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Abstract: Fungi produce a variety of volatile organic compounds (VOCs) during their primary and
secondary metabolism. In the beverage industry, these volatiles contribute to the the flavor and
aroma profile of the final products. We evaluated the fermentation ability and aroma profiles of
non-conventional yeasts that have been associated with various food sources. A total of 60 strains
were analyzed with regard to their fermentation and flavor profile. Species belonging to the genera
Candida, Pichia and Wickerhamomyces separated best from lager yeast strains according to a principal
component analysis taking alcohol and ester production into account. The speed of fermentation and
sugar utilization were analysed for these strains. Volatile aroma-compound formation was assayed
via gas chromatography. Several strains produced substantially higher amounts of aroma alcohols
and esters compared to the lager yeast strain Weihenstephan 34/70. Consequently, co-fermentation of
this lager yeast strain with a Wickerhamomyces anomalus strain generated an increased fruity-flavour
profile. This demonstrates that mixed fermentations utilizing non-Saccharomyces cerevisiae biodiversity
can enhance the flavour profiles of fermented beverages.

Keywords: aroma profiling; solid-phase microextraction–gas chromatography/mass spectrometry
(SPME–GC/MS); yeast; Saccharomycetes; fermentation; volatile organic compound (VOC); aroma

1. Introduction

Beer is one of the most widely consumed alcoholic beverages in the world. In 2003, worldwide
beer production reached around 1.82 billion hectoliters and increased to a volume of 1.93 billion
hectoliters in 2013 according to the Kirin Beer University Report of 2014. Production is divided into
several beer styles of which ale and lager beers are most prominent. Generally, ale is produced by
top-fermenting yeasts at temperatures between 15–30 ◦C. Ales are known for their fruity aromas
which are regarded as a distinctive characteristic of top-fermenting beers. Lager beers, however, are
produced by a distinct group of bottom-fermenting yeasts at fermentation temperatures between
10–15 ◦C. The aroma of lager beers is more neutral compared to ale-type beers as they contain lower
amounts of fruity flavors.
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Top-fermenting yeasts generally are S. cerevisiae strains. At the end of fermentation, these yeasts
rise to the surface of the fermenter, creating a thick cell layer. Bottom-fermenting yeasts belong to two
distinct groups of lager yeasts [1]. Lager yeasts are hybrids between S. cerevisiae and S. eubayanus [2].
Lager yeasts can be divided into two groups, group I or Saaz type, and group II or Frohberg type, that are
distinguished at the molecular level by ploidy differences, characteristic chromosomal rearrangements
and chromosome losses [3,4].

In contrast to lager beers, lambic beers with sometimes exceptional flavor compositions are based
on a larger biodiversity, including acetic and lactic acid bacteria and various yeasts, e.g., S. cerevisiae,
S. pastorianus and Brettanomyces bruxellensis [5].

Beer is a complex product consisting of volatile and non-volatile components that form the final
aroma. The contribution of ale yeasts to the final flavor bouquet is generally higher than that of lager
yeasts. This has been attributed to the greater diversity of ale yeasts compared to the limited diversity
of the two groups of lager yeast [6]. Other process parameters also influence volatile-compound
formation. Specifically, sugar concentration of the wort and different aeration regimes influence the
production of flavor-active esters. These esters mainly contribute to the fruitiness of the product.
Dominant esters are acetate esters such as ethyl acetate (fruity), isoamyl acetate (banana) and 2-phenyl
acetate (rose) and ethyl or medium-chain fatty acid esters such as ethyl hexanoate, ethyl octanoate and
ethyl decanoate, which provide a fruity apple- or wine-like flavor to the beer [7]. Among the higher
alcohols, n-propanol, isobutanol, 2-phenylethanol and isoamyl alcohol are most abundant. Higher
alcohols such as isobutanol can contribute a rum-like aroma which gives a warm mouth feeling, while
2-phenylethanol and isoamyl alcohol are prevalent for their sweet/rose and fruity/banana-like aromas,
respectively [8].

Not all flavors are desirable. Strecker aldehydes (aged flavour), aldehydes of the Maillard reaction,
e.g., furfural, and aldehydes of fatty acid oxidation, e.g., trans-2-nonenal, are regarded as off-flavors in
beer [9]. The ketone diacetyl (2,3-butanedione) is monitored during the lager beer brewing process,
in particular, as it imparts an undesirable buttery flavor with a low flavour threshold [10]. Given the
low concentration and volatile nature of these aroma compounds, gas chromatography coupled with
mass spectrometry (GC/MS) offers an optimal technique to analyze the flavor profile of beer.

