
fermentation

Article

Yeast Nanometric Scale Oscillations Highlights
Fibronectin Induced Changes in C. albicans

Anne-Céline Kohler 1,* , Leonardo Venturelli 1 , Abhilash Kannan 2, Dominique Sanglard 2,
Giovanni Dietler 1,3, Ronnie Willaert 3,4,5 and Sandor Kasas 1,2,6

1 Laboratoire de Physique de la Matière Vivante, EPFL, 1015 Lausanne, Switzerland;
leonardo.venturelli@epfl.ch (L.V.); giovanni.dietler@epfl.ch (G.D.); sandor.kasas@epfl.ch (S.K.)

2 Institute of Microbiology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland;
Abhilash.Kannan@chuv.ch (A.K.); Dominique.Sanglard@chuv.ch (D.S.)

3 International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO),
Vrije Universiteit Brussel, 1050 Brussels, Belgium; Ronnie.Willaert@vub.be

4 Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent
NanoMicrobiology (NAMI), 1050 Ixelles, Belgium

5 Department Bioscience Engineering, University Antwerp, 2000 Antwerp, Belgium;
Ronnie.Willaert@uantwerpen.be

6 Plateforme de Morphologie UFAM, CUMRL, University of Lausanne, 1015 Lausanne, Switzerland
* Correspondence: anne-celine.kohler@epfl.ch; Tel.: +41-216930464

Received: 18 December 2019; Accepted: 19 February 2020; Published: 21 February 2020
����������
�������

Abstract: Yeast resistance to antifungal drugs is a major public health issue. Fungal adhesion onto
the host mucosal surface is still a partially unknown phenomenon that is modulated by several actors
among which fibronectin plays an important role. Targeting the yeast adhesion onto the mucosal
surface could lead to potentially highly efficient treatments. In this work, we explored the effect of
fibronectin on the nanomotion pattern of different Candida albicans strains by atomic force microscopy
(AFM)-based nanomotion detection and correlated the cellular oscillations to the yeast adhesion
onto epithelial cells. Preliminary results demonstrate that strongly adhering strains reduce their
nanomotion activity upon fibronectin exposure whereas low adhering Candida remain unaffected.
These results open novel avenues to explore cellular reactions upon exposure to stimulating agents
and possibly to monitor in a rapid and simple manner adhesive properties of C. albicans.
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1. Introduction

Yeast biotechnology is a recent field where nanotechniques are used to manipulate and analyze
yeast cells and cell constituents at the nanoscale [1]. Among the nanotechniques, AFM-related
approaches played a major role in unveiling morphological, mechanical and biochemical properties
of yeast [2–4]. Recently, our team demonstrated that living cells attached onto a soft cantilever
induce nanometric scale oscillations (referred to as nanomotion) that stop as soon as the organism
dies [5]. Commercially available atomic force microscopes (AFM) or dedicated devices easily detect
these oscillations. Nanomotion detection has been applied to numerous biological samples such as
proteins, single organelles, and a plethora of living cells such as prokaryotes (bacteria) and eukaryotes
(fungal, vegetal and mammalian cells) [6]. The most straightforward application of the technique is
the ultra-rapid antibiotic sensitivity test (AST). AST can be performed within an hour as compared
to long-lasting traditional AST methods, which depend on the replication rate of the bacteria [7–9].
The test consists in attaching the organism of interest onto an AFM cantilever and monitoring its
oscillations as a function of time upon addition of antibiotics in the analysis chamber. It is worth noting
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that the nanometric scale oscillations do not only reflect the living or death state of the organisms but
also its activity [5,10].

Fungal infections are a major public health issue nowadays; it is estimated that every year fungi
infect about 1.2 billion people [11]. C. albicans is a common fungal pathogen that belongs to the human
microbiome of healthy individuals [12]. This commensal relationship is a complex interplay of candidial
and human factors. However, impairment of the host immunity or the normal host microbiota can lead
to C. albicans infection (candidiasis) [13]. C. albicans is the predominant cause of virtually all types of
candidiasis [14]. The first step of the infection is the adhesion of C. albicans onto the host. This step is an
essential determinant of pathogenesis, as it allows C. albicans to attach to host cells and to form biofilms
or to disseminate in the host blood vessels. The biofilm increases yeast cell resistance to antifungal
therapeutics and protects it from the host immune system [15]. C. albicans has developed multiple
ways to colonize and infect host cells and tissues. One such mechanism is the specific ligand–receptor
interaction through a whole range of adhesins displayed on the yeast cell wall [16–18]. These cell wall
proteins are capable of recognizing protein ligands [16], glycolipids [19–22] and carbohydrates [23–29]
on the host cells. Fibronectin is an important protein ligand of the host extracellular matrix (ECM)
that plays an essential role in C. albicans adhesion [30]. Furthermore, targeting fibronectin has shown
to alter C. albicans biofilm formation [31]. Therefore, a better understanding of the yeast–fibronectin
interaction could lead to novel therapeutic options to fight candidiasis.

