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Abstract: Phytoremediation of mine soils contaminated by potentially toxic elements (PTEs) requires
the use of tolerant plants given the specific conditions of toxicity in the altered soil ecosystems. In
this sense, a survey was conducted in an ancient Hg-mining area named “El Terronal” (Asturias,
Spain) which is severely affected by PTE contamination (As, Hg, Pb) to obtain an inventory of the
spontaneous natural vegetation. A detailed habitat classification was performed and a specific index
of coverage was applied after a one-year quadrat study in various sampling stations; seven species
were finally selected (Agrostis tenuis, Betula celtiberica, Calluna vulgaris, Dactylis glomerata, Plantago
lanceolata, Salix atrocinerea and Trifolium repens). A total of 21 samples (3 per plant) of the soil–plant
system were collected and analyzed for the available and total concentrations of contaminants in
soil and plants (roots and aerial parts). Most of the studied plant species were classified as non-
accumulating plants, with particular exceptions as Calluna vulgaris for Pb and Dactylis glomerata for As.
Overall, the results revealed interest for phytoremediation treatments, especially phytostabilization,
as most of the plants studied were classified as excluder metallophytes.

Keywords: phytoremediation; soil contamination; potentially toxic elements; native plants; phytosta-
bilization

1. Introduction

Contamination derived of mining activities has been increasing dramatically since the
beginning of the industrial revolution. Mining operations have produced many environ-
mental problems, including soil contamination and ecosystem degradation [1,2], specially
wherever potentially toxic elements (PTEs) were included within the ores exploited [3,4].
Furthermore, uncontrolled tailing disposal implies an important environmental impact
especially on soils (losses of biological activity, structure, and fertility) and other environ-
mental compartments affected by wind dispersion, water erosion, leaching, etc. [5,6].

Studies have shown that PTEs are persistent and widely dispersed in the environment;
they interact with different natural components and pose threats to human health and
the environment [7,8]. PTEs from air emissions can deposit directly on soils, and may
be accumulated through rainwater transport [9,10]. Within usual PTEs found in mining
areas As, Hg, and Pb are well-known toxics in low concentrations usually mobilized and
adsorbed by animals and plants, and are also toxic by ingestion or inhalation for humans.
Specifically, As toxicity has caused environmental problems in relation to groundwater and
human illnesses [11–13]. Pb is potentially toxic to earthworms, but also for predators and
detritovores in terrestrial food webs [14]; in humans an excessive intake of Pb may damage
neurologic, vascular, endocrine, and immune systems [15]. Hg participates in a number of
complex environmental cycles and, once in the environment, can be converted into organo-
mercury compounds which are highly toxic to most organisms [16], causing neurological
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diseases, genotoxicity, a disruption to endocrine systems or sensory disturbance, among
other effects [17].

Different approaches have been employed to remediate contaminated sites, and specif-
ically former mining areas. In this sense, conventional engineering methods are usually
expensive and non-sustainable [18], whereas phytoremediation is a possible effective and
ecologically friendly alternative [19]. Phytoremediation can be defined as the use of plant
species (shrubs, trees, aquatic plants, and grasses) and associated microorganisms, together
with agronomic techniques, for the elimination, degradation, or separation of contaminated
sites in an environment [19,20]. It also improves soil quality and structure, and can be ap-
plied in a variety of approaches such as phytoextraction, phytodegradation, rhizofiltration,
phytostabilization, and phytovolatilization [21,22]. Phytoextraction requires plants able to
take up, translocate, and accumulate high concentration of contaminants [23,24]. In this
context, metallophytes can be classified into three major categories: excluders, accumula-
tors and indicators [25]. In turn, phytostabilization is based on the ability of plants to fix
the soil and immobilize metal(loid)s within the rhizosphere [26,27].

The use of vegetation covers in PTEs-contaminated mining areas is a viable alternative
to reduce wind dispersion and water erosion, and also to immobilize or mobilize pollutants
by plants. The efficacy of these processes depends on the tolerant plants. In this regard,
the identification of natural vegetation growing in contaminated areas and the subsequent
selection of specific metal-tolerant plants with potential value in phytoremediation are
critical steps to select phytoextraction or phytostabilization techniques.

