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Abstract: Groundwater of northern Mexico contains high concentrations of geogenic fluoride (F−), a
contaminant known to affect human health. The origin of F− in groundwater in this region has been
related to the weathering of rhyolite and other volcanic rocks present in the alluvium. However, the
relationship of F− concentration to water depth has not been established. F− concentrations, pH, and
total dissolved solids (TSD) were determined for 18 wells within the Meoqui-Delicias aquifer in 2021.
The F concentrations varied between 0.62 mg L−1 and 4.84 mg L−1, and 61% of the wells exceeded
the 1.5 mg L−1 guideline. F− concentrations did not correlate to TDS but correlated to well depth
(r = −0.52, p < 0.05). Because of the less-than-strong correlation coefficient value obtained, a diagram
of F− concentrations vs. well depth was constructed. The diagram showed a distinct enrichment of
F− in shallow wells, suggesting that groundwater residence time and evaporation may be important
factors in explaining the F− content within the aquifer. This pattern was confirmed after plotting 2003
and 2006 data for the same wells. These findings are important to better understand the distribution
of F− in neighboring alluvial aquifers as well as in alluvial aquifers elsewhere.

Keywords: basin-fill aquifer; evaporation; fluoride; Chihuahua; groundwater withdrawal

1. Introduction

Groundwater with high fluoride (F−) concentrations occurs in regions of more than
25 countries in the world [1,2]. Recent estimates establish that 180 million people are
potentially affected by F−, most of them in Asia and Africa [2]. Although the F− sources
are believed to be geogenic for the most part, there are notable hydrologic, climatic, and
geologic differences among the affected regions. Arid and semiarid areas are prone to
groundwater with high F− concentrations due to prevailing conditions that favor the disso-
lution of F−, such as high pH and alkalinity, warm temperatures, well depth, mean annual
precipitation, aquifer lithology, and long residence times [2,3]. Within a particular aquifer,
there can also be variations in the F− concentration. For example, the F− concentration
may increase in the deeper parts of a large aquifer [3], but in other cases, it may increase
near the discharge area because of a longer residence time, and, since the water is by then
found in the shallow part of the aquifer, evaporation may also play a role [4,5]. Hence,
geogenic high F− groundwaters have been classified into three major types [6]: high F−

in shallow groundwater, high F in deep groundwater, and high F− in geothermal water.
Studies that narrow down the affected areas and report their F spatial distribution and the
factors responsible for their content have increased in recent years [6–9].

Ingestion of groundwater containing F− is the most common pathway of exposure
leading to health problems [10], including a condition known as fluorosis [1,11]. The stan-
dard guideline for F− concentration in drinking water set by the World Health Organization
and by many countries is 1.5 mg L−1 F−; however, a limit of 1.0 mg L−1 F− is advisable
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in places where people drink more water [1]. Ingesting water above 1.5 mg L−1 F causes
teeth discoloration (dental fluorosis), whereas chronic ingestion of higher concentrations
(e.g., 4.0 mg L−1 F−) has more serious consequences to human health, affecting the bones
(skeletal fluorosis) and vital organs, as well as developing neurotoxic and metabolic ef-
fects [10–12]. The health predicament complicates when arsenic (As) is found co-occurring
with F, as is the case in many regions worldwide [12–24].

The guideline in Mexico for drinking water is 1.5 mg L−1 F− [25], but in the future,
it will be 1.0 mg L−1 F−, a change that will take a few years to be fully implemented [14].
High concentrations of F− in the groundwater of northern Mexico are common, where
concentrations up to 28 mg L−1 F have been observed [10]. Among the most affected
regions in Mexico with high F− concentrations are the states of Chihuahua, Durango, and
Zacatecas [14]. In the state of Chihuahua, a median of 1.4 mg L−1 F− with 45% of sampled
wells exceeding the 1.5 mg L−1 F− guideline was reported for samples collected in 2017–
2019 [10]. Another study, based on 445 groundwater samples from rural communities of
southeast Chihuahua, found F− concentrations varying between 0.05 and 11.8 mg L−1 F−,
and 37.2% of these samples exceeded the 1.5 mg L−1 F− guideline [15]. Most of the F−