In this work, we applied nanomotion analysis to monitor the oscillatory activity of C. albicans upon
exposure to fibronectin. We used an AFM-based nanomotion detector to follow the evolution of cellular
oscillations in the absence and the presence of fibronectin on strongly and poorly adherent C. albicans
cells. Interestingly, these two isolates reacted very differently to the interaction with fibronectin. These
preliminary results demonstrate the potential of nanomotion analysis to monitor ligand–receptor
interactions in a label free manner.

2. Materials and Methods

2.1. Yeast Strains

The C. albicans isolate 101 and CEC 3675 were kindly provided by Salomé Leibundgut and
Christophe D’Enfert laboratories [32], respectively. The yeasts were cultured in yeast-extracted
peptone-dextrose (YPD) medium (1% m/v yeast extract (Difco Laboratories, Fisher Scientific, Hampton,
NH, USA), 2% m/v peptone (Difco Laboratories, Fisher Scientific, Hampton, NH, USA) and 2% m/v
glucose (Sigma, St. Louis, MI, USA)) overnight at 30 ◦C with shaking (160 rpm).

2.2. Experimental Procedures

Rectangular tipless cantilevers (qp-CONT, NanoandMore GmbH, Wetzlar, Germany), with a
nominal spring constant of 0.1 N/m and an average resonant peak in liquids of 8 kHz, were coated
with 2 mg/mL of concanavalin A (Con A) (Sigma, St. Louis, MI, USA) for 30 min at room temperature.
After removing the excess of Con A, the yeast cells were placed in contact with the cantilever for 1 h at
room temperature to allow them to attach to its surface. Poorly attached C. albicans cells were removed
by washing gently with YPD medium. Finally, the C. albicans covered cantilever was inserted into the
analysis chamber containing 2 mL of filtered (0.2 µm syringe filter, Merck Millipore, Burlington, MA,
USA) YPD medium. The measurements were performed at room temperature in YPD medium and in
YPD medium containing 25 µg/mL of fibronectin (Sigma, USA). Fibronectin was directly added inside
the chip reservoir. For the experiments performed with antifungals, caspofungin (Sigma, USA) was
diluted in the YPD present in the analysis chamber to reach a final concentration of 100 µg/mL.
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2.3. Nanomotion Detector

The cantilever oscillations were collected in real time using an in-house developed nanomotion
detection device. The system relies on a laser-based signal transduction as typically used in commercial
AFMs. A typical experiment lasted for 2 h. The control experiments were carried out for at least 4 h.

2.4. Software and Nanomotion Analysis

The cantilever oscillations were recorded and saved at 20 kHz using a USB-4431 DAQ card
(National Instruments, Austin, TX, USA). The data acquisition program was developed in LabView.
A dedicated Python program was used to process the recorded data and to display the deflection
of the cantilever as a function of time. The software first removes the low frequency cantilever
displacement signal by calculating a first order fit of the raw signal (deflection of the cantilever) by
taking 20 seconds-long window frames. The obtained fit is then subtracted from the raw signal to
remove thermally induced cantilever deflection. The thermal drift essentially occurs at the beginning
of the experiment and during the fluid exchange procedures. The thermal drift free signal is further
processed to obtain its variance in 10 seconds-window frames.

2.5. Viability Assay

Cells were placed inside a commercially available microfluidic chip (Ibidi, Planegg, Germany),
and stained with calcofluor white (Sigma, USA), according to the manufacturer’s instructions. To detect
dead cells, propidium iodide (PI, Sigma, USA) was added to the YPD medium and the fluorescence of
the yeast cells was recorded using an Axiovert microscope (Zeiss, Oberkochen, Germany).