Following the preceding considerations, the main objectives of this study are:

1. To identify and describe species growing in a paradigmatic mining area affected by
As, Hg, and Pb contamination.

2. To determine PTEs contents (in soils, roots, and aerial parts) and behavior of most
representative plant species.

3. To assess the selection of the most suitable combination of plant species to design
phytoremediation strategies.

2. Material and Methods
2.1. Site Description

The study site is an abandoned Hg mine and metallurgy area called “El Terronal”,
located in a geographical radius of 10 km around of Mieres (20 km of Oviedo), in Asturias,
NW Spain (Figure 1). With abundant Hg ore deposits, Asturias, from the 1950’s until the
1970’s, was an important mercury producer on a world scale, with an average annual
production of 15,000 flasks (1 flask = 34.5 kg) [28].

The study area was exploited from the Roman occupation of the Iberian Peninsula in
the first and second century A.D. [29]. In the late 1960’s–early 1970’s, production peaked,
nevertheless, in 1974, the mine and the metallurgy ceased activity. The legacy remained for
decades in the form of abandoned industrial installations and, heaped on a hillside, a large
volume of waste contained heavy metals and arsenic disposed along the San Tirso River valley.

Mineralogical studies of El Terronal spoil heaps showed that iron sulphides are very
abundant (pyrite, marcasite and pyrrhotite), and, in general, weathering has altered them
to hematite and iron hydroxides [30]. Mercury generally appears in the form of cinnabar,
irregularly distributed in a brecciated conglomerate and disseminated in the matrix, and
arsenic appears as realgar and As-rich pyrite [31].
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Figure 1. “El Terronal” study area location and an aerial view of the site. 
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and the predominant plant species were characterized. The identification took place ini-
tially “in situ” in zones of the site where the PTEs contents were high as determined in 
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according to the methodology and traditional methods of plant taxonomy. 

The nomenclature of the taxons mentioned in the text and the tables is in accordance 
with Flora Ibérica [33], or European Flora [34], otherwise, the criteria established in Fernán-
dez Prieto et al. (2014) [35] are followed. Subsequently, data were also classified by strata 
(Arboreal (>7), arborescent (3–7), shrubby (1–3), subshrub (i.e., short woody plant) (0.5–
1), herbaceous (<0.5), and muscinal (mosses, lichens, and fungi). 

Figure 1. “El Terronal” study area location and an aerial view of the site.

2.2. Plant Classification

The diversity of species with a significant presence in the study site was identified and
the predominant plant species were characterized. The identification took place initially
“in situ” in zones of the site where the PTEs contents were high as determined in previous
studies [4,32], and the conflicting specimens were herborized for identification, according
to the methodology and traditional methods of plant taxonomy.

The nomenclature of the taxons mentioned in the text and the tables is in accordance
with Flora Ibérica [33], or European Flora [34], otherwise, the criteria established in Fernández
Prieto et al. (2014) [35] are followed. Subsequently, data were also classified by strata
(Arboreal (>7), arborescent (3–7), shrubby (1–3), subshrub (i.e., short woody plant) (0.5–1),
herbaceous (<0.5), and muscinal (mosses, lichens, and fungi).

For the nomenclature and the general characteristics of the plants used, the criteria of
Castroviejo (1986–2012) [33] was followed, except in the case of the botanical families of
the Grasses (Poaceae) and Betula genus, in which Hubbard (1985) and Ashburner & Mc
Allister (2013) criteria were respectively followed [36,37].

2.3. Soil and Plant Sampling

As indicated above, previous studies were useful to identify zones of the site with
high contamination levels [31,32], whereas another general study of plants potentially
useful for phytoremediation [2] was also taken into account.

All things considered, samples of the soil–plant system in the area “El Terronal” were
selected according to the density, frequency, and surface covered in the most contaminated
areas of the site. The importance and predominance of each plant was categorized from
level 1 to 4 (Table 1) by means of a coating index (CoI) [38–41]. This plant population
frequency study was carried out monthly for one year by the quadrat method (1 m × 1 m)
at 7 sampling areas selected after an initial screening of contaminated soils (i.e., areas
selected presented the highest contamination levels). In these areas, 39 plant species were
identified (see results); finally, 7 were selected and a total of 21 plant samples (7 different
species with 3 replicas each) were taken.
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Table 1. Coating Index classification.