Recently, non-conventional yeasts or non-cerevisiae yeasts have gained importance for fermented
alcoholic beverages [11,12]. They produce various mixtures of volatile compounds and so contribute
to the aroma profile of beverages [6,13]. Mixed fermentations using S. cerevisiae in combination with a
non-conventional yeast strain e.g., belonging to the genera Lachancea, Pichia or Hanseniaspora, could
provide novel beverages with improved ester profiles [14,15]. On the other hand, the synergistic effects
on aromatic compound production were observed in co-cultures with Metschnikowia pulcherrima and
S. cerevisiae [16]. Non-conventional yeasts could contribute to satisfying the demand of novel and
distinctive, yet natural, flavors in fermented beverages [17].

A vast number of non-conventional yeast strains has been isolated from various food sources and
deposited in culture collection such as the CBS yeast collection of the Westerdijk Fungal Biodiversity
Institute (formerly, CBS, Centraalbureau voor Schimmelcultures, Utrecht, Netherlands). In this study,
we aimed at covering a broad spectrum of species isolated from different substrates like berries, fruits,
cheese, fruit flies or even soil and spanning a broad evolutionary distance within the Saccharomycotina in
order to identify species that could contribute with their particular flavour to lager beer fermentations.

2. Materials and Methods

2.1. Strains and Media

Yeast strains used in this study are shown in Table 1, including their CBS reference number. Each
strain was coded based on its coordinates in a 96-well plate. Yeast strains were subcultured in YPD
(1% yeast extract, 2% peptone, 2% glucose) at room temperature overnight.
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Table 1. Strains used in this study. Each selected strain was assigned to a code based on its coordinates
on a 96-well plate.

Position Strain Number Taxon Name Substrate of Isolation Origin

B2 CBS 10151 Candida alimentaria Cured ham Norway
B3 CBS 12367 Candida alimentaria Brie Régalou cheese
B4 CBS 4074 Candida diversa Grape must Japan
B5 CBS 8058 Candida kofuensis Berries of Vitis coignetiae Japan
B6 CBS 1760 Candida versatilis Pickling vat with 22% brine USA
B7 CBS 2649 Candida stellate Grape juice France
B8 CBS 6936 Clavispora lusitaniae Citrus essence Israel
B9 CBS 4373 Debaryomyces fabryi Dry white wine South Africa

B10 CBS 767 Debaryomyces hansenii
B11 CBS 2659 Debaryomyces subglobosus Apple Italy
C2 CBS 8139 Dekkera anomala Netherlands
C3 CBS 615.84 Geotrichum candidum Brie cheese France
C4 CBS 95 Hanseniaspora guilliermondii Fermenting bottled tomatoes Netherlands
C5 CBS 6783 Hanseniaspora occidentalis var. citrica Orange juice Italy
C6 CBS 2585 Hanseniaspora uvarum Sour dough Portugal
C7 CBS 2568 Hanseniaspora vineae Drosophila persimilis (fruit fly)
C8 CBS 2352 Hyphopichia burtonii Pollen, carried by wild bees
C9 CBS 4311 Kazachstania servazii Soil Finland

C10 CBS 3019 Kazachstania spencerorum Soil South Africa
C11 CBS 2186 Kazachstania transvaalensis Soil South Africa
D2 CBS 398 Kazachstania unispora
D3 CBS 7775 Kluyveromyces aestuarii Neotredo reynei (shipworm) Brazil
D4 CBS 8530 Kluyveromyces dobzhanskii Drosophila sp. Canada
D5 CBS 1557 Kluyveromyces marxianus Stracchino cheese Italy
D6 CBS 7005 Lachancea fermentati Alpechín Spain
D7 CBS 3082 Lachancea kluyveri Drosophila pinicola (fruit fly)
D8 CBS 7703 Lachancea waltii Either fruit or leaf of fruit tree
D9 CBS 5833 Metschnikowia pulcherrima Berries of Vitis labrusca (Concord grapes) USA