2.6. Adhesion Assay

Adherence of C. albicans to TR146 cells was measured using the protocols previously
described [33,34] with slight modifications (Figure S1). TR146 cells grown as monolayers in 6-well
plates were incubated with 100 C. albicans cells for 20 min at 37 ◦C. The supernatant was carefully
removed and spread on YPD agar plates to determine the number of non-adherent fungal cells. The
adherent fungal cells that were left behind in the 6-well plates were rinsed with PBS and were overlaid
with melted Wort agar at 40 ◦C. The plates were incubated at 30 ◦C for 36 h to count the colonies.
Adherence was determined as the ratio of the number of colonies grown on Wort agar to the number
of colonies grown on Wort agar and the number of colonies grown from the culture supernatant.

2.7. Statistical Analysis

Statistical analysis of nanomotion experiments were performed with the Python package Scipy.
We performed the non-parametric Mann–Whitney U test for the three independent replicates. We
used standard student t-test to process the adhesion assay on three independent replicates using the
Graphpad Prism software.

3. Results

To assess a putative differential reaction of strongly and weakly interacting C. albicans to fibronectin,
we quantified the adhesion of two different isolates, 101 and CEC3675, on oral keratinocytes (TR 146).
As shown in Figure 1 isolate 101 was measured to have a significantly higher adhesion compared to
isolate CEC3675.

To investigate the C. albicans–fibronectin interaction we used an in house nanomotion detector
depicted in Figure 2A. The set up consists in an analysis chamber filled with liquid (in our case YPD)
containing the cantilever to which yeast cells are attached (Figure 2B). The cantilever oscillations were
recorded (Figure 2C) and processed to display the signal variance as a function of time (Figure 2D).
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Figure 1. C. albicans isolates 101 and CEC3675 adhere differently to oral keratinocytes. Percentage of 
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represents p < 0.05. 
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Figure 2. Nano-mechanical sensor system. (A) Representative image of a cantilever with attached C 
albicans cells. Scale bar 40 µm. (B) Schematic of the experimental system and data collection. (1) 
Liquids to be injected into the analysis chamber. In our case YPD, YPD containing fibronectin, and 
YPD containing caspofungin. (2) Analysis chamber with the AFM cantilever and C. albicans attached 
onto its surface (green circles). (3) Super luminescent diode. (4) Four-segment photodiode. (5) Optical 
microscopy with camera. (6) Liquid waste. (7) In-house dedicated electronics and National 
Instruments data acquisition card. (8) Desktop computer. (C). The collected raw data are processed; 
and (D). analyzed using the variance of the signal. 

Figure 1. C. albicans isolates 101 and CEC3675 adhere differently to oral keratinocytes. Percentage of
adherence of both isolates. Statistical analysis (n = 3) was done using standard t-test. The asterisk
represents p < 0.05.
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Figure 2. Nano-mechanical sensor system. (A) Representative image of a cantilever with attached
C albicans cells. Scale bar 40 µm. (B) Schematic of the experimental system and data collection.
(1) Liquids to be injected into the analysis chamber. In our case YPD, YPD containing fibronectin,
and YPD containing caspofungin. (2) Analysis chamber with the AFM cantilever and C. albicans
attached onto its surface (green circles). (3) Super luminescent diode. (4) Four-segment photodiode.
(5) Optical microscopy with camera. (6) Liquid waste. (7) In-house dedicated electronics and National
Instruments data acquisition card. (8) Desktop computer. (C). The collected raw data are processed;
and (D). analyzed using the variance of the signal.

Using this system, we monitored the nanomotion pattern of C. albicans isolates 101 and CEC3675
in the absence and presence of fibronectin (Figure 3). Before addition of fibronectin, both isolates
behaved similarly (Figure 3B). However, in the presence of fibronectin, nanomotion activity (variance)
of isolate 101 drastically decreased (from 0.9 ± 0.5 to 0.3 ± 0.1) (Figure 3). In contrast, isolate CEC3675
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did not present a significant decrease. To confirm that the drop of signal was not due to a change in
the temperature, nor convective currents that can appear upon addition of a liquid in the analysis
chamber, we performed control experiments, simultaneously, with another nanomotion detector. These
experiments consisted in injecting the same quantity of medium, instead of fibronectin, into the analysis
chamber. The obtained results showed no significant difference in the nanomotion pattern, for both
isolates, upon addition of YPD media (Figure S2). Additionally, we assessed the number of cells
present on the cantilever before and after the experiment to determine if the reduced signal was caused
by cells being detached from the cantilever. The analysis of the images taken by the optical microscope
located above the nanomotion detector (as depicted in the schematic in Figure 2A) confirmed that no
cells detached from the cantilever throughout the experiments (Figure S3).
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Figure 3. C. albicans isolate 101 and CEC 3675 react differently to fibronectin. (A). Representative graph
of the normalized variance of isolate 101 in YPD (blue) and in YPD with fibronectin (orange). The
decrease of the normalized variance is clearly visible between the two conditions. (B). The mean of
the normalized variance (experiment in triplicate) represented as a bar plot for isolate 101 compared
to isolate CEC 3675. Error bars are the confidence of intervals. Statistical analyses were done using
Mann–Whitney U test, the asterisk represents p < 0.05.