Coating Index Categories Description

1 Quite abundant individuals but of weak coverage. Covering from
1% to 10% (Medium coating = 5%)

2 Very abundant individuals that cover at least 1/20 of the surface.
Covering from 10% to 25% (Medium coating = 17.5)

3 Individuals of variable number, but who cover from 1
4 to 1

2 of the
surface. Covering from 25% to 50%. (Medium coating = 37.5%)

4 Individuals of variable number, but that cover of 1
2 to 3

4 of the
surface. Coating from 50% to 75%. (Medium coating = 62.5%)

After plant sampling, individuals were sorted by hand to separate plant structures
(aerial parts and root samples). These were then thoroughly washed with tap water
several times followed by distilled water, and then cleaned using an ultrasonic bath to
remove external contamination, and subsequently dried at room temperature for two
weeks. Samples were ground in a universal rotor and variable speed Ultra Centrifugal
Mill ZM 200 (Retsch, Haan, Germany) (from 6.000 rpm to 20.000 rpm). The milled samples
were collected in stainless steel containers, homogenized, and screened to a size of less
than 50 µM.

Representative soil samples (21) were taken in the tilled depth (0–25 cm) in the same
sampling stations that the plants were sampled. Sampling was carried out using a soil
auger and individual plastic bags were used for storage. All of the soil samples were dried
to a constant weight at room temperature over a period of 20 days. Samples were then
sieved through 2 mm, ground below 150 µM 400 rpm, (RS100 Retsch vibratory disc mill),
homogenized, and quartered by means of an aluminum riffler (cleaned between samples
using ethanol, distilled water, and compressed air) to provide a representative subsample
of approximately 500 g.

2.4. Soil Analyses

A physicochemical characterization of the composite soil samples were carried out
according to standard procedures (3 determinations per sample), pH was measured in
a suspension of soil and distilled water (1:2.5) with a glass electrode [42], and electrical
conductivity (EC) was determined in a 1:5 suspension of soil and wate, using a conduc-
tivity meter. Organic matter was measured by weight loss at 450 ◦C (loss-on-ignition
method) [43]. Total N was determined by Kjeldahl digestion [44]. Mehlich 3 reagent [45]
was used to colorimetrically determine available P. Exchangeable Al was extracted with
1 M KCl, and exchangeable cations (Ca, Mg, K and Na) with 1 M NH4Cl; both were then
analyzed by atomic absorption spectrophotometry [46] in a AA200 Perkin Elmer system
(Massachusetts, USA). The effective cation exchange capacity (ECEC) was estimated as the
sum of exchangeable Al and exchangeable cations. Particle-size distribution was deter-
mined by the pipette method, after particle dispersion with sodium hexametaphosphate
and sodium carbonate [47].

Representative soil subsamples were leached by means of an ‘Aqua regia’ digestion
(HCl + HNO3, 1:1) (250 mg of sample for 8 mL of 1aqua regia) in an Anton Paar 3000 mi-
crowave (Graz, Austria) operated for 25 min at 1000 W. The samples were diluted and
filtered. Major elements were quantified by an inductively coupled plasma mass spectrom-
eter (ICP-MS 7700, Agilent Technologies, Santa Clara, CA, USA) using isotopic dilution
analysis (IDA). Reference materials, ERM-CC141 and ERM-CC018, were used. Detection
limits for As, Hg, and Pb were 0.1µg.L−1, with RSD > 5% (reproducibility), and the percent
of recovery was above 95%.

PTEs soil phytoavailability was estimated by a sequential extraction procedure based
on the first two fractions (exchangeable and carbonate-bound) of the Tessier method [48].
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Both extracts were passed through 0.45-µM PTFE filters and diluted 1:10 prior to analysis
by ICP-MS, as referred above.

2.5. Plant Analyses

In order to determine the concentration of PTEs in the different plant organs, 0.2 g of
powdered samples was digested with 8 mL of 50% nitric acid using a microwave at 800 W
(Multiwave 3000, Anton Paar, Graz, Austria) for 15 min. The solutions were diluted to
50 mL with ultrapure water and passed through 0.45-µM PTFE filters before analysis. The
elements of interest were measured using the same ICP-MS device, as described above.
Standard reference material apple leaves NIST® SRM® 1515 were used with a percent of
recovery above 95%.

2.6. Data Analysis

The correlations between different variables were evaluated using Pearson’s coefficient.
All statistical analysis (multiples regression) was performed using IBM (Armonk, NY, USA)
SPSS Statistics software 22.0.

Accumulation Factors

To evaluate the Pb, As, and Hg accumulation efficiency in the plants, various factors
were examined [49–51].

