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Abstract: Bisulfite sequencing is a widely used technique for determining DNA methylation and
its relationship with epigenetics, genetics, and environmental parameters. Various techniques were
implemented for epigenome-wide association studies (EWAS) to reveal meaningful associations;
however, there are only very few plant studies available to date. Here, we developed the EpiDiverse
EWAS pipeline and tested it using two plant datasets, from P. abies (Norway spruce) and Q. lobata
(valley oak). Hence, we present an EWAS implementation tested for non-model plant species and
describe its use.

Keywords: EWAS; GWAS; plant epigenetics; DNA methylation; non-model species; pipeline

1. Introduction

Epigenetics describes DNA or chromatin modifications that might change transcrip-
tional activity without altering the DNA sequence and might be propagated somatically
or through the germline. Epigenetic modifications such as DNA methylation and histone
modifications (acetylation, phosphorylation, ubiquitylation, sumoylation) may affect the
chromatin structure and, thereby, the access to genetic information [1]. Of these epigenetic
modifications, methylation currently is the most intensively studied in plants as it can be
easily assessed. DNA methylation is an epigenetic modification consisting of the addition
of a methyl group (CH3) to the fifth carbon of the cytosine (C). Epigenetic mechanisms can
alter phenotypic traits [2]. It was shown that DNA methylation may play a crucial role in
gene expression regulation, e.g., of plant defense response under various environmental
stresses [3]. DNA methylation may lead to heritable epigenetic information and transgener-
ational epigenetics describes the lack of resetting mechanisms of epigenetic states between
generations. Epialleles are responsible for this heritable phenotypic variation and plants
seem to have this type of inheritance in contrast to mammals [4]. There are very few known
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examples of natural epialleles, suggesting that epiallelic variation is very rare in nature,
compared to allelic variation [5]. One of the first discovered natural plant phenotypes not
based on a change in the DNA sequence was Linaria vulgaris (toadflax) [6]. This study
revealed that mutant alleles showed high DNA methylation but low gene expression and a
clear coincidence between the revertant phenotype and the degree of DNA methylation at
the Lcyc locus [6]. Another example of epimutation alleles was first described by Barbara
McClintock in maize by focusing on the effect of suppressor–mutator (Spm) transposons
on gene expression [7]. Moreover, Cnr mutants in tomato showed colorless, non-ripening
fruits and this was found to be caused by a mutant allele at the LeSPL–CNR locus [8]. The
mutant phenotype was found to be associated with increased DNA methylation at the
promoter region; the upstream promoter of LeSPL–CNR coincides with a TE that is heavily
methylated in both wildtype and Cnr mutant. Finally, many epimutable alleles have been
defined in Arabidopsis, and they all seem to involve TEs or other repetitive sequences [5].
DNA methylation also leads to transposon mobility, potentially affecting both short- and
long-term adaptation to environmental conditions [9–11]. An example of epigenetic adap-
tation to temperature is vernalization observed in Arabidopsis thaliana ecotypes, which is
regulated by flowering locus (FLC), where cold stress triggers H3K27me3 and H3K9me
deposition in the FLC chromatin [12].

DNA methylation may occur in different nucleotide contexts. In animals, only Cs in
CG contexts are methylated, whereas in plants [13], DNA methylation can be symmetrical
(CG and CHG contexts) or asymmetrical (CHH, where H represents A, T, or C) [14–17]. The
different contexts have different maintenance mechanisms [18]. Whole-genome bisulfite
sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) are widely
used methods to determine DNA methylation at a single-base resolution [19,20]. One goal
in plant epigenetics is to detect positions or regions that are differentially methylated due to
treatment or different environments, and multiple samples are required since differentially
methylated positions (DMPs) are called using statistical approaches [21]. Differentially
methylated regions (DMRs) are genomic regions where multiple adjacent positions reveal
differential methylation [22].

Interest in understanding the genetic architecture of complex traits led to association
studies to relate genetics and epigenetics with phenotypic traits. Testing genetic varia-
tion across genomes of individuals to reveal genotype–phenotype associations is made
possible by genome-wide association studies (GWAS), which have frequently been used
for human disease studies [23,24] and enabled the detection of many genetic variants
significantly associated with complex human diseases. Results obtained from GWAS have
been clinically reliable and help to develop new treatments for multiple diseases from
diabetes to schizophrenia [25,26]. In plants, GWAS is a powerful tool for understanding
complex traits, useful to discover the genetics related to important traits in agriculture
and to accelerate breeding programs [27]. It has been applied to many crop species, e.g.,
maize (Zea mays), wheat (Triticum aestivum), rice (Oryza sativa), soybean (Glycine max),
sorghum (Sorghum bicolor), barley (Hordeum vulgare), cotton (Gossypium hirsutum), and
the model species Arabidopsis [28–31]. Moreover, GWAS is used to reveal genomic re-
gions related to physiological, agronomic, and fitness traits such as plant height, stress
tolerance, flowering time, kernel number, and grain yield [28–30,32], and identified genes
connected with geographical deviation and adaptation in rice domestication [33]. Addi-
tionally, GWAS have also been used with genetic engineering, e.g., transgenic drought
tolerance in maize was developed after the discovery of ZmVPP1 [34], and this led to an
increment of studies using genome editing on target genes [35]. However, many diseases
and disorders in humans including cancer show an epigenetic association [28–30]. Due
to that, epigenome-wide association studies (EWAS) as a counterpart of GWAS have also
been used in human studies [36]. EWAS is a powerful method to reveal epigenetic varia-
tion associated with biological traits [22,37]. Transgenerational epigenetic marks can be
transmitted to descendants through mitosis (in case of vegetative propagation) or meiosis
(sexual reproduction) [38]. The methylation variation of the same gene between different
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plants is called epialleles and can lead to different phenotypes that are heritable. Mutants of
Linaria vulgaris are an example of transgenerational epigenetic inheritance [6]. Mechanisms
involved in transgenerational inheritance of epigenetic marks are not fully understood but
data showed that DNA methylation easily passes through generations and many studies
focus on this mark [39]. Histone modification can also affect gene function and phenotype;
however, it has been largely ignored in EWAS due to technological limitations and sample
availability. Germline cells in plants are inherited from somatic cells and therefore can
contribute to the heritability of epigenetic marks. Plants can sense environmental changes
during their vegetative growth, and it may lead to epigenetic changes in cell lines that
generate a germline [9]. Studies showed that stress-induced transgenerational reactions
depend on DNA methylation in Arabidopsis [40,41]. Therefore, heritable epialleles may
affect plant evolution, phenotypic traits, and fitness. Since many of the plants go through
asexual propagation, meiotic epigenetic resetting does not occur, and information is carried
to the next generation more effectively than in sexual reproduction [42]. Epigenetic changes
are dynamic, making it difficult to discriminate significant relationship between phenotype
and epigenetic mechanisms—a major challenge of EWAS [43] and common issues both for
GWAS and EWAS are dealing with missing and big data [44]. Thus far, there has been very
scarce use of EWAS for plants (for example, a PubMed search for “ewas plant” returned
seven hits 19 February 2021, while “ewas human” returned 131). Published examples
include DNA methylation variation in Quercus lobata (valley oak) associated with climatic
gradients [45], and EWAS has been successfully applied to identify the epigenetic change
that causes the metastable somaclonal variant in E. guineensis (oil palm) [46]. Another
study with stone pine (Pinus pinea) showed that there was a remarkable level of phenotypic
plasticity. Vegetatively propagated P. pinea trees showed a high degree of DNA methylation
under different environmental conditions [47]. Several EWAS tools have been developed,
yet most of them are hardcoded for human studies such as GLINT [48] or not able to deal
with missing data such as EWAS: epigenome-wide association study software v2.0 [49].
However, there is one tool not hard coded that also accounts for genetic data, is compatible
with all species, and allows missing data imputation, namely, the GEM R package [50], hence
chosen for this study.