studies report the presence of both F− and As [3,16–18,24].
In the alluvial aquifers of northern and central Mexico, the origin of F has been reported

as geogenic, associated with the weathering of silicate-rich rocks such as rhyolite and
ignimbrite [9,13,15,24]. These studies also report that the distribution of F− concentrations
varies greatly with location [13–15]. Therefore, factors that might explain this variability
are constantly sought, among them the depth of the well, groundwater extraction, and
total dissolved solids (TDS). Well-known factors responsible for high F− concentrations
include aridity, alkalinity, and the presence of silicate-rich rocks [2,3]. Less explored factors
include well depth, residence time, and the input of anthropogenic contaminants [10,16].
The objectives of this study were to determine the relationship between F concentration
and well depth in an alluvial aquifer in northern Mexico and to infer about the variation in
this pattern in space and time.

2. Materials and Methods
2.1. Description of the Study Area

The study area comprises the Meoqui-Delicias aquifer, an overexploited alluvial
aquifer located in the central part of the state of Chihuahua, Mexico. This aquifer underlies
a region of irrigated agriculture and dairy farm operations known as Distrito de Riego
005. The aquifer occupies a surface area of 4830 km2 and has an irregular geometry, with
a maximum thickness of 500 m and an average thickness of 300 m [26]. The aquifer is
recharged primarily in the many arroyos and the alluvial fans that form at the base of hills
that rise on its western part, but a significant recharge likely occurs at the fields, which are
irrigated with surface water [26]. The local discharge areas are the Rio Conchos and Rio
San Pedro, and the regional groundwater flows in a northerly direction. Although this is a
primarily unconfined aquifer, under clay lenses, it operates as a confined aquifer.

The climate is semiarid, with an average annual precipitation of 284 mm. Most of the
precipitation occurs during the monsoon season (July to September). The aquifer provides
drinking water to several communities (total pop. ≈200,000) and contributes 17% of the
water used to irrigate crops [27]. However, this amount may vary depending on the amount
of surface water available, e.g., during dry periods, when more groundwater is extracted.

2.2. Sampling and Analyses

The groundwater was sampled from 18 wells in 2021 according to standard proce-
dure [25]. The location of these wells, natural groundwater flow direction, and the prevalent
trajectory of monsoon rains are shown in Figure 1. The wells included here were selected
to match those wells for which F− concentrations were reported in 2003 and 2006 [26]. The
major ion concentration of groundwater in these wells sampled in 2006 is shown in Figure 2
(Tables S1 and S2 in Supplementary Material).
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Temperature, pH, electrical conductivity, and TDS were measured in the field using a
HANNA HI9828 multiparameter probe. Groundwater samples were kept cool during their
transport to the laboratory, where they were analyzed for F− concentration using a selective
ion electrode, according to the standard method [28]. All reagents were of analytical quality.
The F− electrode and multiparameter probe were calibrated daily. The probe was calibrated
using pH 4, 7, and 10 calibrating solutions and a 1413 µS conductivity calibrating solution,
whereas the F− electrode was calibrated using 1.0 mg/L F− and 10 mg/L F− standard
solutions. Replicates were determined at least every 10 samples.

The locations of the sampled wells were plotted using ArcMap with WGS 1984 co-
ordinate System and a Transverse Mercator Projection, and the map was constructed at a
1:380,000 scale. A Spearman correlation was utilized to determine the correlation between
F− concentrations and TDS, as well as between F− concentration and well depth.
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3. Results

The results are listed in Table 1. The median of the 2021 F− concentration values
is 1.58 mg L−1 F−, and 61% of the samples exceeded the 1.5 mg L−1 F− guideline. This
result would imply health problems in the form of dental fluorosis. However, this problem
has not spread through the population because of small inverse osmosis filters fitted
to many of the wells in the city of Delicias and in most of the rural communities [27].
The water quality reflected in Figure 2 shows Ca and Na are major cations that vary
over a broad range of values and shows a similar behavior for anions SO4 and HCO3.
According to Figure 2, concentration variations seem to be independent of well depth. This
behavior is likely the result of the heterogeneity of the alluvial fill and solutes leaked down
after the intensive agricultural practices taking place on the surface (increase in TDS and
soil salinization) [26,27,29].

