the percentage of coincidence.

With these goals in mind, we simulated the expansion of potential development areas using three
different urban planner profiles defined by the tendency to employ: (i) a sustainable approach, (ii) an
economically conservative approach (typical behavior in a crisis situation), or (iii) a speculative
approach (corresponding to a business-as-usual scenario), in accordance with the storyline and
scenarios described in Plata Rocha et al. [50]. In order to run the three simulations, the same initial
conditions were used, but different parameters were set to characterize each profile (Table 2), based on
the work cited. As expected, the simulations yielded some notable differences for the three urban
planner profiles, all of them with growth concentrated close to the most dynamic existing urban areas,
but distributed differently throughout the territory. Other future contexts could be easily defined by
changing values for each parameter.
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Table 2. Initial conditions for three different urban planner profiles.

Variable/Urban Planner Profile Reference Sustainable Conservative Speculative

Distance to locally unwanted land uses * 0.0 to 2.0 1.0 0.0 0.0
Distance to urban areas * 0.0 to 2.0 1.0 2.0 0.5
Distance to roads * 0.0 to 2.0 2.0 1.5 0.5
Distance to health and education facilities * 0.0 to 2.0 2.0 1.0 0.0
Agricultural productivity:
Conversion to potential building land in zones
with high agricultural productivity (%) 0 to 100 0 5% 20%

Conversion to potential building land in zones
with medium agriculture productivity level (%) 0 to 100 10% 20% 40%

Conversion to potential building land in zones
with low agricultural productivity (%) 0 to 100 90% 75% 40%

* Zero indicates that this factor is not relevant, while two indicates maximum relevance. Intermediate values show
proximity to minimum or maximum influence.

Therefore, the simulation results are acceptable since they are spatially and conceptually coherent.
An aggregated visualization of real data on the evolution of past and recent urban plans (the
municipalities in the study area have relatively old plans and many updates are under discussion)
and simulation with a five-year horizon for the three planner profiles (Figure 6) indicate alternative
distributions that could be used as a reference for urban planning decision-making.
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3.2. Developer Submodel

The developer submodel considers a bottom-up rather than a top-down approach [27], assuming a
more spatially-restricted knowledge of the territory (in the urban planner submodel, agents are assumed
to be familiar with the entire territory in order to make a decision). Simulation of their behavior is
expected to yield a new distribution of low, medium, and high standard residential buildings.

In the first instance, the only restrictions (TA) considered referred to regulations; thus, only already-
designated areas were candidates for new residential development. As regards attractiveness (SIC),
the preferred distance to elements of spatial interest was defined according to the standard of the
building for which expansion was to be simulated. In this model, land value and neighborhood
characteristics were the two main elements that strongly affected the decision to assign a new area for
development (Figure 7).
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As in the previous case, agents in this submodel present a unique type of behavior regarding
the variables considered, although users may change some of the parameters depending on whether
they aim to simulate the construction of high-, medium-, or low-standard housing. In addition,
the interface again allows the user to establish the initial conditions by changing parameters such as the
quantification of new buildings, specification of respective percentage of each type, and calibration of
available coefficients for each standard (distance to roads, urban areas, and public transport). The user
can also define the maximum search area that developers should take into account, considering the
elements necessary to identify a suitable location (where no ideal location is identified within the area
defined, the model allows the user to redefine the search area). The combination of these parameters
defines the future scenario.

The decision flow chart (Figure 8) leads to the final location where new housing should be built.
Unlike the urban planner submodel, the developer submodel starts with the selection of the