Here, we present the EpiDiverse EWAS pipeline, developed in the context of the EpiDi-
verse ITN network (https://epidiverse.eu/, accessed on 1 March 2021), which studies the
effects of epigenetics in natural variation, stress responses, and acclimations of plants [51].
We aimed at realizing parts of the research agenda of EpiDiverse outlined in Richards et al.
(2017) [51]. In EpiDiverse, a set of bioinformatics pipelines was developed to facilitate epige-
netic analyses based on DNA methylation, especially for non-model plants. These pipelines
are modular and scalable and can easily connect their inputs and outputs (Figure 1), pro-
viding a suite of useful tools for whole-genome bisulfite sequencing (WGBS) methylation
calling, single nucleotide polymorphism detection (SNP), differentially methylated posi-
tion, and region (DMP and DMR) detection and EWAS (https://github.com/EpiDiverse,
accessed on 1 March 2021). The software included in the WGBS and DMR pipelines was
selected from the best performing tools in benchmarking studies [52,53]. Here, we describe
and test the performance of the EpiDiverse EWAS pipeline using four different input types
from two non-model plant datasets and test the effect of missing data.

2. Results and Discussion
2.1. EpiDiverse EWAS Pipeline Workflow

The EpiDiverse EWAS pipeline is based on functions implemented in the GEM R
package [50] and extends them by multiple features that allow the use of methylation calls
and differential methylation data, with optional analysis of methylation quantitative trait
loci (methQTLs) for diploid organisms from variant call data in which methQTL is an
epigenetic marker that coincides with a quantitative trait locus (QTL). Additionally, missing
data filtering with the GEM R package was modified, and estimation is conducted with
beta distribution because there is evidence that the existing method biases the calculation

https://epidiverse.eu/
https://github.com/EpiDiverse
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of FDR values. This issue is made apparent when the methylation data are subdivided,
e.g., by chromosome/scaffold: since the global methylation values are calculated from
the remaining positions for the sample, the p-values themselves vary wildly for the same
positions, depending on how many other positions are present during the analysis.

Additional graphs are generated (sequence dot plots, Manhattan plots) to help the
user to understand results better and observe more visual outputs. The EpiDiverse EWAS
pipeline performs epigenome-wide association studies, employing three models imple-
mented in the GEM R package. We preferred GEM over other EWAS tools because, for
example, GLINT [48] is hard coded for use in Illumina human methylation arrays, and
EWAS: epigenome-wide association study software v2.0 [49] is not able to estimate missing data.

The EWAS pipeline is part of the EpiDiverse toolkit, which provides tools for mapping
WGBS data and methylation calling (WGBS pipeline), calculation of differential methylation
(DMR pipeline), and estimation of genetic variants from bisulfite sequencing (SNP pipeline)
(Figure 1). Bisulfite sequencing raw data can be processed by the WGBS pipeline to produce
methylation calls, variant files in the SNP pipeline, and DMPs and DMRs in the DMR
pipeline. The EWAS pipeline can use as input any combination of results from the other
EpiDiverse pipelines (Figure 1), or users can provide their input files.
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Figure 1. The EpiDiverse EWAS pipeline workflow and its interaction with the WGBS, SNP, and DMR EpiDiverse pipelines.
Utilized packages or software were specified next to pipeline names. The EpiDiverse epigenome-wide association studies
(EWAS) pipeline requires a tab-separated sample.tsv file (shown with purple frame) to specify climatic data and covariate(s)
for group determination (can be sampling site, geographical location, or treatment group) and methylation data. As
methylation input types, it accepts methylation calls (green arrow) and differentially methylated positions/differentially
methylated regions (DMPs/DMRs) (yellow arrow), which can be provided by the whole-genome bisulfite sequencing
(WGBS) and the DMR pipelines, respectively. The EWAS pipeline allows running three different models to find epigenetic
markers associated with the environment (E), genetic variation (G), or the combination of both (GxE). G and GxE models
need single nucleotide polymorphism (SNP) information (red arrow), which can be directly calculated by the SNP pipeline
using bisulfite sequencing data, or, as for all other inputs, it can be provided by users. See Figures S1–S4 for more detail.
* indicates multiple files with the same extension in a specified directory.
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The pipeline was built using Nextflow [54], a workflow tool for running tasks across
multicompute infrastructures in a portable manner. It comes with docker containers to
facilitate the installation process. The dependencies for the pipeline can be managed
by Conda (https://docs.conda.io/en/latest/miniconda.html, accessed on 1 March 2021),
Singularity [55], and/or Docker [56].

