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Abstract: In this study, the moisture sources for the explosive cyclogenesis Miguel that occurred
during 4–9 June 2019 in the North Atlantic were investigated. To determine the moisture sources, the
Lagrangian FLEXPART particle dispersion model was used. The moisture uptake pattern revealed the
western North Atlantic Ocean extending to north-western North America, the south-eastern coast of
Greenland, and the central North Atlantic Ocean around 45◦ N and 50◦–20◦ W as the main moisture
sources for Miguel explosive cyclogenesis. Furthermore, the moisture uptake from these regions
was higher than the climatology. During the intensification of Miguel, the moisture contribution
from oceanic sources was higher than terrestrial sources. Although the total amount of atmospheric
moisture achieved during the explosive intensification was similar to that absorbed the 24 h prior,
they changed in intensity geographically, being more intense the local support over central and
northern North Atlantic basin.

Keywords: extratropical cyclones; moisture sources; Lagrangian approach

1. Introduction

Extratropical cyclones (ECs) are a synoptic phenomenon that typically cause severe
weather in midlatitudes, including heavy rainfall and strong winds [1–6]. Chang et al. [7]
showed that ECs play an important role in the poleward transport of heat and momentum.
In the North Atlantic and Northern Europe, rainfall associated with cyclones account for
70–80% of total precipitation [8].

ECs intensity and the amount of precipitation are linked to the processes of transport
and distribution of moisture during their development phases [9]. Moreover, it has been
accepted that the moisture transport intensity is significantly different at different times,
mainly depending on the location and intensity of the cyclone [10]. Regarding moisture
transport mechanisms in ECs, Sodemann and Stohl [11] showed that individual cyclones
were responsible for the formation and maintenance of atmospherics rivers (ARs). However,
very long ARs require more than one cyclone to be maintained before the moisture is
released as precipitation [9]. Some studies consider that ARs are portions of the EC
system [12–15]. Furthermore, Gimeno et al. [16] pointed out that ARs are associated with
the pre-cold frontal region and the warm conveyor belt [17] of ECs.

ECs transport and distribution processes have been broadly discussed, as well as
the origin of their moisture. Stohl and James [18] investigated an extreme precipitation
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event over Europe associated with an EC, identifying the Mediterranean Sea as the major
evaporation source region of the water that became precipitation. These authors, also,
identified that the trajectories of the particles involved in the EC describe pathways from
North Africa, which gained moisture over Argelia and Mediterranean Sea. Dacre et al. [15]
used the water vapor budget of 200 ECs to determine that tropical moisture reaching the
extratropics only contributes to mid-level moisture, above the boundary layer. Additionally,
Zhao et al. [10], for a heavy snowstorm over northeastern China, caused by an EC featuring
a back-bent warm front structure, found that the moisture mainly comes from the middle
and lower troposphere.

Specifically, in the Iberian Peninsula (IP), where 85% of recorded precipitation and
wind-extreme events are clearly associated with ECs [19], western IP coasts are the areas
most exposed to ECs [20]. According to the results in Hénin et al. [19], in this region the
winter climatological is mostly driven by the North Atlantic flux and moisture transport.
Moreover, Eiras-Barca et al. [21] studied an explosive cyclogenesis occurring in October
1987 northwest to the IP. The related AR event resulted in record winds of 100 km h−1 and
daily precipitation of over 100 mm day−1 in Galicia (on the northwestern corner of the IP)
and Portugal. The authors discovered, for this event, that more than 60% of the resulting
precipitation was of tropical origin.

To estimate moisture sources and sinks, several authors have used Lagrangian and
Eulerian moisture tracking models extensively. The Lagrangian technique is able to track
the particle transport routes and moisture gain/loss along the trajectories, while Eulerian
ones have limitations to clarify the moisture sources and processes affecting moisture
accumulation (see Gimeno et al. [22] and references therein). The Lagrangian approach
has been widely applied to understand the hydrological cycle in more than a few regions
around the world, e.g., [10,18,23–32].

Considering that the origin of moisture in ECs is still an important discussion, the aim
of this work was to investigate the moisture sources for the explosive cyclogenesis Miguel
developed over the North Atlantic on 4–9 June 2019 through a Lagrangian backward-
trajectory technique. We selected the EC Miguel as the case of study due to its significant
impact in the region [33], and the alarming projections of natural hazards attributed to
these types of meteorological systems [34–37].