To further exclude another cause of the decrease of the nanomotion signal for isolate 101, such as
premature cell death, we monitored C. albicans viability by nanomotion and fluorescence microscopy in
the absence and presence of fibronectin. Eventually the cells were killed by the antifungal caspofungin.
As shown in Figure 3A, the variance of the nanomotion signal drastically dropped after the drug
injection. The fluorescent viability test did not show any effect of fibronectin on the cellular viability
as it can be noticed in Figure 4B. Similarly, fibronectin also did not have any effect on the viability of
isolate CEC3675 (Figure S4).
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Figure 4. Viability assay of C. albicans. (A). Nanomotion signal of C. albicans isolate 101 in the absence
(blue curve) and presence of fibronectin (orange curve), and after killing the cells by the antifungal
caspofungin (green curve). (B). Representative fluorescence images of C. albicans isolate 101 in the
absence (left panel) and presence of fibronectin (middle panel), and after killing (right panel). Scale bar
5 µm.

4. Discussion

C. albicans infection is a multistep process, consisting in the binding of C. albicans on epithelial
cells. In a first adhesion step, the C. albicans adhesins of the agglutinin-like sequence (Als) family bind
to ECM proteins of the host such as fibronectin [35,36], laminin and collagen. The attachment of the
yeast cell to the host is followed by the penetration and transmigration of hypha into host cells, which
then leads to vascular dissemination as soon the hypha reaches blood vessels. In this study we only
explored the interaction of fibronectin with the yeast form. Adhesins playing a role in the planktonic
C. albicans adhesion are the Als family members Als1 [27] and Als5 [37], Eap1 [38–40], Csh1 (cell surface
hydrophobicity) [41,42], Ihd1 [43,44] and members of the SAP family [45–47]. It has been shown that
Als1, Als5, and Csh1 interacts with fibronectin; Sap9 and Sap10 can interact with the ECM proteins
collagen and vimentin. It has not yet been demonstrated that fibronectin is a ligand for Sap9/10, Eap1
and Ihd1.

Here, we used nanomotion detection to monitor the oscillation pattern of planktonic C. albicans
cells upon exposure to fibronectin. Two different clinical isolates that showed a different adhesive
phenotype, were used. The isolate 101 adhered significantly stronger to the host epithelial cells
compared to isolate CEC3675. Nanomotion experiments showed that fibronectin affects isolate 101
significantly more than CEC3675. This drop of the nanomotion signal indicates a modification of the
cellular activity upon fibronectin—C. albicans interaction. These results suggest that the initiation of
adhesion related signaling in the yeast cell upon fibronectin attachment is mediated by the interaction
with adhesins. Potential adhesion candidates that have been shown to interact with fibronectin are
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Als1, Als3 and Csh1. The complete elucidation of the molecular mechanisms involved in the process
are still unclear and deserve further research. We plan to investigate which specific adhesin(s) is (are)
involved in the observed activity reduction. Additionally, the effect of other ligands such as laminin,
collagen IV, fibrinogen and gelatin [28,48–50] should also be investigated.

This work demonstrated the ability of nanomotion detection to monitor in real time and in a
label-free manner cellular activity changes induced by interacting ligands. Activity changes induced by
increasing glucose concentration were observed for Escherichia coli in a previous study [5]. This technique
opens novel avenues to detect cellular activation or inhibition induced by ligand–receptor interactions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-5637/6/1/28/s1,
Figure S1: Schematic representation of the adhesion assay protocol, Figure S2: Effect of the injection of YPD
medium in the analysis chamber, Figure S3: Density of yeast cells on the cantilever, Figure S4: Viability assay of
isolate CEC3675.