The biological concentration factor (BCF) was calculated as the metal concentration
ratio of plant roots to soil (BCF = C root/C soil); values of BCF > 1 indicate the accumulation
of a particular trace metal in the roots.

The translocation factor (TF) indicates the ratio of trace metals in the aboveground
plant parts (shoot, branches, or leaves) to those in the plant root (TF = C above ground
part/C root); TF > 1 indicates that plant translocate metals effectively from root to shoot.

Finally, mobility radio (MR), also known as the biological-accumulation coefficient
(BAC), was calculated as the ratio of heavy metal in the aboveground plant parts (shoots,
branches, or leaves) to those in the soil (MR = C above ground part/C soil). A mobility
ratio of >1 indicates that the plant is enriched with metals (i.e., the accumulator, which
can tolerate high tissue concentrations of trace metals), a mobility radio of =1 indicates an
indifferent behavior of the plant toward metals (i.e., the indicator, which is characterized
by metal uptake proportional to concentrations of trace metals in soil), and a mobility radio
of <1 indicates that the plant excludes metals from the uptake (i.e., the excluder, which has
a low rate of uptake or actively excludes trace metals).

3. Results and Discussion
3.1. Description of the Identified Plant Species

According to Díaz and Fernández (2007) [52], phytogeographically, the site is framed
as the Eurosiberian Region, the European Atlantic Province, the Cantabrian-Atlantic Sub-
province, the Ovetense Litoral District, the Galaico-Asturian Sector, the Ovetense Subsector.
Bioclimatically, according to the cartography of Rivas-Martínez et al. (2004) [53], the site is
included within the sub-Mediterranean oceanic temperate macroclimate.

The study habitat revealed the presence of many tolerant species in their mature state
which spontaneously grew on the contaminated soil. Herbaceous species were predomi-
nant (81%, from which 46% corresponds to perennial herbaceous), 5% were arboreal, 12%
shrubby, and 2% lichenic and muscinal (for details, see Supplementary Material, Table S1).
In this sense, it is well-known that the herbaceous can tolerate areas with notable con-
tamination [54,55]. In addition, herbaceous have a lot of advantages, as they are easy
to cultivate and propagate. In general, they are self-sustainable, and many of them are
perennial species, which have advantages for extracting or immobilizing the contaminants.

Once identified, the species that develop naturally in the site, and in order to select
those species of greatest interest, the quadrat methodology and the subsequent calculation
of the CoI revealed 7 plant species with the highest CoI (level 4, as shown in Table 2):
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Agrostis tenuis; Betula celtiberica; Calluna vulgaris; Dactylis glomerata; Plantago lanceolata; Salix
atrocinerea, and Trifolium repens.

Table 2. Distribution of vegetation taking into account Coating index (abundance, coverage, density,
and frequency). The botanical and ecological characteristics of the selected 7 species with CoI = 4 are
described in the Supplementary Materials, Table S2.

Identified Species Botanical Family Coating Index (CoI)

Agrostis tenuis L. Poaceae 4
Betula celtiberica Rothm. & Vasc. Betulaceae 4

Calluna vulgaris L. Hull Ericaceae 4
Dactylis glomerata L. Poaceae 4
Plantago lanceolata L. Plantaginaceae 4
Salix atrocinerea Brot. Salicaceae 4

Trifolium repens L. Fabaceae 4
Agrostis capillaris L. Poaceae 3
Cornus sanguinea L. Cornaceae 3

Lolium perenne L. Poaceae 3
Lotus hispidus Desf. ex DC. Fabaceae 3

Medicago lupulina L. Fabaceae 3
Pastinaca sativa L. subsp. sylvestris

(Mill.) Rouy & Camus Apiaceae 3

Piptatherum miliaceum L. Coss. Poaceae 3
Sonchus asper L. Hill Asteraceae 3
Sonchus oleraceus L. Asteraceae 3

Holcus lanatus L. Poaceae 3
Hypericum pulchrum L. Hypericaceae 3
Cirsium vulgare L. Scop. Asteraceae 2

Conyza canadensis L. Cronquist Asteraceae 2
Desmazeria rigida L. Tutin (=

Catapodium rigidum) Poaceae 2

Lolium perenne L. Poaceae 2
Lotus corniculatus L. Fabaceae 2

Poa annua L. Poaceae 2
Prunella vulgaris L. Lamiaceae 2

Pteridium aquilinum L. Kuhn Dennstaedtiaceae 2
Rubus gr. fruticosus L. Rosaceae 2