D10 CBS 2030 Meyerozyma guilliermondii Insect frass on Ulmus americana (elm tree) USA
D11 CBS 8417 Meyerozyma guilliermondii Brine bath in cheese factory Netherlands
E2 CBS 7720 Nakaseomyces bacillisporus Exudate of Quercus emoryi (Emory oak) USA
E3 CBS 2170 Nakaseomyces delphensis Sugary deposit on dried figs South Africa
E4 CBS 8255 Pichia Kefyr
E5 CBS 2020 Pichia farinosa Fermenting cacao Trinidad and Tobago
E6 CBS 2057 Pichia fermentans Brewers yeast
E7 CBS 188 Pichia kluyveri Olives
E8 CBS 5147 Pichia kudriavzevii Fruit juice
E9 CBS 191 Pichia membranifaciens Wine Italy

E10 CBS 429 Saccharomyces cerevisiae Fermenting must of champagne grapes
E11 CBS 1250 Saccharomyces cerevisiae Sherry Spain
F2 CBS 1782 Saccharomyces cerevisiae Super-attenuated beer
F3 CBS 820 Saccharomycodes ludwigii Grape must Germany
F4 CBS 2863 Schwanniomyces occidentalis Soil of vineyard Spain
F5 CBS 6741 Schwanniomyces polymorphus var. africanus Soil South Africa
F6 CBS 133 Torulaspora delbrueckii Ragi Indonesia
F7 CBS 427 Torulaspora microellipsoides Apple juice Germany
F8 CBS 248 Wickerhamomyces anomalus Red currants Netherlands
F9 CBS 249 Wickerhamomyces anomalus Berries
F10 CBS 261 Wickerhamomyces anomalus Ragi Indonesia
F11 CBS 262 Wickerhamomyces anomalus Beer
G2 CBS 4689 Zygosaccharomyces bailii var. bailii Grape must Italy
G3 CBS 1082 Zygosaccharomyces bisporus Tea-beer fungus Indonesia
G4 CBS 726 Zygosaccharomyces mellis Wine grapes Germany
G5 C1030 Saccharomyces pastorianus Brewers’ yeast
G6 C1039 Saccharomyces cerevisiae Wine yeast
G7 C746 Saccharomyces cerevisiae Brewers’ yeast
G8 CBS 1513 Saccharomyces carlsbergensis Brewers’ yeast
G9 C482 Saccharomyces cerevisiae Brewers’ yeast
G10 WS34/70 Saccharomyces pastorianus Brewers’ yeast
G11 C598 Saccharomyces cerevisiae Laboratory strain

To evaluate growth at different temperatures or the utilization of maltose, cells were spotted on
solid media plates in 10-fold dilution series and incubated for 5 days before evaluation. Growth at the
different dilutions was 10-color coded and is presented as a heat map.

2.2. Fermentation Conditions

Lab-scale fermentations were carried out in 50 mL tubes filled with 40 mL nutrient-rich YPD with
the glucose concentration adjusted to 16 ◦Plato at 20 ◦C. Each fermentation (300 rpm, using a triangular
magnetic stirrer) was started with a cell density corresponding to OD600 = 0.2. For co-fermentations,
the amounts of cells used equaled OD600 = 0.1. The fermentation progress was monitored for up to
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14 days by daily measurement of CO2 release. Sugar content was measured by a DMA 35 Anton Paar
densitometer (medium gravity in ◦P). Plato measurements were taken at the beginning and at the end
of each fermentation process. The fermentation was defined as finished when the CO2 loss did not
increase any further and the residual sugar concentration remained constant for 2 days. Ethanol was
measured after the end of fermentation using an Anton Paar DMA 4500 M Alcolyzer. Aroma profiles
were analysed by headspace gas chromatography.

2.3. Sample Preparation for Solid-Phase MicroExtraction–Gas Chromatography/Mass Spectrometry
(SPME-GC/MS) Analysis

2.5 mL of the samples were put in 20 mL vials with the addition of sodium chloride (final
concentration 40 mg/ml), 50 µL NaN3 0.1%, 25 µL of the internal standard (2-octanol final concentration
of 200 µg/L) and ascorbic acid (final concentration of 20 mg/mL).

All samples were incubated for 10 min at 40 ◦C, then the volatile compounds were collected on a
divinylbenzene/carboxen/polydimethylsiloxane fiber (DVB-CAR-PDMS) coating 50/30 µm, and 2-cm
length SPME fibre purchased from Supelco (Sigma-Aldrich, Milan, Italy) for 40 min.