2.1.1. Input Types for the EWAS Pipeline

Input can be derived from other EpiDiverse pipelines (WGBS, SNP, DMR) or user-
provided and is combined with a user-provided, tab-separated sample sheet file to submit
EWAS analysis (Figure 1). This sample sheet file has sample identifiers in the first column,
environment values in the second column, and single/multiple covariates after the envi-
ronmental values. This file is required to use sample names as a key and derive covariates
(Figure S4). To account for genetic interaction, the EWAS pipeline needs an SNP genotype
matrix encoded by 1, 2, 3 for major homozygote (AA), heterozygote (AB), and minor
homozygote (BB) variants in vcf, bcf, or zipped vcf.gz format. The SNP pipeline can be
used to extract genetic variation files in vcf.gz format to derive this input.

Cytosine methylation calls in all contexts (CG, CHG, and CHH) in bedGraph format
as separated files (Figure S1) are used as methylated position (MP) input. Since each
file represents a methylome per sample, these single bedGraph files are united with the
bedtools unionbedg function [57] to generate a single methylation file with all samples
as columns (Figure S2). In some cases, some positions are not covered by all sample
methylomes, generating missing data (shown as NA), which may arise due to regions of
low coverage sequencing. The pipeline can also be fed with differential methylation data
in DMP/DMR bed format such as provided by the EpiDiverse DMR pipeline (Figure S3).
The union of DMPs is simply intersected with the MPs with bedtools intersect to obtain
individual methylation values per sample [57]. DMR input can be processed in two
different ways—either (i) the MPs included in the region are analyzed or (ii) average
methylation is calculated for all positions in that region for all samples, and regions are
provided as identifiers (Figure 2). If no specific input parameter is indicated, the pipeline
will automatically start the run with suitable models using the provided inputs (Table 1).
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Figure 2. Average-over-region method with the DMRs input type. Overview to show (a) when differentially methylated
regions (DMRs) arise from multiple pairwise comparisons between groups (e.g., AB, AC, BC) they are intersected to form
distinct, nonoverlapping union DMRs (uDMR) according to a minimum fraction of supporting comparisons provided
by the user (e.g., X = 0.5 in this sample). These uDMRs can be merged or taken as independent for further analysis. The
resulting uDMRs are intersected with the methylated positions in (b) to derive average methylation levels in each sample
for each region, which can then be carried forward as unique identifiers for EWAS. When only a single set of DMRs are
provided to the pipeline, the regions are simply taken as is for the averaging process. This averaging process is repeated for
all samples.
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Table 1. Required inputs and file formats for the EpiDiverse EWAS pipeline. All possible input types and requirements for
different models to run the epigenome-wide association studies (EWAS) pipeline. Tab-separated “sample sheet” file and
methylated positions (MPs) input are required for all runs, differentially methylated positions (DMPs), and differentially
methylated regions (DMRs) are needed if users would like to run the pipeline with these inputs. Genetic variants are
necessary for G and GxE models.

Input Description File(s) Formats Required for Which Runs? Required for Which Model?

sample sheet
Sample list, which includes sample names as key

variables, single environment/phenotype data, and
covariate(s).

txt Required for all runs Required for all models

MPs Context-specific methylation calls per sample. bedGraph Required for all runs Required for all models

DMPs Context-specific differentially methylated positions. bed Required to run the pipeline
with DMPs Allowed for all models

DMRs Context-specific differentially methylated regions. bed Required to run the pipeline
with DMRs Allowed for all models

Genetic variants Genetic markers either in single or
multisample formats. vcf or vcf.gz Required to run the G and

GxE models
Required for G and GxE

models

The advantage of using MPs alone is that no prior assumption about pairwise compar-
isons or sample grouping has to be applied and that the full data are used. If there is good
reason to believe that DMRs capture the hypervariable regions where DNA methylation
differences are occurring, then it is an advantage to include them. This reduces the number
of multiple tests of MPs/DMPs and can be based on meaningful a priori knowledge. On
the other hand, when using DMPs and/or DMRs, the data size is reduced, resulting in
lower running time for the EWAS pipeline itself. To decide which samples should be
compared in a pairwise fashion to create DMPs or DMPs, assumptions need to be made
that might bias the results and might not capture all the relevant information.

2.1.2. Available Models

The models E, G, and GxE of the GEM tool suite are available in the EpiDiverse EWAS
pipeline (Figures 1 and 3). The Emodel is performed for detecting methylation markers
associated with environmental parameters using linear regression lm (M ~ E + cvrt), with
an ith vector from the methylation matrix (M), a jth vector from the environment matrix
(E), and covariate(s) (cvrt) matrix, which is required for the grouping of samples, is used
as a matrix-based iterative correlation (Figure S4) [50]. The output of Emodel is a list of
potential epigenetic markers significantly correlated with a specific environmental factor.

The Gmodel is used for detecting methylation markers associated with genotype data
using a linear regression lm (M~G + cvrt), with an ith vector of methylation matrix (M), a
jth vector of SNP genotype matrix (G), and covariate matrix. Gmodel creates a methQTL
genome-wide map by performing a matrix-based iterative correlation between SNP and
methylation matrices. The output of the Gmodel is a list of marker–SNP pairs, in which
the SNP is coupled with the C of interest.