Sagina apetala Ard. Caryophyllaceae 2
Stellaria media L. Caryophyllaceae 2

Trifolium dubium Sibth. Fabaceae 2
Verbena officinalis L. Verbenaceae 2

Arabis glabra L. Bernh. Brassicaceae 1
Blechnum spicant L. Roth Blechnaceae 1
Festuca nigrescens Lam. Poaceae 1

Hedera Helix L. Araliaceae 1
Melilotus albus Medik. Fabaceae 1
Rubus ulmifolius Schott Rosaceae 1

Verbascum virgatum Stokes Scrophulariaceae 1
Vulpia bromoides L. Gray Poaceae 1

3.2. Physicochemical Characterization of Soil Samples

The main edaphological soil parameters of “El Terronal” samples that were taken
in areas of maximum CoI are shown in Table 3. Overall, results revealed a moderate
homogeneity, pH values generally had slightly low alkaline levels, and soils did not show
salinity, whereas organic matter levels were high (above 6%). On the basis of the particle
size distribution data, samples were classified as sandy soils with normal contents of total
N, a very high C/N relation, and P and Mg deficiencies.
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Table 3. Physicochemical characterization of the 21 soil samples studied.

Soil Parameter Units Average Std. Deviation

pH 1:2.5 H2O 7.67 0.82

C.E 1 dS m−1 0.01 0.001

Sand % 89.49 4.50

Silt % 6.36 3.99

Clay % 5.45 1.66

O.M 2 % 6.25 0.78

C % 9.43 1.03

N (total) % 0.17 0.07

C/N 3 - 58.30 14.11

Fe mg kg−1 8.33 3.01

PM3 4 mg kg−1 1.70 0.61

Ex Ca cmol(+)kg−1 17.07 0.65

Ex Mg cmol(+)kg−1 1.55 0.07

Ex K cmol(+)kg−1 1.83 0.16

Ex Na cmol(+)kg−1 1.60 0.21

E.C.E.C 5 cmol(+)kg−1 22.35 1.60
1 C.E: electrical conductivity; 2 O.M: organic matter; 3C/N: carbon and nitrogen ratio; 4 PM3: Phosporous
(Melhrich method); 5 E.C.E.C: effective cation exchange capacity.

3.3. PTEs in Soil–Plant System

Total As, Hg, and Pb concentrations in soils and plants (aerial parts and roots) corre-
sponding with the areas with maximum CoI (Figure 2) are shown in Table 4.
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Table 4. Average content of metal(loid)s in soil and plant samples for the seven selected species
analyzed (n = 3, uncertainties below 10% for all determinations). Data for elements with soil
contents below 100 mg·kg−1 (= ppm) are not indicated and were not considered for the calculation
of accumulation factors (see Table 5).

Specie Element
Concentration (mg·kg−1 = ppm)

Soil Aerial Parts Roots

Agrostis tenuis
As 197 3 23

Hg 131 5 18

Betula celtiberica
As 107 9 15

Hg 238 2 8

Calluna vulgaris
As 24,600 571 1270

Pb 105 11 10

Dactylis glomerata
As 180 28 11

Hg 260 5 9

Plantago lanceolata
As 177 12 26

Hg 132 9 16

Trifolium repens
As 142 6 15

Hg 222 3 8

Salix atrocinerea
As 112 6 12

Hg 229 2 5

Table 5. Accumulation factors for the plant species studied (BCF: Bioaccumulation Factor. TF:
Translocation Factor. MR: Mobility Ratio).

Specie
BCF TF MR

As Hg Pb As Hg Pb As Hg Pb

A. tenuis 0.12 0.14 - 0.13 0.27 0.01 0.04

B. celtiberica 0.14 0.03 - 0.59 0.27 0.08 0.01

C. vulgaris 0.05 - 0.09 0.45 - 1.13 0.02 - 0.11

D. glomerata 0.06 0.03 - 2.54 0.54 - 0.15 0.02 -

P. lanceolata 0.15 0.12 - 0.45 0.55 - 0.07 0.06 -

T. repens 0.10 0.04 - 0.45 0.38 - 0.05 0.01

S. atrocinerea 0.11 0.02 0.45 0.38 - 0.05 0.01

With regards to soil, when compared with the soil screening levels established for
PTEs in the Asturias region [56], the average values are notably above the levels in force,
especially for As and Hg. Although PTEs contents are therefore very high, it should be
noted that average phytoavailability levels found using sequential extraction were low
(2.17% for As, 1.5% for Hg, and 0.2% for Pb).

