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Abstract: The issue of the quantification of thermal comfort or heat stress on humans is in vogue
nowadays. This is evident for indices, which are trying to quantify these effects. Most known indices
are PET, modified PET, SET*, PT and UTCI. All thermal indices require the same thermo-physiological
and meteorological parameters. Air temperature, air humidity, wind speed, and short and long wave
radiation fluxes in terms of mean radiant temperature are the required meteorological parameters.
For human thermo-physiology, information about heat production and clothing are required. The
meteorological parameters have to be available in appropriate spatial and temporal scales depending
on the target and the specific issues demanded. The appropriate spatial and temporal resolution data
cannot only be delivered by measurement stations. Meso and micro scale models, which compute
meteorological parameter and thermal indices, can be helpful in the development of mitigation and
adaptation strategies in the era of climate change.
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1. Introduction

For the selection of appropriate measures against climate change, municipalities
and architects require quantitative information about the effect of urban design and the
planning of open spaces and reconstructions. While this kind of information was hard
to obtain in the past, numerical models can now easily generate it. The models should
be fast and easy to use by nonexperts so the respective planners in charge can apply
them. At the same time, they need to generate all required information in an integral and
intuitively understandable way [1,2]. For the case of thermal comfort and thermal stress, the
latter can be best fulfilled by the application of thermal indices [3]. Sophisticated modern
thermal indices consider the integral effect of environment in terms of the meteorological
parameters air temperature (Ta), vapor pressure (VP), wind velocity (v) and different
radiation fluxes in terms of the mean radiant temperature (Tmrt) [3,4]. In addition, these
indices incorporate personal parameters such as weight, height, workload, metabolism,
posture and clothing of a sample person and approximate thermal perception by solving
human energy balance or respective energy fluxes [5]. The result should be presented in a
unit that can be judged sufficiently by nonexperts, e.g., SI-unit “◦C” based on the concept
of an equivalent temperature [6,7].

2. Methods
2.1. Thermal Indices

The application of thermal indices based on human energy balance provides detailed
information on the effect of complex thermal environments on humans [3,8]. Commonly
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used thermal indices, based on the human energy balance [5], are Physiologically Equiva-
lent Temperature [6,7], Perceived Temperature [9], Universal Thermal Climate Index [10]
and modified Physiologically Equivalent Temperature [11]. All the thermal indices men-
tioned above require the same meteorological input parameters: air temperature, air
humidity, wind speed, and short and long wave radiation fluxes considered by their in-
tegral effect as mean radiant temperature. These input parameters have a temporal and
spatial variability that has a huge influence on the thermal indices. Wind speed and mean
radiant temperature have the highest variability, and are greatly modified by surroundings
and obstacles in complex urban areas [12].

2.2. Descriptive Analysis of the Urban Heat Island Effects on Meteorological Conditions Based
on Beanplots

For the comparison of an urban and a rural site, in the interest of the analysis of
an urban heat island (UHI), two meteorological stations of the German Meteorological
Service in Freiburg, Germany were analyzed. One station is located in a rural area, close
to the airport of Freiburg, and the urban station is located in the city center of Freiburg,
which is affected by surrounding buildings and trees. Freiburg is situated in the southwest
of Germany. The analysis covered the period from July 2018 to February 2021 using a
temporal resolution of 10 min for each measurement.

Boxplots have been a widely used technique for descriptive statistics for many years.
They have the advantage of being easy to compute and display five important values
that summarize the data under investigation (Min, Max, Mean, Median and Quantiles).
However, earlier studies revealed some problems in the interpretation of boxplots by non-
scientific observers. Nevertheless, with today’s computation possibilities, more information
can be displayed in the same space. Therefore, an alternative to the boxplot, beanplots
according to [13], is presented by means of a typical example from urban climatological
data [14].

A dataset was imported into the RayMan-Model in order to calculate PET, as well
as Tmrt. The dataset contained the values of air temperature (Ta), relative humidity (RH),
global radiation (G) and the transformed wind velocity (v) at a height of 1.1 m.

Wind velocity was transformed in accordance with the following altitude correction
after [15–17]:

v1.1 = vh ·
1.1
h

α

and α = 0.12 · z0 + 0.18

For the simulation of the two stations the surroundings were not considered. In the
final step the received output was processed and visualized [18].