typology of building proposed, i.e., whether the agent will seek free land to build high, medium,
or low standard housing. This information is vital to confirm the area of interest, which is different
for each case, and later it will also be useful to define the number of dwellings assigned to each new
building typology. This choice must respect the maximum allowed for each typology. In the next step,
the model focuses on a random point that must obey the restrictions and analyzes the neighborhood,
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considering an extension which is also indicated in the interface by the user. The preference criteria
include the degree of similarity with nearby buildings (attraction for similar, or in some cases, rejection
for different) and the spatial interest defined as in the previous submodel. Whenever there is an option
that complies with these criteria, and the maximum number of runs has not yet been reached, the new
building is assigned to the corresponding pixel. The number of dwellings assigned will depend on
building typology, going from high density (low standard) to low density (high standard).
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As in the previous case, in order to confirm prototype flexibility and correct construction, scenarios
were defined according to the external environment rather than the agent’s profile (as in submodel 1).
In this case, two parameters could be modified: the residential growth predicted for each housing
standard and the maximum search area. In order to test the model, different settings were defined
for these parameters in order to simulate the real estate market under three different situations:
(i) sustainable (environmental protection approach), (ii) crisis (conservative approach) and (iii)
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speculative (business as usual). Each scenario reflects different building dynamics, housing typology
distribution balance, and urban growth shape, all defined by adjusting the values for the initial
submodel conditions (Table 3).

Table 3. Initial settings and description of submodel spatial results from simulation of the three
developer scenarios.

Scenario Initial Settings Description of Results

Characteristics that
represent the scenario Building dynamics Housing typology

distribution balance Urban growth shape

Equivalent parameter in
the submodel interface

Number of
residential
buildings
(100–3000)

% of growth for high,
medium, or low

standard buildings
(0–100%)

Compact or disseminated
represented by the search

area size (50–1500 m)

Scenario 1: Sustainable High (3500
new buildings)

Balanced (high for all,
mean: 70%) Narrow (500 m)

Group of buildings in a
compact shape, usually

connected to
existing buildings

Scenario 2: Crisis Low (500
new buildings)

Unbalanced (low for
all, mean: 30%) Narrow (500 m)

Few buildings, distributed
evenly, most of them

low standard

Scenario 3: Speculative High (3500
new buildings)

Balanced (high for all,
mean: 70%) Wide (1500 m) New buildings dispersed

throughout the territory

The last column in Table 3 presents a short description of the results, indicating satisfactory
agreement between the proposal and the expected and simulated results, mainly considering the
spatial response for the three situations (Figure 9). Furthermore, the final distribution shows the actual
and projected housing together, indicating the lack of development in restricted areas (non-building
areas or roads, for example). The spatial results for the developed area were generated from pixel
distribution over the surface designated for that purpose (urban and developable land). We did not
consider illegal settlement dynamics at this stage of the model.
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3.3. Integration of the Urban Planner and Developer Submodels

Although we only integrated two of three prototype submodels, this still presented a challenge
due to the problem of how to combine two different submodels in one, which must also be clear
and robust. Below, we describe how this difficulty was solved and the two submodels combined to
represent the territorial expansion process:

• The submodels were combined through continuous feedback of inputs and outputs. Thus,
the developer submodel uses the output of the urban planner submodel (land classification)
as one of the inputs; hence, depending on the established criteria, an updated layer is periodically
obtained showing areas classified as potential building land. As developers behave according
to these legal restrictions, the results of the independent submodels and integrated model
should differ.

• Temporal resolution also presents a challenge because the two submodels use different time
intervals to reflect the fact that developers build housing in a shorter period of time than urban
planners take to develop new planning proposals. By law in Spain, urban plans must be revised
at least every ten years with some periodical, partial reviews; thus, five years was the interval
considered for the urban planner submodel, although it could easily be modified according to
where the prototype is being employed. For the developer submodel, we considered an interval
of one year to reflect the time taken to construct new residential housing, although we are aware
that this is often a continuous process.

• Successful integration of the two submodels depended not only on which inputs/outputs were
considered, but also on when and how they were interchanged, since the submodels employ
different time intervals. The rate is determined by compliance with criteria that interrupt the
running of one submodel to start that of the other. In order to obtain the first results, to skip from
the developer to the urban planner submodel, either (i) the free area suitable for development
should not exceed a defined percentage of the total, or (ii) one of the submodels should reach a
given number of runs (Figure 10).