The plant species studied notably exceed As concentrations usual for plants growing
on uncontaminated soils which range between 0.009 and 1.5 mg/kg [57]. In fact, all of
the species studied (except A. tenuis) revealed concentrations of As in the aerial parts
surpassing 5–10 mg·kg−1, i.e., levels that are usually considered to be toxic [58]. Similar
effects are observed with Hg contents, as sub-lethal damage to vital functions occur at
1 mg·kg−1; depending upon the species, values that are exceeded in all the species with
the exception C. vulgaris that on the contrary revealed high levels of Pb in the leaves (the
normal range of metal concentrations in plants for Pb are 0.1–10 mg kg−1).
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Accumulation factors presented in Table 5 indicate that most of the plant species
studied showed low values (below 1) for the three parameters. This may suggest that
uptake of PTEs was very low even considering the high PTE contents in soil, thus plant
species under study were classified as non-accumulating plants, with two particular excep-
tions: C. vulgaris for Pb translocation factor and D. glomerata for As translocation factor. In
accordance, only these two plant species could be of interest for phtoextraction treatments
whereas the other five could be useful in phytostabilization approaches. The distribution
of trace elements in selected species at the mature stages is different for all of them.

Previous studies support the different behaviors observed in our study. In fact, C. vul-
garis has been identified as an As-tolerant species [59–61] and the same occurred with
D. glomerata [62]. In turn, Plantago lanceolata is considered as a good As bioindicator, al-
though, in contaminated soils, it recovered much less As than hyperaccumulator plants [63].
Other studies have reported low efficiency As extraction and translocation of T. repens [64]
and S. atrocinerea [65]. Nevertheless, and disagreeing with our study, Agrostis tenuis was
defined as hyperaccumulator of As [66,67] and T. repens showed strong Hg enrichment
ability [68]. At any case, the efficiency and potential use of species in phytoremediation
strategies is limited by factors such as the rate of growth, the development of roots, and
the production of biomass [69].

The correlation between PTEs and accumulation factors, expressed as Pearson correla-
tion coefficients (p < 0.05), did not reveal significant values. This can be explained as a result
of the different mechanisms of assimilation and translocation factors for different elements
in these plant species. However, significant correlations were found between contents of,
for instance, As and Pb in soil and aerial parts (r = 0.972 and r = 0.905, respectively), and
between soil contents and roots (0.940 for As and 0.896 for Hg). These facts show that
plants contain information about the quality of the soil.

In a somehow different approach, we also found estimations of accumulation factors
by obtaining a multiple linear regression equations as follows:

BCF-As = −0.055 + 0.721 BCF-Pb + 1.216 MR-As (R2 = 0.958)

BCF-Hg = 0.109 − 0.001 Soil-Hg + 0.005 Roots-Hg (R2 = 0.991)

TF-As = 0.352 + 1.286 TF-Pb − 1.298 BCF-Pb (R2 = 0.901)

These equations could be useful to estimate the global behavior of this group of species
in other areas of the study site.

4. Conclusions

The examination of plant species growing in a former abandoned Hg-mining area
revealed the presence of a diverse flora tolerant to the main toxic PTEs in the site (mainly
As, Hg, and secondarily Pb). Remarkably, herbaceous species were predominant in the
most contaminated areas of the site, as demonstrated in a one-year study of plant coverage.

The predominant species identified (Agrostis tenuis; Betula celtiberica; Calluna vulgaris;
Dactylis glomerata; Plantago lanceolata; Salix atrocinerea, and Trifolium repens) revealed a
methallophyte behavior consistent with a potential forthcoming use for phytostabilization.
Therefore, regarding site remediation, future studies should focus on the application of
phytostabilization as a first option. However, some of the species identified (Calluna vulgaris
and Dactylis glomerata) are also of specific interest because of their ability to translocate
Pb and As, respectively, thus pointing out to their potential as bio-indicators or even in
phytoextraction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/environments8070063/s1. Table S1: Plants identified in the geobotanical study. SM2: Agrostis
tenuis; Betula celtiberica; Calluna vulgaris; Dactylis glomerata; Plantago lanceolata; Salix atrocinerea, and
Trifolium repens description.
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