The GxE is used to reveal an association between genetic variation and environmental
factors that may affect heritable or nonheritable DNA methylation levels, using again
a linear regression lm (M~G x E + cvrt), in which environmental values are combined
with the covariate file. The output of the GxE is a list of marker–SNP–env triplets in
which the environment parameter is a factor divided into genotype groups (AA, AB, and
BB) to explain the significant C of interest. This model’s output hypothesizes that the
relationship between methylation and environment can be better understood by a division
of genotype groups. As discussed in the “Removal of genetic variants that might be
interpreted as significant epigenetic marks” Section the genetic variance may influence
epigenetic variance via loss or gain of a methylation site and this can be addressed while
intersecting different model outputs.
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Figure 3. EpiDiverse EWAS pipeline output directory structure. EpiDiverse EWAS pipeline generates input directory as
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2.1.3. NA Filtering and Imputation with Methylation and SNP Datasets

Regardless of which markers are used with the EpiDiverse EWAS pipeline, a common
problem has to be solved related to missing data. The pipeline unites methylation calls
and DMP and DMR outputs from independently sequenced samples with the bedtools
unionbedg function to derive the main methylation matrix. This unifying process leads
to some positions having missing data (NAs). This problem may occur due to stochastic
coverage variability or due to reference bias when a deletion affects a portion of the samples.
Both cases can result in some loci being covered in some samples and not in others, causing
incomplete datasets where NAs have to be excluded or estimated.

GEM replaces missing methylation values by calculating the global methylation
for the rest of the sample and does not discard any positions with a high amount of
missing data. As outlined above, the generic GEM method biases the calculation of FDR
values (when the methylation data is divided by chromosome/scaffold, while the global
methylation is calculated from the existing positions per sample, p-values vary for the same
position; see “NA filtering and imputation with methylation and SNP datasets” for more
details). Simply removing all positions where even one sample has missing data can be an
alternative solution but can also reduce the total size of the dataset significantly in large
cohorts. Instead, we implemented a strategy similar to that implemented in metilene [39],
in which missing methylation values are imputed based on a beta distribution using the
values of the remaining samples at the same position [58]. The reasoning is that if we are
unable to provide real data to the model, then the next best thing is to provide estimated
data that have the minimum possible impact on the model. Any significant associations
that arise on markers with estimated data should therefore be driven by the samples for
which we do have real data. Missing data imputation is also carried out for the SNP data
using BEAGLE [40], based on a proportion of samples with missing data according to a
user-defined threshold.
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2.1.4. Text and Graphical Outputs

Every model generates an unfiltered, filtered, and NA-imputed methylation file for
each context (Figure 3). The Emodel output lists the model statistics for each epige-
netic marker (rows) in the format “ID|beta|stats|pvalue|FDR,” where ID is for chromo-
some/scaffold names, beta is a beta coefficient in a linear model, stats is the t-statistics for
the marker of interest, pvalue is the probabilistic score of an individual marker, and FDR
are false discovery rate corrected p-values (q-values; Figure S5). The output of the Gmodel
is a list of marker–SNP pairs, in which the SNP is the appropriate couple to explain the
marker of interest. The only different column from the Emodel output is additional “snp”
column next to the ID column; “ID|snp|beta|stats|pvalue|FDR” (Figure S6). The output
of the GxE is a list of marker–SNP–env triplets where the environment is a factor divided
into genotype groups (AA, AB, and BB) to explain the significant marker of interest, and
output is otherwise the same as for Gmodel.

The EWAS pipeline provides multiple output plots such as p-value Q–Q plots and
histograms for all models (Figures S7 and S8), Manhattan plots for Emodel (Figure S9),
sequence dot plots for Gmodel (Figure S10), and genotype interaction plots for the GxE
(Figure S11). Each visualization is implemented using the ggplot2 package in R (https:
//github.com/tidyverse/ggplot2, accessed on 1 September 2019).

2.2. Evaluation of the EpiDiverse EWAS Pipeline

Two published datasets of non-model plant species, namely, valley oak (Quercus
lobata) with 58 samples [45] and Norway spruce (Picea abies) with 28 samples (derived
from [59] and unpublished data), were used to test the reproducibility of the results and
the performance of the EpiDiverse EWAS pipeline.

Q. lobata is a long-lived California endemic tree species with a ~730 Mbp genome [60].
Gugger et al. (2016) used RRBS to analyze whether climate is associated with variation
in DNA methylation levels in 58 naturally occurring trees collected across climate gradi-
ents [45].

P. abies (Norway Spruce) is also a long-lived (conifer) tree species with a 20 Gbps
draft genome [61]. Heer et al. (2018) analyzed eight P. abies trees in a targeted bisulfite
sequencing approach, employing the SeqCapEpi Kit (NimbleGen). They sampled four
trees (ortets) located in Bavaria, Germany, at ~1200 m above sea level (a.s.l.) and four
clones that originated from those trees (ramets) planted at ~500 m a.s.l. [59]. In the present
study, these data were extended with additional clones to test missing data management,
replicate the results of the previous study, and determine the effects of input types. Those
additional clones originated either from Germany or Sweden and were planted between
1970 and 1973 at several locations in Germany.

2.2.1. Analysis of Q. lobata Dataset

In the original publication, it was suggested that single-methylation variants (SMVs),
which are MPs are involved in response to the local environment and the acclimation to a
climate in a long-lived tree species, valley oak [45]. The authors found 43 significant SMVs
associated using several climatic variables. In total 38, 1, and 1 SMVs in CG, CHG, and
CHH context were found to be associated with maximum temperature (tmax). A single
CG–SMV associated with the minimum temperature (tmin) and single CHG and CHH
SMVs associated with growing season growing degree days above 5 ◦C (GSDD5) were
found to be significant. CG–SMVs showed stronger associations with climatic variables
than other types of SMVs and SNPs.

We used this dataset to test whether these findings could be replicated using the
EpiDiverse EWAS pipeline (Table 1). When running Emodel, a total of 33 out of 38 tmax
related CG–SMVs are shared, and the EWAS pipeline found 47 SMVs in total for this
context (Table 2). Likewise, the single tmin-related CG–SMV and the tmax-related one
(CHG, CHH), are shared. Results are also similar for GSDD5 in CG context and CWD in
CG and CHH context. Hence, there is good agreement between the two analyses with the

https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2
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EWAS pipeline results containing the majority of the published results, while detecting a
few more significant positions, in particular in the CHH context for tmin.

Table 2. Comparison of EpiDiverse EWAS Emodel output for valley oak with the published data.