According to the Spanish Agency of Meteorology (AEMET, spanish acronym) [33],
when Miguel moving towards the east, in the North Atlantic, it underwent an explosive
cyclogenesis near the Galicia coast. Later, Miguel moved quickly towards France and the
British Isles. Finally, it continued moving to the northwest until it reached Scandinavia,
where it completed its life cycle. Among the ECs that have affected Europe in the May–June
period from 1979 to 2019, Miguel is considered peculiar because it exhibits an unusual
explosive cyclogenesis and a very exceptional track record for this type of event during
this period of the year [38].

2. Materials and Methods
2.1. Data

In this study, we used the European Center for Medium-Range Weather Forecasts
(ECMWF) ERA-5 reanalysis [39] and ERA-Interim reanalysis [40]. The FLEXPART model [41]
was forced by ERA-Interim data with horizontal grid spacing of 1◦ of latitude by longitude
and 61 vertical levels, from 1000 to 0.1 hPa. From ERA-5, we extracted the geopotential
height data at the constant pressure level of 1000 hPa (z1000), Vertically Integrated Mois-
ture Flux divergence (VIMF), and the sea-level pressure every 6 h (0000, 0600, 1200, and
1800 UTC), on a regular latitude longitude grid 0.25◦ in horizontal resolution.

2.2. FLEXPART Simulations

To investigate the moisture sources for EC Miguel, the outputs from the Lagrangian
particle dispersion model FLEXPART v9.0 [41] were used from 0000 UTC 4 June to 1800 UTC
9 June. The global model simulated the trajectory of approximately 2.0 million particles
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homogeneously distributed in the atmosphere. Particles were then allowed to move freely
with the winds for the duration of the simulation [18]. Model global outputs were obtained
every 6 h on the initial grid resolution (1◦ × 1◦).

2.3. Trajectory of the Explosive Cyclogenesis Miguel and Characteristic

Using the University of Hamburg approach [42], the EC center was determined as
local minima in the geopotential 1000 hPa field. The radius from Miguel center was set
to 400 km, in accordance with the results of Pepler and Dowdly [43]. Figure 1 shows the
trajectory of Miguel from 0000 UTC 5 June to 1800 UTC 9 June.
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Figure 1. Trajectory of the extratropical cyclone Miguel (2019) estimated as the minimum z1000 from
0000 UTC 4 June to 1800 UTC 9 June.

To estimate the period of explosive cyclogenesis, the normalized deepening rate
(NDR) criterion of Sanders and Gyakum [44] was applied. These authors proposed an
EC as explosive cyclogenesis when the surface pressure drop in the center of the low was
higher than 24 hPa in 24 h, at a normalized latitude of 60◦ N, following Equation (1):

NDR =
∆p
24

· sin 60
sin ϕ

> 1 Bergeron (1)

where ∆p is the pressure drop in hPa in 24 h; and ϕ is the mean latitude (in degrees) of the
center of the cyclone during the 24 h period.

Figure 2 shows that the NDR exceeded, by the first time, the limit value of 1 at
1200 UTC on 6 June. This suggests that the explosive cyclogenesis started from 5 June
at 1200 UTC, intensifying even more still 18 UTC 6 June, and it occurred over the North
Atlantic Ocean near northwest IP, as is shown in Figure 3b. Naray [38] showed that the
intensification of Miguel was favored by the presence at low levels of a baroclinic region
and an intense AR. At high levels, atmospheric conditions were characterized by a local
intensification of the Jet Streak in western Europe, and a possible downstream development
caused by the existence of a quasi-stationary Rossby wave in the North Atlantic.
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Figure 3. Composite of (E − P) > 0 (blues) during (a) 24 h before EC Miguel’s explosive cyclogenesis,
and (b) EC Miguel’s explosive cyclogenesis, from 1200 UTC 5 June to 1200 UTC 6 June. Arrows
show the vertical integrated moisture flux (VIMF) from ERA-5. The orange line denotes the complete
Miguel trajectory and the green line represents the analyzed Miguel track.
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2.4. Lagrangian Moisture Budget Diagnostic

Following Stohl and James [18], from the FLEXPART output, changes in specific
humidity over time (dq/dt) were used to diagnose the moisture budget of a particle. The
net rate of change of the water vapor content of a particle was estimated as:

e − p = m
dq
dt

(2)

where (e − p) represents the freshwater flux in the parcel.
The sum of all the (e − p) values for all particles residing in a specific atmospheric

column over an area A represents the surface freshwater flux over A. It was computed as:

E − P ≈ ∑K
k=1(e − p)

A
(3)

where E is the evaporation rate per unit area and P is the precipitation rate per unit area. It
is possible to identify the regions where particles either gained (E − P > 0) or lost (E − P < 0)
moisture along their path towards the selected area. The enclosed area by the radius of
each EC Miguel track position was selected as the target region for the analysis of their
moisture sources. Thus, the particles within this contour were tracked backward in time
up to 10 days, which is typically used in the Lagrange approach as the estimated residence
time of the water vapor in the atmosphere [45,46].