2.3. RayMan Model

A RayMan model was developed to calculate short and long wave radiation fluxes
affecting the human body. The model considers complex building structures and is suitable
for the analysis of the effect of various planning scenarios in different micro to regional
scales. The model calculates the mean radiant temperature, which is required for the
human energy balance model and, thus, for the assessment of human thermal biocli-
mate [12,19–21]. The thermal indices Standard Effective Temperature (SET), PET, UTCI, PT
and mPET can be calculated [12,19–21]. In addition, information about urban structures
(buildings, deciduous and coniferous trees) can be generated or imported. Based on the
input possibilities, sunshine duration with or without sky view factor (SVF), estimation of
the daily mean, max or sum of global radiation or shadow for existing or future complex
environments can be calculated. For the estimation of thermal indices, meteorological data
can be entered through manual input or by loading custom data files with time series data.
The output is provided as graphs and comma separated text files (CSV). RayMan offers the
opportunity of importing long-term data sets of meteorological parameters allowing for
statistical assessments [21].
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2.4. SkyHelios Model

SkyHelios [21–24] is an urban micro scale model, having the ability to estimate crucial
parameters of the urban environment spatially resolved (Figure 1). It is a steady-state,
time-independent model, capable of estimating several thermal indices [12]: PET, UTCI,
PT and mPET. Furthermore, SkyHelios is able to compute different environmental factors:
sunshine duration, shading, wind speed and direction for areas of interest (AOIs), as well as
points of interest (POIs). By creating virtual, three-dimensional (3D) scenes from 3D urban
geoinformation (e.g., CityGML LOD 0, 1 and 3D-Shapefiles), SkyHelios can be classified as
a 3D city model. All 3D entities in the 3D scene are based on vectorial geodata, allowing for
the specification of spatial resolution for all results on demand. The 3D scene is managed
by the Object-Oriented Graphics Rendering Engine [25]. The surfaces of the entities in the
3D scene are rendered according to the surface radiational material properties: shortwave
transparency, shortwave albedo and longwave emission coefficient. SkyHelios comprises a
diagnostic wind model after [26] with modifications after [27] to estimate wind velocity
and direction (WD). Using all this information together, SkyHelios is capable of estimating
the thermal indices PET, PT and UTCI spatially resolved in high spatial resolution of, e.g.,
1 m on 1 m [21].
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Figure 1. Main window of SkyHelios showing a 3D-scene of Rieselfeld, an urban district in Freiburg,
Germany. The scene covers the footprint of all buildings in combination with urban trees.

2.5. Application of the Urban Microscale Models for the Study Area Rieselfeld in
Freiburg, Germany

A study area in the West of Freiburg, the urban quarter Rieselfeld, was selected for
this study. Detailed spatial inputs of the buildings in terms of a level of detail (LOD) 1,
as well as a LOD 2 city model (based on the CityGML data format [28] and an urban tree
cadaster, were provided by the municipality of Freiburg. The model was applied for a
specified spatial resolution of 1 m, resulting in a discrete model domain of 1054 on 916 grid
cells. All results were assessed for the target height of 1.1 m as the center of gravity of the
human body. As a sample dataset, records of the official weather station: Freiburg airport
of the German Meteorological Service were selected, providing the data via the Climate
Data Center (CDC).

The meteorological input comprised the parameters air temperature (◦C), relative
humidity (%), air pressure (hPa), wind speed (m · s−1) and direction (◦), as well as global
radiation (W · m−2) for the whole day in 10-min temporal resolution.
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3. Results
3.1. Evaluation of Beanplots for the Assessment of the Bioclimate in Freiburg, Germany

The meteorological input parameters (Ta, RH, v, Tmrt) and the thermal index PET are
shown in Figures 2 and 3 with the aid of the statistical R programming language.
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Figure 2. Beanplots for the meteorological input parameter for thermal indices calculation. (a) Air
temperature (◦C); (b) relative humidity (%); (c) wind speed (m · s−1); (d) mean radiant temperature
(◦C). The black horizontal line represents the median. Period of time: 1 July 2018 to 28 February 2021.
The distance between the rural and urban station in Freiburg is about four kilometers.
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Figure 3. Beanplot for Physiologically Equivalent Temperature (◦C). Time period: 1 July 2018 to 28
February 2021 in Freiburg. The distance between the rural and urban station in Freiburg is about
four kilometers.

The air temperature distribution of both stations is shown in Figure 2a with the
absolute frequency on the x-axis. The mean condition shows that for the examined period
the urban location had a mean air temperature of 13.1 ◦C and the rural 11.9 ◦C, respectively.
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The shape of the bean differs, indicating that for cold conditions the station in the city was
warmer and represents, therefore, the mean intensity of the urban heat island throughout
this period.

The distribution of vapor pressure in the city is in the same order of magnitude as at
the rural station. The mean conditions are 10.3 hPa for the urban and 10.4 hPa for the rural
station (Figure 2b), respectively.