CG tmax 1 tmin 2 GSDD5 3 CWD 4

Gugger et al., 2016 38 1 0 0

EpiDiverse EWAS pipeline 47 2 0 0

shared amount 33 1 not applicable not applicable

Shared % based on Gugger et al., 2016 86.42% 100% 100% 100%

CHG

Gugger et al., 2016 1 0 1 0

EpiDiverse EWAS pipeline 1 0 0 1

shared amount 1 Not applicable 0 0

Shared % based on Gugger et al., 2016 100% 100% 0% 0%

CHH

Gugger et al., 2016 1 0 1 0

EpiDiverse EWAS pipeline 3 16 0 0

shared amount 1 not applicable 0 not applicable

Shared % based on Gugger et al., 2016 100% 0% 0% 100%
1 tmax: maximum temperature, 2 tmin: minimum temperature, 3 CWD: (an integrated measure of water availability or stress considering
rainfall, evapotranspiration, and basin hydrology), and 4 GSDD5 (growing season growing degree days above 5 ◦C).

Open reading frames (ORFs) harboring significant MPs related to spatial and climatic
variables were blasted against the NCBI nonredundant protein database and the closest
hits were analyzed (Table S1). Significant MPs uniquely found by the EpiDiverse EWAS
pipeline seem to be connected to relevant studies in the literature both for climatic and
spatial variables (cf. Supplementary Section Blastx analysis with the Q. lobata dataset).

Some of the differences found between the two methods might be explained by
differences in the estimation of missing data. Loci with more than 10% missing data
were discarded from the previous analysis [45], and missing data were estimated by the
EpiDiverse EWAS pipeline [58].

The previous study [45] used a multivariate method called RDA with a kinship matrix
from methylation data. RDA is a forced classification method analogous to linear regression
for cases that have multiple dependent variables (e.g., SMVs) and multiple independent
variables (e.g., climate and spatial variables). RDA may not always be feasible with few
variables, and this is especially true when there is a large proportion of unconstrained
variation, i.e., the variation in the response matrix that is nonredundant with the variation
in the explanatory matrix. Another thing that one cannot always be sure about which data
to use to obtain the kinship matrix. In summary, the two methods perform similarly, with
the EpiDiverse EWAS pipeline detecting a few more significantly correlated positions.

2.2.2. Analysis of P. abies Dataset

Heer et al. (2018) hypothesized that the methylation percentage between clones from
the two environments at a global level was similar and proposed that the methylation
patterns remained largely stable during the life history of the trees [59].

We tested whether the sampling locations differ in terms of climatic variables. Due
to a violation of normality using the Shapiro–Wilk test with 0.05 p-value, we carried out
a nonparametric Wilcoxon test to compare locations between Goeppingen, Harsefeld,
Neuhaus for clones apart from ramets, Bavarian forest national park for ortets, and Übersee
for ramets in Germany. Precipitation (prcp) is significantly different between all sites
(Figure S12 upper, left), whereas maximum (tmax) (Figure S12 upper, right), and minimum
temperatures (lower) (Figure S12c) were found to be different only between some.
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Independently from the EpiDiverse EWAS pipeline, coalescence analysis between
the SNP (genetic) and the methylation data (epigenetic) was performed to determine
whether the samples are congruent and also to narrow down pairwise comparisons for
DMP and DMR calling. Coalescence analysis with CG context showed a highly dissimilar
pattern between the SNP and averaged methylation data per sample for the clones apart
from ramets (Figure 4, please see Figures S13–S18 for other contexts and non-averaged
methylation dendrograms). Since the similarity trees are based on genetic and epigenetic
variance were dissimilar, three clustering approaches were employed to call DMPs/DMRs
based on (i) trees’ locations, (ii) SNP clustering, and (iii) methylation call clustering (Figures
S13–S18). In the previous study [59] ramet vs. ortet analysis was performed and revealed
potentially interesting results that same ID ortets and ramets clustered together. Hence, this
comparison was repeated here as one of the pairwise comparisons. An independent run
outside of the EpiDiverse EWAS pipeline was conducted with an unsupervised method,
kWIP [62], which found ramet and ortet pairs clustering (Figure S19). This outcome also
confirms the same clustering with the previous study [59].
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Figure 4. Coalescence analysis between the SNP and methylation data for the CG context. SNP (left)
and averaged methylation call values (right) cluster comparison for the CG context. This comparison
yielded a 72% topological score indicating a relatively high fraction of clades/branches present in
both trees (cf. 3. Methods for details). The thick branches represent deviating topologies. Minus
refers to ramets and plus to ortets. Cf. Figures S13–S18 for additional analyses.

DMP/DMR Analysis Considerations Using Different Callers

No significant DMPs were found with q < 0.1 filterings by the EpiDiverse DMR
pipeline using the default DMR caller metilene [63]. Hence, DMPs between “ramet vs.
ortet” were compared with the output of other DMR callers, methylkit [64] and defiant
(implemented in the EpiDiverse toolkit) [65], which yielded results with q < 0.1 (See Figure
S20 and Supplemental Section “DMP/DMR analysis using different callers” for details). If
one desires to use DMPs and/or DMRs as input instead of methylated positions (MPs),
the alternative solution can be pairwise clustering to reveal differential positions and/or
regions and a user has to define which groups to compare. It should be kept in mind that
an unsupervised clustering may not always yield proper and distinct groups to achieve
DMPs and/or DMRs.

Filtering Missing Data after Uniting Individual Methylomes

Bedtools unionbed function for unifying process creates some missing positions due
to, e.g., varying coverage, resulting in some markers being covered in some samples and
not in others, cf. Section 2.1.3 for more details (Table S2a,b).

Therefore, we filtered methylated positions’ data so that only those positions present
across all samples remained. This led to only 7%, 7%, and 5.5% of data remaining in CG,
CHG, and CHH contexts, respectively (Table S2c,d,e). To quantify the effect of missing data,
we performed an iterative filtering analysis of 0.1 increments with filter_NA parameter
using covariates based on the geographic location of trees, methylation, and SNP data
(Figures S21–S32). Covariates only with the location of trees and combinations with it
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yielded the highest number of intersections between results. SNP and methylation-based
covariates showed no significant outputs.