In summary, the model starts with a territory classified into urban, potentially urban, and other,
and also with a fixed distribution of buildings. The prototype internally calculates the percentage of
potentially urban areas occupied by residential buildings and the number of runs for each (starting
from zero). If the result exceeds the amount defined by the user (meaning that new areas are in
demand), then the urban planner submodel is launched. Otherwise, the developer submodel is run
continuously until that percentage is reached. Both submodels run in accordance with the independent
procedures described previously. In this case, the NetLogo platform was selected in order to better
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integrate both of these with each other and with the third population submodel in an ABM context,
since other techniques such as CA or multi-criteria models might not be able to solve integration.
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In order to conduct initial integration of the submodels, we considered a fixed sustainable scenario
for both. In the first instance, this should represent the ideal approach to urban development, taking
into consideration legal and strategic factors. Although this variable would depend entirely on the
user’s interests, for this simulation experiment we set the urban planner submodel to run once for
each three runs of the developer submodel, with the latter running at one-year intervals. As expected,
the results of this integrated simulation indicated urban growth along roads and around existing
developments: potential urban land expansion occurred close to residential buildings in the smaller
municipalities, and mainly in the central ones (Figure 11).
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The tests performed on these models represent the only verification that it was possible to
conduct at this time, according to the existing data and structure described for these two submodels.
Verification therefore consisted of testing model reliability by running it with different future scenarios
in order to confirm that the results complied with the established rules and expected operation.
This would demonstrate that the model generates acceptable simulations according to the available
established parameters, and was thus considered sufficient verification for a prototype. Many partial
modifications were performed throughout the construction of both submodels and the integrated
model; for each procedure, additional queries were hosted in the programming to verify correct
operation at different stages. An iterations routine was also introduced, and the test results achieved a
mean of 90% coincidence after 10 sequential runs. This high level of coincidence is explained by the
fact that the structure of both models was based on a deterministic approach.

Before reporting the validation process, it is important to note that the combined outputs of the
two submodels comprise a partial result, indicating the proposed developable surface, with which
there is no available real data for comparison (a comparison between different scenario outputs is
given in Figure 6), and the new distribution of individual built-up pixels in those areas. With this
in mind, a validation step was performed comparing the new simulated buildings with real land
use data. To this end, we used the only updated data available: the Spanish Land Cover and Use
Information System (Spanish initials: SIOSE) produced by the National Geographic Institute of Spain
(Spanish initials: IGN), available for 2011 with a reference scale of 1:25,000. This includes the basic
land use categories, such as artificial zones, crops, grassland, woodland, scrub, and land without
vegetation [59]. Although the model result represents built-up areas in pixels, while the only available
data on observed spatial urban growth for the same year refer to surfaces, the intersection of these
shows the level of correspondence between model products and reality.

This comparison (Figure 12) revealed an acceptable level of coincidence, bearing in mind that
the difference in data shape (pixel and surface) limited coincidence. In terms of percentages of
correspondence, our results show that the model closely reflected the real situation in the study area
tested, obtaining the highest percentage for the crisis scenario (62.3%), which mirrored the profound
real estate crisis that hit Spain during the simulation period. Furthermore, the results for the speculation
scenario (39.9%) and the sustainable scenario (48.8%) were coherent, because the former represents
the scenario furthest from reality in the study area, while the sustainable scenario indicates more
conservative growth, closer to the crisis scenario (see the parameter established for each scenario in
Tables 2 and 3).
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Figure 12. Simulated and observed built-up area growth in a zoomed area (municipality: Alcalá de 
Henares): Comparison between the simulated residential buildings for the three scenarios (pixels)—
(a) sustainable, (b) crisis, and (c) speculative—and the urban land cartography (surface) from the 
SIOSE database (2011) [59]. 

4. Discussion 

It was a challenge to design a model that simulated the urban system considering its territorial 
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4. Discussion

It was a challenge to design a model that simulated the urban system considering its territorial
expansion process, since it was necessary to integrate two agents that act at different scales and
with different goals, although their products and behaviors are closely related. A larger number
of examples of application at similar scales would be required to discuss its possibilities further;
nonetheless, the existing ones serve as references, to which we have added empirical knowledge about
the region and the urban process in Spain, enabling us to create, run, and test both submodels and the
integrated model.