Mean wind speed at the rural station (2.6 m/s) was significantly greater compared to
the urban station (0.8 m/s) (Figure 2c). This can be explained by the increased aerodynamic
roughness of the surroundings urban structures in the city center.

The distribution of mean radiant temperature (Figure 2d) is slightly different between
the rural and urban station. Due to shading from surrounding buildings, high values for
Tmrt (in the range of 30 ◦C to 55 ◦C) are more common at the rural station. The sky view
factor here is close to 1. Conversely, low values for Tmrt also occur more frequently at the
rural station. Depending on the surface properties of the surrounding buildings (albedo
and emissivity), long-wave radiation, as well as the reflections of the buildings, influence
the measured mean radiation temperature.

The mean value of PET (Figure 3) in urban areas is 10.8 ◦C and for rural areas 8.3 ◦C.
The distribution is similar, but in comparison to air temperature (urban 13.1 ◦C and rural
11.9 ◦C) the shape of the distribution is different with a higher range of PET for both
stations. The shape is dissimilar because the most influencing factors are those with the
highest variability, which are wind speed and mean radiant temperature. The highest
values can be found in the urban area and the minimum conditions are slightly warmer in
the city.

3.2. Assessment of Spatially Resolved Thermal Indices in Freiburg, Germany

Spatially resolved PET varied in April between 18.7 ◦C and 44.6 ◦C with an average
of 29.2 ◦C, and in July between 19.6 ◦C and 47.6 ◦C with an average of 30.0 ◦C (Figure 4).
The effect of shading and the impact of decreased wind speed on PET is observable on the
lee side of each building.
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Figure 4. Thermal comfort, based on PET in 1.1 m above ground level for a residential neighborhood in Freiburg, Germany
at 13:00 LST, 1st of April (left) and 1st of July (right).

In April, an area of 9796.19 m2 of 78,659.98 m2 was shaded (12.45%, 1052.06 m2 by
trees (1.33%) and 8744.13 m2 by buildings (11.11%)). In July, an area of 5430.05 m2 of
78,659.98 m2 was shaded (6.90%, 981.36 m2 by trees (1.24%) and 4448.69 m2 by buildings
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(5.65%)). The shaded area by trees was decreased by 70.70 m2 (6.72%) and by buildings by
4295.44 m2 (49.12%), due to increased solar altitude angle from April to July.

4. Discussion

The beanplots are useful for the comparison of urban rural station and the distribution
of the results. Differences are clearly seen in the different meteorological input parameters
and their effect on thermal indices. Spatially resolved thermal indices visualized as thermal
comfort maps can help to identify areas that need to be improved in terms of thermal com-
fort and heat stress, thereby providing relevant information concerning climate change and
for the development of adaptation possibilities at the micro scale in urban environments.
As thermal comfort conditions can be calculated and visualized very fast by the SkyHelios
model, several scenarios can be analyzed to support urban planning, as shown in this study.
The rapid assessment method also allows for the calculation of long time series, especially
with the RayMan model.

The results of the case study presented here indicate that thermal (heat) stress can
be reduced most effectively by providing shade [29]. Shaded areas can be generated by
buildings, as well as by urban trees. While both are shown to reduce PET quite effectively,
areas shaded by trees were found to be slightly more comfortable in terms of PET in this
case study. This is in very good agreement with various other studies investigating the
impact of urban green on heat stress represented by some thermal index, e.g., [30,31]. It
must be noted, that the SkyHelios model currently does not consider spatial variations in
Ta and VP for the calculation of thermal indices. Surfaces in the model domain are not
coupled to the atmosphere with respect to heat transfer and mass transfer, or the cooling
effect by transpiration on leaf surface temperature [32].

5. Conclusions

Using all supplied information to, RayMan and SkyHelios are capable of estimating
the thermal indices PET, PT and UTCI spatially resolved in high spatial resolution of, e.g.,
1 m on 1 m with consideration of the physiological processes of urban vegetation and
building configurations. Overall, it is shown that micro scale models like SkyHelios and
RayMan can provide valuable information for architects, and land and urban planners.

Author Contributions: Conceptualization, A.M.; methodology, A.M.; software, T.H. and M.G.;
validation, M.G. and T.H.; formal analysis, M.G.; investigation, T.H.; resources, A.M.; data curation,
T.H.; writing—original draft preparation, A.M.; writing—review and editing, A.M., M.G. and T.H.;
visualization, T.H. and M.G.; supervision, A.M. All authors have read and agreed to the published
version of the manuscript.
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