The Intersection of Positions with All Inputs and Models for the CG Context

In order not to bias the data via NA correction, a zero-tolerance missing data threshold
was used in all subsequent P. abies analyses.

It was shown that gene body CG methylation is relatively stable across seasons [66].
Hence, for this test study, the EWAS run with all models was performed in the CG context
only. Significant positions in all model outputs were intersected for location-based cluster-
ing using precipitation environment and CG context data with the UpsetR R package [67]
for all input types (Figure 5). We selected precipitation for this study because it showed
significant differences between all sample locations.

In summary, G and GxE models with DMPs as input is the combination that yields
the highest number of significant positions. The maximum number of groups that share
a position is seven (check the vertical line on the far right in Figure 5). Moreover, 20, 182,
9713, 37,026, and 77,405 terms are, respectively, shared by five, four, three, two, and single
groups. It makes sense to test several inputs and models for higher sensitivity.

Depending on the input type and model, the output in terms of significant positions
varies considerably.

Removal of Genetic Variants That Might Be Interpreted as Significant Epigenetic Marks

To determine potentially problematic overlap between genetic and epigenetic variation
we intersected all models. Only one position was found to be shared between Emodel MP,
G & GxE models DMP input, “MA_160146:1616-1617”, i.e., position 1616/17 on P. abies
contig MA_160146 (Figure S33). A total of 16 SNPs were found to be correlated with this
CG, 16 for the GxE and one for the Gmodel, 17 SNPs are in common between G and GxE
models, and only five of them are on CG bases. Additionally, those 17 shared SNPs were
intersected with the output of the EWAS runs and it was observed that the G and GxE
DMRs and averaged outputs have an intersection with these 17 SNPs. In conclusion, the
optimal intervention as post hoc analysis should be excluding the intersected CG identifiers
from Emodel, in other words, shared positions between Emodel and Gmodel/GxE should
be removed from the Emodel output if the aim is to discover epigenetic associations that
arise purely due to environmental factors (the same is valid for Gmodel when obtaining
solely genetic-related identifiers). Please check the “Removal of genetic variants that might
be interpreted as significant epigenetic marks” chapter in Supplementary for more details.

Emodel Output Gene Ontology (GO) Analysis

To determine environmentally associated positions, we conducted an Emodel analysis,
integrating all available climatic data and all contexts. Current climatic datasets through the
CHELSA database (Climatologies at high resolution for the earth’s land surface areas) [68]
are maximum, minimum temperature, and precipitation. Since on the level of individual
positions, there is scarce overlap between all input types (MPs, DMPs, and DMRs), we
decided to analyze the results on the level of Gene Ontology (GO) level (Figures S34–S36) to
check concordance in different model outputs and found enriched GO terms for significant
cytosines. Such analyses can be useful to reduce noise and to determine the conserved
overlap of datasets [69].

To determine whether GO terms are concordant between different input types we
concentrated on the usually most meaningful biological process (BP) ontology and found
that 47% of terms overlap with the previous study in which only ortets vs. ramets were
analyzed [59] (Figure S34). The highest number of significant terms (26) in the Emodel
analysis resulted from MP input, CHH context, and tmin climatic data (Figure S37).
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Figure 5. Upset plot of significant positions for all models with CG context using locations of trees as covariates with
precipitation environmental data. Vertical lines refer to shared terms between classes on the left side. A maximum shared
number of terms is between G and GxE models with DMP input type. Overall, 39% of the terms are shared and 61% are
unique to single inputs. The highest number of unique elements are found for GxE DMR input with 42,438 terms, and the
lowest is with two terms for the Emodel CG MP input.
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CG Context G and GxE GO Analysis

Since the G and GxE models are computationally intensive, we ran them only on
precipitation data, which was found to be significantly different between all locations
(Figure S12), and in CG context, since it was shown that CG methylation is relatively stable
seasonally [66,70]. G and GxE GO outputs (Figures S38–S41) were intersected to distinguish
the effect of climatic data vs. SNP data. The filtered output results (q < 0.05) for CG context
with Gmodel show that all four input types yield significant terms (Table S3). In total, 69%
of BP terms are shared and only 31% are unique to single inputs (Figure S38).

Enriched BP terms that are found with G and GxE models include, e.g., “monoter-
pene,” “metabolic organic biopolymer,” and “phenylpropanoid.” The term “response to
temperature stimulus” was found with Gmodel DMP and GxE MP inputs. Other promi-
nent terms that might be related to precipitation were “water transport” (all inputs of
GxE, and DMP input with Gmodel) and “water homeostasis” (Gmodel with DMR average
method).

The P. abies dataset analysis showed that most of the GO terms between different
models are shared and only a few are unique to a given model. The term “phenylpropanoid
metabolic process” is shared between all outputs except for Gmodel MPs and DMPs.
Phenolic extracts in P. abies were reported to exhibit antifungal [71], antibacterial [72], and
antioxidative activity [73]. Additionally, phenolic compound-related terms were found
significantly in higher numbers with needles of damaged trees [74]. It was shown by other
studies that the colonization of trees by various bark beetle species was related to the
released number of monoterpenes [75]. Terms found with “water transfer” seem to exist in
studies for drought resistance [76,77].

In summary, Gmodel with averaged DMRs as input is the combination that yields
the highest number of terms. However, it should be noted that the GxE also found a (low)
number of unique terms and that DMRs and MPs as inputs also yielded unique terms.
Hence, for higher sensitivity or a consensus approach, it makes sense to test several input
types and models (Figure 6), in particular since results also vary per context, as shown for
the Emodel study (Figure S37).
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Figure 6. Subset of BP GO terms related to “water”, “root”, “shoot”, and “defense” per input type under three models (G,
GxE, and E), in GC context for precipitation. Several BP GO terms matching “water”, “root”, “shoot”, or “defense” are
shown per model and input type. Cells are colored from green = high to red = low.