Table 1. Fluoride (F−) concentrations, pH, and TDS in groundwater.

Well Location Depth
m

F 2003 1

mg L−1
F 2006 1

mg L−1
F 2021

mg L−1 pH 2021 TDS 2021
mg L−1

D139 La Merced 70 1.70 1.67 1.56 7.70 794
D130 Santa Fe 320 0.67 0.82 0.94 7.30 2059
D136 Est. Armendáriz 200 2.89 2.50 2.61 7.19 863
J15 Julimes 79 3.84 4.13 4.84 7.04 1193
J16 Ex-hacienda H. 15 2.93 3.28 3.57 7.43 890
M6 Potrero del Llano 181 3.38 3.16 3.39 7.91 953

M19 El Torreón 60 1.86 2.58 3.12 7.98 701
M24 Las Puentes 36 2.46 2.40 2.85 7.43 539
M26 Fco. Portillo 150 1.09 0.98 0.91 7.54 355
M27 Nuevo Loreto 150 1.65 1.53 1.67 7.12 675
M40 Est. Consuelo 150 1.95 1.77 1.85 7.03 398
R2 Barranco Blanco 152 1.54 1.50 1.60 7.38 587
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Table 1. Cont.

Well Location Depth
m

F 2003 1

mg L−1
F 2006 1

mg L−1
F 2021

mg L−1 pH 2021 TDS 2021
mg L−1

S47 Orranteño 90 1.63 1.30 1.31 7.03 735
S54 Gomeño 60 1.55 1.30 1.52 7.31 786

S56-3 Saucillo P3 185 0.20 0.70 0.75 6.74 834
S56-8 Saucillo P8 250 0.20 0.20 0.62 7.23 843
S57 Vicente Guerrero 180 1.02 1.00 0.89 7.58 456
S98 Est. Saucillo 137 1.40 2.40 1.32 7.22 668

(1) F concentrations for 2003 and 2006 reported in [26].

A concentration map of each of F− and TDS allows for a better visualization of their
concentration patterns. The spatial distributions of F− concentration and TDS for 2021 data
are shown in Figure 3. TDS values are lower in wells within or near the natural recharge
area (wells R2, M40, M24, and M26) and increase as they approach the discharge areas.
The pronounced increase in TDS in two wells, one in the northern part of the aquifer and
one in the center of the aquifer, may be due to infiltration of irrigation return flows and
other wastes containing large amounts of dissolved salts, e.g., dairy farm effluents [29].
F− concentrations followed a different pattern than TDS as was confirmed by their low
correlation. F− concentrations increased at discharge areas, and their overall distribution
pattern is rather irregular, as reported in other studies in northern Mexico [14].
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The Spearman correlation coefficient between F− concentrations and TDS was low
(r = 0.24), and p, the probability of r being significant at 95% (α = 0.05, two tailed), was not
significant at p < 0.05. A visual comparison between the plotted concentrations (Figure 3)
shows a roughly similar pattern, except for wells M24 and D130, whose difference in
concentrations was high enough to lower the correlation coefficient below the 95% con-
fidence threshold. In contrast, the correlation coefficient between F− concentration and
well depth was −0.52 and was significant at p < 0.05. As a way to validate the relationship
between well depth and F− concentrations, and since the correlation was moderate and not
a strong one, the 2021 data were plotted (Figure 4). The diagram clearly shows decreasing
F− concentrations with increasing well depth, which means that the F− concentration is
highest in shallower wells and, for the most part, coincides with discharge areas.
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4. Discussion