2.4. Analytical Methods for GC/MS

GC analysis was performed on a Trace GC Ultra gas chromatograph coupled with a TSQ Quantum
Tandem mass spectrometer (Thermo Electron Corporation, Waltham, MA USA), with adaptations as
described in Ravasio et al. [18]. GC separation was performed on a 30 m Solgelwax PEG capillary
column with an internal diameter of 0.25 mm and a film thickness of 0.25 m (SGE Analytical Science,
Melbourne, Australia). The GC oven was kept at 40 ◦C for 4 min and then increased by 6 ◦C/min to
250 ◦C and kept at the final temperature for 5 min. The injector and transfer-line temperatures were
kept at 250 ◦C as well. Helium was used as the carrier gas with a flow rate of 1.2 mL/min. The time for
thermal desorption of analytes was 4 min. The MS detector was operated in full scan mode at 70 eV
with a scan range from 35 to 350 m/z. Data analysis was performed using the software ThermoXcalibur
(Version 2.2 SP1.48, Thermo scientific, Waltham, MA, USA). Identification of compounds was based
on comparison with a mass spectral database (NIST version 2.0, Gaithersburg, MD, USA) and with
reference standards when available. The relative amount of each volatile was expressed as µg/L
of 2-octanol.

2.5. Multivariate Data Analysis

Multivariate data analysis was performed using StatSoft, Inc. STATISTICA version 8.0 (data
analysis software system, 2007, StatSoft (Europe) GmbH, Berikon, Switzerland). Principal component
analysis was employed to simplify data interpretation. The matrix initially contained the 60 strains
considered in this study and the average of the relative 62 VOCs detected and was later reduced to the
sub-selection of 19 strains studied further.

3. Results

3.1. Strain Selection and Identification of Representative Isolates

In order to cover a wide range of the biodiversity of non-conventional yeasts, we selected 60 strains
from 48 different species which were obtained from the strain collection of the Westerdijk Institute.
The focus was on strains that were previously isolated from various fermentations, e.g., from fermented
liquids, fruits, vegetables, or meat. These strains, therefore, may have evolved superior or desirable
features, e.g., the production of high levels of ethanol or may have been recognized based on their
contribution to flavors. All strains were run in lab-scale fermentation trials in nutrient-rich broth (YPD
with adjusted glucose content at 16 ◦Plato) to assess their aroma production. Flavor profiles were
analyzed using GC/MS and compared to a set of brewing and wine yeast strains (Supplementary
Table S1).
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3.2. Aroma Profiles of Fermentations

In total, we identified 62 different volatiles in the samples of all strains (Table 2). Major
volatile-aroma compounds that were detected included esters, alcohols, aldehydes, ketones and
acids. Most species harbor the ability to produce a large variety of flavors. Thus, we did not identify
single species that produced only very few compounds or species with a very high diversity, as shown
in Figure 1 for a selection of species. However, there was an enormous difference in the amounts of
specific volatiles produced. Esters were the most prominent group of volatiles. In total, 22 different
esters could be identified and within this group ethyl-esters dominated, such as ethyl hexanoate
and ethyl acetate, associated with fruity wine/apple-like and sweet pear drop flavors, respectively.
Alcohols comprised the second major group of compounds. Besides ethanol, we identified 14 different
alcohols. Yet, only two compounds, 2-phenylethanol, perceived as rose flavor, and isoamyl alcohol,
a banana-like flavor, were produced by all strains analyzed. During anaerobic fermentations the
formation of aroma alcohols is favored over the production of aroma acids [19]. In line with this, we
identified only six acids, of which acetic acid and butyric acid were prominent.

Table 2. List of 62 volatiles that were detected by GC/MS measurement.

Number Alcohols

1 Benzyl alcohol
2 Butanol
3 Dodecanol
4 Fenchyl alcohol
5 Furaneol
6 Isoamyl alcohol
7 Propanol
8 2-Ethyl-1-hexanol
9 2-Furanmethanol

10 2-Methyl propanol
11 2-Nonanol
12 2-Phenyl ethanol
13 3 Ethoxy-1-Propanol
14 3-(Methylthio)-1-propanol

Esters

15 Butyl acetate
16 Ethyl (4E)-4-decenoate
17 Ethyl 2-methylbutyrate
18 Ethyl acetate
19 Ethyl butanoate
20 Ethyl decanoate
21 Ethyl dodecanoate
22 Ethyl heptanoate
23 Ethyl hexadecanoate
24 Ethyl hexanoate
25 Ethyl isobutyrate
26 Ethyl isovalerate
27 Ethyl octanoate
28 Ethyl propanoate
29 Ethyl tetradecanoate
30 Isoamyl acetate
31 Isoamyl butyrate
32 Isobutyl acetate
33 Isobutyl butanoate
34 Phenethyl acetate
35 S-methyl thioacetate
36 2-Methyl propanoate
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Table 2. Cont.