3. Results and Discussion

Figure 3a shows the moisture uptake 24 h previous to the explosive cyclogenesis
phase. The E − P > 0 field shows that the western North Atlantic Ocean (close to the
Bahamas Archipelago), the south-eastern coast of Greenland, and the North Atlantic Ocean
around 45◦ N of latitude were the main moisture sources for the EC. Moreover, a weak
contribution was identified in the continental United States of. The moisture uptake from
oceanic moisture sources (50.25%) was almost similar to terrestrial sources’ contribution
(49.74%) in the 24 h previous to Miguel’s explosive cyclogenesis. Nevertheless, during
the intensification, the oceanic moisture contribution was 13% higher than terrestrial one.
Moreover, the North Atlantic Subtropical High-Pressure system (NASH) circulation was
identified as the moisture-transport mechanism from the lower latitudes, as reinforced the
VIMF for both periods, 24 h previous explosive cyclogenesis (Figure 3a) and during the
intensification (Figure 3b).

Furthermore, during the explosive cyclogenesis time, the moisture uptake composite
pattern from 1200 UTC 5 June to 1200 UTC 6 June (Figure 3b) exhibited local evaporation
and water vapor coming from the north near Greenland as stronger sources, although it the
moisture contribution from the southeast USA and the western North Atlantic is notable.
In general, the Lagrangian analysis suggested that a local intensification of moisture uptake
was an important moisture source during this period. Similarly, Eiras-Barca et al. [21]
suggested that the vast majority of the moisture in an extratropical explosive cyclogenesis
which occurred just off the coast of Galicia had its origin in the tropical regions and local
sources occurring along the frontal region.

Figure 4a shows moisture uptake anomalies 24 h before the explosive cyclogenesis.
It is important to note that more atmospheric humidity amount was absorbed before
intensification. This moisture uptake pattern is also observed along Greenland’s coast, the
western North Atlantic, the Gulf of Mexico, and over continental North America during
EC intensification.

During the intensification of Miguel (Figure 4b), an increase in positive moisture
uptake anomalies was observed along the southeast coast of Greenland, in the Atlantic
Ocean under Miguel’s circulation, and a decrease in positive moisture uptake anomalies in
the western Atlantic, the Gulf of Mexico, and over North America. According to Naray [38],
the cyclone traveled through a jet stream crossing Greenland in a Northwest-Southeast
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direction. At the end of the intensification process, Miguel was inside a trough at high
levels. This trough originated from the rupture of extensive cyclonic waves that caused
the intensification of the jet stream and his movement towards the Equator [38], probably
starting a higher transport of moisture from the southeastern Greenland coast region.
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4. Conclusions

In this study, the moisture sources for the explosive cyclogenesis of the extratropical
cyclone (EC) Miguel developed over the North Atlantic on 4–9 June 2019 were investigated
through a Lagrangian backward-trajectory technique. From computing the normalized
deepening rate (NDR), it was identified that the explosive cyclogenesis occurred from
5 June at 1200 UTC to 6 June at 1200 UTC, but the intensification process continued still to
6 June at 1800 UTC. Moreover, we investigated moisture sources regions from the composite
of (E − P) > 0 during EC Miguel’s explosive cyclogenesis and 24 h beforehand.

The Lagrangian analysis revealed the western North Atlantic Ocean, close to the
Bahamas Archipelago, the south-eastern coast of Greenland, and the North Atlantic Ocean
around 45◦ N of latitude as the main moisture sources for Miguel’s development. Ad-
ditionally, our results suggested that the local intensification region was an important
moisture source during Miguel’s intensification. Furthermore, the positive moisture uptake
anomalies in the southeast of Greenland’s coasts during explosive cyclogenesis are notable,
and probably linked to the intensification of the jet stream and Miguel’s movement towards
the Equator. Furthermore, a distinctive feature during Miguel’s explosive cyclogenesis was
the moisture contribution from oceanic sources.
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