The structure of the agent-based model described here consists of three agents, constructed
independently for subsequent integration. When analyzed separately, the territorial expansion reported
here is more deterministic, while the stochastic element is given by the third submodel (population)
and the integration of the first two (as presented here) or all three submodels. The novelty of this
model resides in its capacity to simulate the urban growth decision-making process in an ABM context,
and to integrate the submodels, which would be problematic if using other urban growth simulation
techniques such as CA or multicriteria evaluation.

It is worth mentioning that the decision to work with separate submodels, running them
individually first, endowed us with more control at each step in the entire process, and in some
cases it also enabled us to forestall errors. Unlike other authors, who have considered similar agents
and goals [27], we used three submodels—urban planner, developer, and population—to represent
the main agents when modeling the urban development process. In this paper, we have reported
the first two, which together show the spatial distribution of urban growth. These agents´ decisions
are based on a set of criteria and weighted preferences that together with other interaction elements
would be difficult to simulate using urban growth models based on multicriteria evaluation, cellular
automata, or other techniques. A further innovation is the interaction of the submodels using input
and output feedback in the same framework, generating a continuous process of land reclassification
and residential building expansion focusing on the influence of one behavior on another. The ABM
architecture facilitates the representation of agent interactions, which will be completed by integrating
the population submodel, designed to represent occupation of the available residences generated by
the developers.

We believe that this model, which is sufficiently flexible to combine the top-down approach of
urban planners and the bottom-up approach of developers, could serve as a useful tool to stimulate
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lively discussion about planning support modeling at the intermediate scale. In addition, it could
also serve to further analyze the impact of land use changes or their relationship to transport system
evolution using this bottom-up perspective.

As indicated throughout this paper, this structure enabled us to combine agents’ behavior and
transform it into mathematical rules that could be entered independently into the urban planner and
developer submodels and then transferred to the integrated model. NetLogo was the best platform
for this, since its simple interface and GIS extension made it possible to obtain a user-friendly model.
This capacity to connect an ABM with GIS represents an important advance for urban simulation,
since there are usually clear limitations on cartographic representation in an ABM. Furthermore,
the processing power of NetLogo, which may sometimes be considered a limitation for more demanding
models [60,61], was sufficient in this case.

In all stages, our model works with territorial information, and thus is explicitly spatial as regards
not only input but also output data. Even if the best mechanisms were available to develop an ABM,
the data would represent a significant constraint if they were poor quality or did not comply with
geographical and scale needs. One of the submodels’ outstanding properties is their flexibility in terms
of the amount and kind of data that can be used, since this allows the user to easily adapt the prototype
to other similar study areas.

An analysis of the physical distribution of housing and potential urban land or a thematic
analysis of the results were not among the goals of this study, although some such analyses were
performed in order to confirm that the model was correctly constructed and generated accurate
products. ABM validation is a controversial issue [12,53,54,56,62–64], and will continue to be so until
more research is conducted in this field. Nevertheless, we performed a verification procedure by means
of programming tests, empirical reviews, and comparison of results, simulating growth under different
contexts (setting different initial parameter values and constituting future scenarios). Furthermore, we
performed a validation by comparing the simulated results to real world data, which confirmed our
expectations. This step was considered sufficient since, our goal at this stage was simply to test the
submodels, considering that further validation will be required in the future when the model (AMEBA)
is complete, i.e., once the population submodel has been integrated.

5. Conclusions

In sum, the conceptual prototype, the prototype structure, and implementation of the first two
submodels together represent a first attempt to create a model capable of simulating urban growth
that could actually be used to support territorial planning, rather than a purely theoretical ABM.
Its application at sub-regional scale using real data was a novel experiment. Therefore, considering
these submodels in a wider context, the model could be useful for similar studies in different regions,
provided that they presented equivalent characteristics or introduced the necessary modifications.
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