Number Alcohols

Acids

37 Acetic acid
38 Butyric acid
39 Decanoic acid
40 Hexanoic acid
41 Isovaleric acid
42 Octanoic acid

Aldehydes

43 Acetaldehyde
44 Benzaldehyde
45 Furfural
46 Phenyl acetaldehyde
47 1-Decanal
48 1-Nonanal
49 3-Methyl butanal
50 4-Methyl benzaldehyde
51 5 Methyl furfural
52 5-Hydroxymethylfurfural

Ketons

53 Acetoin
54 Diacetyl
55 Pyranone
56 2-Cyclopentene-1,4-dione
57 2-Dodecanone
58 2-Methyltetrahydrothiophen-3-one
59 2-Nonanone
60 2-Undecanone

Pyrazines

61 2,5-Dimethyl-3-ethylpyrazine
62 2,6-DimethylpyrazineFermentation 2018, 4, x  7 of 17 
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We were most interested in species that separated well from S. cerevisiae or lager yeast strains.
Therefore, we narrowed down the selection of strains to those that showed clear separation in their
flavour profiles to the set of S. cerevisiae and lager yeast strains based on principal component analysis
(Figure 2). This identified species belonging to the genera Candida, Pichia and Wickerhamomyces.
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produced. The matrix is based on the set of 19 strains and the VOCs detected. Strains are presented
with their assigned coordinates (see Table 1). Species belonging to the same genus are represented by
the same color.

Based on the GC data, we generated relative quantifications of the volatile aroma compounds
formed. The set of strains was then compared to the lager yeast S. pastorianus/Weihenstephan to
identify strains that produced higher amounts of esters and alcohols (Tables 3 and 4). One strain of
Saccharomyces cerevisiae (CBS 1250; E11) was a very good producer of alcohols, particularly of isoamyl
alcohol, by contrast with lager yeast. Yet, this strain only produced moderate amounts of esters, mostly
ethyl acetate. Its origin from sherry production suggests that it has been selected as the preferred strain
for these fermentations.

The Wickerhamomyces anomalus isolates showed a remarkably high amount of both alcohol
and ester production. Production of higher alcohols was strongly increased in these W. anomalus
strains compared to lager yeast. Interestingly, here mainly isoamyl alcohol and 2-phenyl ethanol
production was increased. These represent two desirable flavors associated with banana and rose
flavours. The sherry isolate (CBS 1250, E11) was found to produce even more isoamyl alcohol than the
W. anomalus strains, but far less 2-phenylethanol than these strains (Table 3). Yet, the W. anomalus strains
produced abundant amounts of esters, particularly ethyl acetate, isoamyl acetate and 2-phenylethyl
acetate. Overall, these strains produced up to 10-fold more esters than the Weihenstephan lager
yeast strain. (Table 4). Another highly aromatic strain identified in this collection of strains was a
Pichia kluyveri strain, CBS 188. This strain produced almost fourfold more esters than lager yeast,
while its aroma alcohols profile was similar to lager yeast with the exception of fourfold higher
2-phenylethanol production.
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Table 3. Strains with higher aroma alcohol production than the Weihenstephan lager yeast strain.

Strain Identifier CBS1250 CBS262 CBS1082 CBS726 CBS261 CBS191 CBS188 CBS2568 CBS2649

Position E11 F11 G3 G4 F10 E9 E7 C7 B7
Species S. cerevisiae W. anomalus Z. bisporus Z. mellis W. anomalus P. membrani-faciens P. kluyveri H. vineae C. stellata
Butanol 4.15 3.23 4.57 2.98 1.89 1.80 1.75 1.27 1.49
Furaneol 1.81 0.00 3.49 2.07 0.00 0.00 0.00 0.00 1.82

Isoamyl alcohol 3.83 2.45 1.86 2.04 1.12 1.91 0.90 0.79 0.76
Propanol 4.28 1.18 2.19 2.37 1.68 0.00 2.04 1.87 0.00

2-Furanmethanol 0.00 0.00 3.11 2.10 0.00 0.00 0.00 0.00 9.13
2-Methyl propanol 9.10 2.92 2.78 3.62 2.31 3.61 1.24 0.59 2.08
2-Phenyl ethanol 1.42 4.26 1.98 1.94 4.81 2.19 2.97 1.53 1.45

3-(Methylthio)-1-propanol 2.38 0.00 0.00 2.98 0.00 1.83 0.00 12.58 1.98

The values reported represent the relative abundances of the specific subset of metabolites compared to the lager yeast strain (G10).