An assumption is needed to decide which groups to compare to derive DMPs and
DMRs, but no assumption is required with MP input type. Covariates are used for grouping
samples, and the user may prefer multiple of them. Computation time may take longer
while using the MP type input, but it should be noted that using methylated positions are
suggested to be used as default in case a user does not have differential methylation values,
and it would be advantageous to use the whole (unbiased) methylation data. Additionally,
a user should consider the time that will be spent to obtain the differential methylation
before executing EWAS. Therefore, we recommend MP input for a start and in absence of
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concrete ideas (such as ramet vs. ortet in the P. abies dataset) for pairwise groupings. If
those are present, averaged DMRs might be preferable based on the number of terms that
can be derived from them (Figure 6).

2.3. Conclusions

The EpiDiverse EWAS pipeline allows the analysis of MPs and differential methylation
data. It presents logical missing data imputation with beta distribution and produces
multiple graphs with each model in the GEM package to help the user to observe results
better. We reanalyzed data published previously [45] and found a significant amount of
overlap in terms of significant MPs related to spatial and climatic variables.

In terms of the Q. lobata dataset [45], we found that nearly all significant C’s could be
reproduced, although the underlying statistical methods differ. Missing data estimation as
implemented in the EpiDiverse EWAS pipeline suggests that beta distribution is a robust
and accurate choice for approximation, as inferred from the significant amount of overlap.
Most importantly, nearly all of the unique C’s only found by the EWAS pipeline seem to
have meaningful associations with spatial and climate variables in the literature.

We used the P. abies dataset to determine the overlap between different GEM models
and input types. We found that the choice of model and input depends on the user’s
research question. G and GxE models detected more significant GO terms, compared to the
Emodel terms in GC context (Figure 6, and averaged DMRs are superior to the other input
types in terms of how many terms can be detected. As a hierarchical controlled vocabulary,
gene ontology helps to group meaningful biological functions that might be missed in
individual gene descriptions. Different genes related to the same biological function may
have GO terms in common. Finding most of the GO terms overlapping between different
analyses shows a large part of the findings of these analyses are shared on the level of
the ontological vocabulary and its underlying functionality, e.g., the biological process
enacted. Yet, Emodel found the highest number of terms in the CHH context (Figure S36).
Most of the detected GO terms overlapped between different models, inputs, and contexts,
suggesting robust results regardless of the model and, to some extent, input type. However,
most models and input type combinations yield a certain fraction of uniquely found terms,
suggesting that a consensus approach (using several models and input types and using
their overlap) might make sense (Figure 6).

In terms of input filtering, we found that p-value-filtered metilene DMPs do not
lead to severely different results from using q-value-filtered methylkit or defiant DMPs.
Unsupervised clustering using kWIP to derive groups for DMP and DMR analysis was
found to be a potential replacement for a priori grouping.

In summary, we present the EpiDiverse EWAS pipeline as a versatile tool to perform
plant EWAS analyses, either using the output of the other EpiDiverse pipelines or custom
data.

3. Materials and Methods
3.1. The EpiDiverse EWAS Pipeline

The EpiDiverse EWAS pipeline is available on GitHub (https://github.com/EpiDiverse/
ewas/tree/master, accessed on 1 March 2021). The pipeline was set up using Nextflow
20.07.1 revisions [54] and is based on the GEM R package [50].

3.2. Analysis of Q. lobata Data

As described in the original publication, mature leaves from Q. lobata were sampled at
each of 58 locations spread along the foothills of the Coastal and Sierra Nevada ranges [45].
Positions with more than 10% missing data, less than 10X coverage, and a 10% range of
variation (the difference between the maximum and minimum methylation per position)
were filtered out. The authors considered four different climate variables and integrated
amount of water availability or stress, considering evapotranspiration, basin hydrology,
and rainfall, mean minimum temperature of the coldest month (tmin), mean maximum
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temperature of the warmest month (tmax), and growing season growing degree days above
5◦C (GSDD5). A multivariate method called redundancy analysis (RDA) was employed to
test the variation explained by SMVs and SNPs, and positions were filtered with multiple
testing (q < 0.1).

To mirror these analyses, the EWAS pipeline run was performed with 10× coverage,
q value < 0.1, with a maximum of 10% of missing data, and different standard deviation
values per position (0.028, 0.0176, and 0.0197 for CG, CHG, and CHH, respectively) to
replicate the results in the previously published study [45]. These parameters produced
the same amount of data produced in Gugger et al. (2016) with negligible differences in
terms of FDR calculation (Figure S41).

3.3. Analysis of P. abies Data

The P. abies dataset was chosen to perform a comprehensive test for measuring the
performance and parameters of the EWAS pipeline. In total, 28 samples were used, com-
posed of four original trees or ortets (ID = 65, 67, 68, 72), four clones that originated from
those ortets or ramets (ID = 65, 67, 68, 72), and 20 clone trees originated from three trees
(ID = 4259732, 4960703, 186370), two located in Germany and one in Sweden. Clones from
these trees were planted by the Northwest German Forest Research Institute as part of their
project “fit for clim” (https://www.fitforclim.de/, accessed on 1 March 2021) with varying
climatic conditions in Germany, namely, Neuhaus (with unique numbers or Mitte/middle,
oben/up, unten/low extensions based on the position in the tree they were sampled from),
Göppingen (G extension), and Harsefeld (H extension) (Figure S42).

The EpiDiverse WGBS pipeline with the segemehl standalone tool [66] was used
for methylation calling with the options –noDedup, –SE, and –unique, using the high
confidence gene set as reference [52]. Overall, 15 to 85 million reads per sample were left
after trimming, yielding a coverage of 8- to 26-fold (Table S4). Although the duplicate
ratio was quite high due to the linear relationship of sequencing depth and duplicate level,
this is probably not due to PCR bias (see Supplement, Ratio of PCR Duplicates for P. abies
Datasets, Figure S43).