Although TDS is reportedly associated with high F− concentrations [3], this relation-
ship was not validated in the Meoqui-Delicias aquifer. The low correlation between F−

concentrations and TDS is likely the result of human activities taking place at the surface
and the infiltration of both excess surface water used to irrigate crops and domestic and
dairy farm wastes [29]. However, F− concentrations correlated, albeit weakly and inversely,
to water depth. Few studies report the relationship between F− concentration and well
depth; however, high F− concentration in the shallow part of overexploited alluvial aquifers
have been reported in the western United States [30] and in northern China [6,7,31].

The moderate correlation (correlation coefficient −0.52 for 2021 data) between F−

concentrations and well depth may be a reflection of the heterogeneity of the alluvium and
change in groundwater flow direction near some wells, as extensive extractions of ground-
water are common in overexploited aquifers such as the Meoqui-Delicias aquifer [27]. To
validate the F−–well depth association, data from 2003 and 2006 [26] were plotted. The
graphs, shown in Figure 5, indicate a behavior that is similar to the one observed for 2021.
Therefore, the higher F− concentrations being associated with shallow wells was not a
one-time occurrence but rather a confirmed pattern.
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The above results help develop a conceptual model for F− concentration in ground-
water, as follows: Rain infiltrates through the arroyos and alluvial fans at the base of hills
and starts flowing as groundwater toward the discharge areas. As groundwater comes in
contact with the silicate-rich rock fragments in the alluvial material, it picks up F− that is
naturally released via chemical weathering, incorporating it into the aquifer through the
vertical flow of F-rich water. As groundwater approaches the central part of the aquifer,
it mixes with irrigation drainage water, and the direction of flow changes according to
the new potentiometric levels created by groundwater withdrawals of some wells, result-
ing in an increase in its residence time and its F− concentration. Once the groundwater
reaches the shallow depth near the discharge areas, evaporation further heightens the F−

concentration.
From the public health point of view, 67%, 61%, and 61% of wells surpassed the

1.5 mg L−1 F− guideline in 2003, 2006, and 2021, respectively, and only one well (J15) had a
concentration above 4 mg L−1 F−, although this occurred consistently in all sampled years.
The results obtained here agree with the F− concentration behavior reported for other
arid areas worldwide contaminated with geogenic F− [3–5]. Based on this information, an
effective strategy to mitigate the problem would be to direct remediation actions to wells
where the highest F− concentrations are to be expected, including wells near groundwater
discharge areas as well as those with a historically high F− content.

5. Conclusions

The results of the 2021 study show F− concentrations varying between 0.62 and
4.84 mg L−1 F−. Once these concentrations were plotted on a map, F− concentrations were
lower in recharge areas and higher in discharge areas, which highlights the groundwa-
ter residence time as a controlling process to the F content in groundwater. The shallow
groundwater depth in discharge areas will also allow a further increase in F− concentration
through evaporation. TDS in this area has a large anthropogenic component, i.e., irrigation
return flows and dairy farm effluents, which affected the correlation to F− concentration.
Since the Spearman correlation between F− concentrations and well depth was only mod-
erate, the data were then plotted into F− concentrations vs. well depth, and the resulted
diagram showed F concentration decreasing with increasing depth. These results were
confirmed after comparing this graph to the graphs of 2003 and 2006 data for the same
wells. The moderate correlation coefficients and low regression values obtained for the
relation between F− concentration and well depth could be due to the heterogeneity of the
alluvium and the changes in local water flow direction generated by irregular and often
large groundwater withdrawals in some wells used to irrigate crops, especially during
dryer years. In sum, groundwater residence time and evaporation, in this order, seemed
to be additional factors significantly affecting F− concentration besides the well-known
factors of alluvium mineral composition and alkalinity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments9120155/s1, Table S1: Laboratory analytical proce-
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