Fermentation 2018, 4, 15 9 of 16

Table 4. Strains with higher aroma ester production than the Weihenstephan lager yeast strain.

Strain Identifier CBS261 CBS262 CBS188 CBS249 CBS248 CBS1082 CBS133

Position F10 F11 E7 F9 F8 G3 F6
Species W. anomalus W. anomalus P. kluyveri W. anomalus W. anomalus Z. bisporus T. delbrueckii

Butyl acetate 23.64 16.84 9.18 8.76 11.73 3.84 3.56
Ethyl (4E)-4-decenoate 0.00 0.00 0.17 0.00 0.04 0.56 0.07
Ethyl 2-methylbutyrate 50.89 368.00 36.00 62.34 39.06 2.94 10.63

Ethyl acetate 31.81 29.17 15.88 13.09 10.02 8.72 5.70
Ethyl butanoate 16.59 26.92 8.00 9.26 10.75 2.58 2.71
Ethyl decanoate 0.14 0.00 2.07 0.46 0.45 2.67 0.72

Ethyl dodecanoate 0.91 0.00 2.60 0.88 1.44 2.69 0.98
Ethyl heptanoate 1.17 2.19 6.96 3.14 1.77 1.58 2.82

Ethyl hexadecanoate 12.19 13.62 16.05 9.10 8.22 11.00 2.36
Ethyl hexanoate 7.23 12.89 5.07 6.90 7.47 4.33 2.72
Ethyl isovalerate 11.84 120.99 33.97 14.43 15.00 0.00 10.79
Ethyl octanoate 0.56 0.26 1.59 0.59 0.32 0.64 0.55
Isoamyl acetate 9.36 5.84 3.21 2.92 3.10 1.27 0.99
Isobutyl acetate 152.96 59.59 24.70 40.69 26.57 6.75 9.93

Isobutyl butanoate 209.13 167.38 29.44 88.87 52.26 10.77 13.62
2-Phenylethyl acetate 5.88 4.07 2.70 2.68 2.90 0.44 0.91

methyl thioacetate 0.00 0.00 0.00 0.00 0.00 0.21 0.00
2-Methyl propanoate 0,89 0,00 1,16 1,13 0,46 0,00 0,44

The values reported represent the relative abundances of the specific subset of metabolites compared to the lager yeast strain (G10).



Fermentation 2018, 4, 15 10 of 16

3.3. Fermentation Performance

We compared the fermenting capacity of the strains with very strong volatile compound formation
to the lager yeast strain S. pastorianus WS34/70 and other S. cerevisiae strains. All strains were adjusted
to the same optical density prior to the start of fermentation to allow for comparison of the speed of
fermentation between strains. Fermentation rates were followed by measuring the CO2 release daily
(Figure 3). All strains were able to ferment the liquid within one week except for the W. anomalus
strains CBS 248; CBS 249 and CBS 261. However, in contrast to the other strains, the W. anomalus strains
showed an almost linear fermentation curve with equal amounts of CO2 released per day. During
fermentation the W. anomalus strains produced oily top layers and biofilms of cells. This oily phase
may have reduced the CO2 release as we observed the lowest pH in the W. anomalus fermentations
measured among all strains: for strain CBS 261 the pH reached 4.79 and for strain CBS 262 the pH was
4.59, while the liquids fermented by other yeast strains showed a pH of >5. This suggests that the
dissolved CO2 contributed to the acidification of the liquid in the W. anomalus fermentations. The most
rapid fermentations as represented by fast CO2 loss were observed with the S. cerevisiae and lager
beer production strains. Yet, in addition to the Wickerhamomyces strains, several other strains showed
prolonged CO2 loss, including P. kluyveri CBS 188 (Figure 3).
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Figure 3. Fermentation profiles of the selected strains representing the detected flavor diversity.
The CO2 release was measured daily for each individual strain (see Table 1 for the nomenclature of
strains). Fermentations were followed for 13 days.