The EpiDiverse DMR pipeline with the metilene software was used to call DMRs with
default settings and –sig 0.1 and –diff 20 for DMPs. The EpiDiverse SNP pipeline was used
with the –variants parameter to derive SNP variants per sample as separated .vcf files. All
files were compressed with bgzip, indexed, and finally merged and filtered to keep variants
that have been successfully genotyped in 100% of individuals, a minimum quality score of
30, and a minor allele count of three. This final file was used with the –SNPs parameter for
the EWAS pipeline run. The EpiDiverse EWAS pipeline takes individual variant files to
merge and filter them.

The EpiDiverse EWAS pipeline run was conducted separately for each methylation
context while disabling the other two, e.g., –noCHH –noCHG parameters used for a CG
run, –distance parameter was set to 2000, and –coverage to 5. G and GxE models were run
in 10 separate runs, and all positions with noninfinite t statistics were discarded. Separate
outputs were merged, and FDR calculation was carried out.

Hierarchical clustering (HC) with the Euclidean distance method with ctc package in
R was performed on genetic variability (SNPs) and on epigenetic variability (methylated
positions). The idea was that if there is no difference between the two resulting topologies,
either of them might be used to derive groups. Coalescence analysis was performed to
check for commonalities/differences of the topologies, and methylation calls and SNP
HC graphs were compared via the compare2trees standalone tool [67]. The SNP tree is
composed of 11 samples, including the four ramets, the four ortets (ramets and ortets
are assumed to be genetically identical), and the three new clones. The methylation data
comprises 28 samples: 4 from the ramets, 4 from the ortets, and 20 from the new clones.
Two versions of the methylation tree were used, with all samples separate, and using
averaged methylation per position for the same tree ID located in different locations.
Branch thickness in the result of the compare2trees software is used to show the topological
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score, which is the percentage fraction of clades/branches that are present in the actual tree
that is also present in the estimated tree; thicker branches refer to a lower score (Figure 4
and Figures S13–S18). The kWIP tool was used to cluster methylation data for four ramets
and ortets.

GO bias analyses were performed with the GOSTAT pipeline while intersecting the
results from the EWAS pipeline with GO term annotations [68].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/epigenomes5020012/s1, Figure S1: WGBS output directory and a bedGraph formatted dataset,
Figure S2: Methylome input and the final file after bedtools unionbedg process, Figure S3: DMPs or
DMRs output directory and a bed formatted dataset, Figure S4: Required inputs to run EpiDiverse
EWAS pipeline with different models, Figure S5: The output of the Emodel, Figure S6: The output of
the Gmodel, Figure S7: Q–Q plots, Figure S8: Histogram plots, Figure S9: Manhattan plots, Figure
S10: Sequence dot plots, Figure S11: Top significant k-plots, Figure S12: Nonparametric Wilcoxon
test to compare climatic datasets for locations of trees, Figure S13: Coalescence analysis with SNP
and averaged methylation data for the CG context, Figure S14: Coalescence analysis with SNP and
not averaged methylation data for the CG context, Figure S15: Coalescence analysis with SNP and
averaged methylation data for the CHG context, Figure S16: Coalescence analysis with SNP and not
averaged methylation data for the CHG context, Figure S17: Coalescence analysis with SNP and
averaged methylation data for the CHH context, Figure S18: Coalescence analysis with SNP and not
averaged methylation data for the CHH context, Figure S19: fastq raw files HC with k32 performed
by kWIP software, Figure S20: Intersection of significant C’s with p- and q-values on gene level for
methylkit, metilene, and defiant DMR callers., Figure S21: Intersection of outputs with different
filter_NA values for MPs input using all covariates, Figure S22: Intersection of outputs with different
filter_NA values for DMPs input using all covariates, Figure S23: Intersection of outputs with
different filter_NA values for DMRs input using all covariates, Figure S24: Intersection of outputs
with different filter_NA values for MPs input using only location-methylation-based covariates,
Figure S25: Intersection of outputs with different filter_NA values for DMPs input using only
location-methylation-based covariates, Figure S26: Intersection of outputs with different filter_NA
values for MPs input using only location-SNP-based covariates, Figure S27: Intersection of outputs
with different filter_NA values for DMPs input using only location-SNP-based covariates, Figure
S28: Intersection of outputs with different filter_NA values for DMRs input using only location-SNP-
based covariates, Figure S29: Intersection of outputs with different filter_NA values for MPs input
using only SNP-methylation-based covariates, Figure S30: Intersection of outputs with different
filter_NA values for MPs input using only location-based covariates, Figure S31: Intersection of
outputs with different filter_NA values for DMPs input using only location-based covariates, Figure
S32: Intersection of outputs with different filter_NA values for DMRs input using only location-based
covariates, Figure S33: Intersection of shared SNPs and significant common markers between G and
GxE models, Figure S34: Intersection of significant BP GO terms between location-based Emodel
output and a previous study [5] with UpsetR package, Figure S35: Intersection of significant MF GO
terms between location-based Emodel output and a previous study with UpsetR package, Figure S36:
Intersection of significant CC GO terms between location-based Emodel output and a previous study
with UpsetR package, Figure S37: Highlighted GO terms based on Emodel, Figure S38: Intersection of
significant BP GO terms between all models, only CG context and precipitation data for location-based
clustering, and a previous study with UpsetR package, Figure S39: Intersection of significant MF GO
terms between all models, only CG context and precipitation data for location-based clustering, and a
previous study with UpsetR package, Figure S40: Intersection of significant CC GO terms between all
models, only CG context and precipitation data for location-based clustering, and a previous study
with UpsetR package, Figure S41: Gugger et al. (2016) methylation and climatic data processing
and analysis by the EpiDiverse EWAS pipeline, Figure S42: Location of P. abies trees (a), additional
clone information (b), and grouping of trees (c), Figure S43: PCR duplicate analysis, Table S1: Q.
lobata blastx analysis, Table S2: Missing data estimation of EpiDiverse EWAS pipeline (a) and GEM
R package (b) [9]. Missing data statistics for P. abies dataset with CG (c), CHG (d), and CHH (e)
contexts, Table S3: EWAS output and GO statistics, Table S4: Statistics of additional P. abies samples.
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