For most of the strains we could observe a correlation between fermentation speed, residual
sugar concentration and ethanol production. The S. cerevisiae and lager yeast strains left 2–2.5% of
sugar in the medium, while the residual sugar in Candida and Pichia strains was between 3–3.5%.
Wickerhamomyces anomalus strains left 4.5–5% of sugars unfermented (Figure 4). Concomitantly,
S. cerevisiae and lager yeast strains produced the highest amount of alcohol (up to 8%) and the
W. anomalus strains only 4%.
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3.4. Growth on Other Carbon Sources and Temperatures

The selected species were analysed for growth at low (10 ◦C) and high (37 ◦C) temperatures
as well as for their ability to utilize maltose using serial-dilution plate assays. Growth at elevated
temperatures was mainly restricted to Saccharomyces and Zygosaccharomyces strains, while growth
at lower temperatures was often better in non-cerevisiae strains. Typically, all strains grew well
at intermediate temperatures. Lager beer fermentation relies on maltose utilization. However,
in this screening, good maltose utilization was restricted to lager yeast strains, with the exception
of Candida diversa CBS 4074 (Figure 5), which also showed very good growth on maltose plates and
Clavispora lusitaniae CBS 6936.

Fermentation 2018, 4, x  12 of 17 

 

 
Figure 4. Final sugar content of the selected strains at the end of fermentation. Sugar concentration 
was measured in °P after 13 days of fermentation. 

3.4. Growth on Other Carbon Sources and Temperatures 

The selected species were analysed for growth at low (10 °C) and high (37 °C) temperatures as 
well as for their ability to utilize maltose using serial-dilution plate assays. Growth at elevated 
temperatures was mainly restricted to Saccharomyces and Zygosaccharomyces strains, while growth at 
lower temperatures was often better in non-cerevisiae strains. Typically, all strains grew well at 
intermediate temperatures. Lager beer fermentation relies on maltose utilization. However, in this 
screening, good maltose utilization was restricted to lager yeast strains, with the exception of Candida 
diversa CBS 4074 (Figure 5), which also showed very good growth on maltose plates and Clavispora 
lusitaniae CBS 6936. 

 
Figure 5. Heat map displaying maltose utilization and growth at the indicated temperatures of the 
selected strains. 

Figure 5. Heat map displaying maltose utilization and growth at the indicated temperatures of the
selected strains.



Fermentation 2018, 4, 15 12 of 16

3.5. Utilization of Mixed Fermentations for Flavor Improvement

Co-fermentations are one way to improve the flavour composition of fermented beverages. We
plotted volatile compound formation of several candidate strains against lager yeast (Figure 6a).
This demonstrated the superior flavour-generation capacity of several strains, most notably of
W. anomalus. Therefore, we used the same nutrient-rich high Plato fermentation broth and inoculated
the Weihenstephan lager yeast WS34/70 in a 1:1 ratio with W. anomalus CBS 261. Volatiles of this mixed
fermentation were determined at the end of fermentation. This clearly demonstrated an enhancement
of ethyl hexadecanoate, isoamyl alcohol and 2-phenyl ethanol, improving the fruity flavour perception
of the fermented liquid (Figure 6b). W. anomalus CBS 261 is a very strong producer of ethyl acetate,
which was also pronounced in the co-fermentation.
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Figure 6. (A) Comparisons of selected volatiles of selected strains that produced exceptionally
high concentrations of organic volatiles with the lager yeast reference. Strains used were: Candida
diversa (CBS 4074, B4); Debaryomyces subglobosus (CBS 2659, B11); Pichia kluyveri (CBS 188, E7);
Saccharomyces cerevisiae (CBS 1250; E11); Wickerhamomyces anomalus (CBS 261, F10); Zygosaccharomyces
mellis (CBS 726, G4); Saccharomyces pastorianus (G10, reference). (B) Concentration of volatiles at the
end of a co-fermentation using Wickerhamomyces anomalus (CBS 261, F10) and the Weihenstephan lager
yeast (WS, Saccharomyces pastorianus G10, reference).
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4. Discussion

In our study we have screened non-Saccharomyces cerevisiae yeast biodiversity in order to identify
strains with more pronounced volatile compound formation than present in lager yeast strains.
Pronounced differences in aroma alcohol production were identified between S. cerevisiae and lager
yeast strains, as expected from a clean pilsner beer produced by lager yeasts versus the more complex
flavors produced by ale and wine yeasts. In our screening, we identified W. anomalus strains as the
most dominant flavor producers, which also included production of substantial amounts of acetic acid.
The formation of floating cell layers such as seen for the W. anomalus strains has been reported as a
typical phenomenon in stored wines [20]. Yeast biodiversity holds a plethora of strains that show useful
characteristics such as ethanol production and flavor formation. This requires a detailed evaluation
of the initially identified favorable strains under different conditions, particularly in co-fermentation
regimes [21]. It will be challenging to identify the most suitable co-fermentation setups, as flavor
profiles will certainly be influenced by different ratios of non-conventional yeasts versus standard
brewing strains.

In earlier studies, W. anomalus strains have been isolated from a range of cereal-based sources.
It has been reported from sourdoughs and was found as the dominating yeast in sourdough microbial
ecosystems next to S. cerevisiae. The prevalence of the fungus was associated with its osmotolerance and
increased acid tolerance in comparison to S. cerevisiae [22]. Furthermore, it was shown that W. anomalus
provides some antimicrobial activity, e.g., mycocin production, that can be used to prolong the shelf
life of bread [23,24]. Other Wickerhamomyces species have been put to use in baking using microbread
baking platforms. Specifically, bread obtained with Kazachstania gamospora and Wickerhamomyces
subpelliculosus provided added broader aroma profiles compared to control baker's yeast [25].

P. kluyveri CBS 188 produced a total of 41 volatiles during our fermentations. Yet, it was
outstanding in its ester profile, e.g., ethyl acetate, isoamyl acetate or phenethyl acetate that was
several folds higher than in the reference lager yeast strain WS34/70. P. kluyveri strains are found in
“wild ferments” of wine but it is also commercially available to boost flavour production through
sequential fermentations. P. kluyveri strains together with strains of K. marxianus were also presented
as potential starter yeasts for controlled cocoa fermentation [26].

Based on increased demand for natural flavors produced from yeasts, the use of non-conventional
yeasts as platform strains for the production of aroma volatile has gained attention. Hence, K. marxianus
was suggested as a cell factory for flavor and fragrance production based on several advantageous
traits, e.g., thermotolerance and the wide array of volatile molecules it produces [27]. We had one strain
of K. marxianus (CBS 1557) in our collection. However, this strain was as low in aroma-compound
production as our lager yeast reference. This indicates the need to obtain a larger collection of strains of
one species and also to analyse volatile compound formation under different nutritional regimes and
fermentation conditions [28]. It further requires the implementation of high-throughput screening tools
and assays to identify suitable strains, which was actually successfully shown for K. marxianus strains
producing ethyl acetate [29]. Additionally, it requires more effort to acquire genomic, transcriptomic
and metabolomic datasets of non-conventional yeasts in order to bridge the knowledge gap about
S. cerevisiae [12,30]. That said, our approach to screening non-conventional yeasts in non-industrial
fermentation broths only provides an initial glance of the volatile production capabilities of the tested
strains. These capabilities will certainly vary with fermentation and process conditions, particularly at
larger scales.

The strong interest in volatile-compound formation by non-conventional yeasts may also open
a new perspective on yeast ecology. Yeasts occur in diverse niches and interact with other microbes,
insects and plants. These interactions may present selective forces for the production of specific
volatile compounds. Interestingly, strains of Debaryomyces hansenii were shown to produce methyl
salicylate (MeS) as a major compound under very specific conditions using pine weevil (Hylobius abietis)
frass broth [31]. This compound essentially acts as a deterrent for pine weevil. In a follow-up case,
2-phenylethanol was identified as a strong anti-feedant compound against the pine weevil [32].
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Several of the strains we analyzed produced large amounts of 2-phenylethanol, including strains from
S. cerevisiae but most prominently the W. anomalus strains. W. anomalus strains are often isolated from
tree habitats, insects and insect frass [33]. Elucidating this fascinating interplay of yeasts, insects and
plants will provide substantial insight into yeast biology and ecology in the future.

The results obtained in this study indicate that yeast biodiversity harbors a large variety of strains
that could enter diverse beverage production pipelines and provide additional all-natural flavor
variants to improve the taste and sensory perception of lager beers and, beyond that, other fermented
beverages. We used a non-industrial platform to assay strains. In future research, more detailed
fermentations using specific industrial fermentation broths, e.g., wort, grape must, and other juices,
should be explored with non-conventional yeasts.

Supplementary Materials: The following are available online at www.mdpi.com/2311-5637/4/1/15/s1.
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