Author Contributions: Conceptualization, A.-C.K.; methodology, A.-C.K. and L.V.; software, A.-C.K.; validation,
A.-C.K., L.V. and A.K.; formal analysis A.-C.K., investigation, A.-C.K., L.V., A.K.; resources, S.K., writing—original
draft preparation, S.K. and A.-C.K.; writing—review and editing all the authors; visualization, A.-C.K., A.K.;
supervision, A.-C.K., S.K.; project administration, S.K., G.D.; funding acquisition, S.K., G.D., D.S., R.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen
Forschung 200021-144321, CRSII5_173863 and 407240_167137, the Gebert Rüf Stiftung GRS-024/14, NASA
NNH16ZDA001N-CLDTCH, EPFL and ESA PRODEX project Yeast Bioreactor.

Acknowledgments: The authors thanks C. d’Enfert for providing the Candida albicans strains and S. Leibundgut
for highly constructive discussions. The technical assistance of Danielle Brandalise is acknowledged. The Belgian
Federal Science Policy Office (Belspo) and the European Space Agency (ESA) PRODEX program supported this
work. The Research Council of the Vrije Universiteit Brussel (Belgium) and the University of Ghent (Belgium)
are acknowledged to support the Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), and the
International Joint Research Group (IJRG) VUB-EPFL BioNanotechnology & NanoMedicine (NANO).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Willaert, R.; Kasas, S.; Devreese, B.; Dietler, G. Yeast Nanobiotechnology. Fermentation 2016, 2, 18. [CrossRef]
2. Formosa-Dague, C.; Duval, R.E.; Dague, E. Cell biology of microbes and pharmacology of antimicrobial

drugs explored by Atomic Force Microscopy. Semin. Cell Dev. Biol. 2018, 73, 165–176. [CrossRef]
3. Alsteens, D.; Müller, D.J.; Dufrêne, Y.F. Multiparametric Atomic Force Microscopy Imaging of Biomolecular

and Cellular Systems. Acc. Chem. Res. 2017, 50, 924–931. [CrossRef] [PubMed]
4. Kasas, S.; Stupar, P.; Dietler, G. AFM contribution to unveil pro- and eukaryotic cell mechanical properties.

Semin. Cell Dev. Biol. 2018, 73, 177–187. [CrossRef] [PubMed]
5. Longo, G.; Alonso-Sarduy, L.; Rio, L.M.; Bizzini, A.; Trampuz, A.; Notz, J.; Dietler, G.; Kasas, S. Rapid detection

of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nanotechnol.
2013, 8, 522–526. [CrossRef]

6. Kohler, A.C.; Venturelli, L.; Longo, G.; Dietler, G.; Kasas, S. Nanomotion detection based on atomic force
microscopy cantilevers. Cell Surf. 2019, 5, 100021. [CrossRef]

7. Villalba, M.I.; Stupar, P.; Chomicki, W.; Bertacchi, M.; Dietler, G.; Arnal, L.; Vela, M.E.; Yantorno, O.; Kasas, S.
Nanomotion Detection Method for Testing Antibiotic Resistance and Susceptibility of Slow-Growing Bacteria.
Small 2018, 14, 1702671. [CrossRef]

8. Stupar, P.; Opota, O.; Longo, G.; Prod’hom, G.; Dietler, G.; Greub, G.; Kasas, S. Nanomechanical sensor
applied to blood culture pellets: A fast approach to determine the antibiotic susceptibility against agents of
bloodstream infections. Clin. Microbiol. Infect. 2017, 23, 400–405. [CrossRef]

9. Mustazzolu, A.; Venturelli, L.; Dinarelli, S.; Brown, K.; Floto, R.A.; Dietler, G.; Fattorini, L.; Kasas, S.;
Girasole, M.; Longo, G. A rapid unravelling of mycobacterial activity and of their susceptibility to antibiotics.
Antimicrob. Agents Chemother. 2019, 63, 02194-18. [CrossRef]

10. Kasas, S.; Ruggeri, F.S.; Benadiba, C.; Maillard, C.; Stupar, P.; Tournu, H.; Dietler, G.; Longo, G. Detecting
nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA 2015, 112, 378–381. [CrossRef]

http://www.mdpi.com/2311-5637/6/1/28/s1
http://dx.doi.org/10.3390/fermentation2040018
http://dx.doi.org/10.1016/j.semcdb.2017.06.022
http://dx.doi.org/10.1021/acs.accounts.6b00638
http://www.ncbi.nlm.nih.gov/pubmed/28350161
http://dx.doi.org/10.1016/j.semcdb.2017.08.032
http://www.ncbi.nlm.nih.gov/pubmed/28830743
http://dx.doi.org/10.1038/nnano.2013.120
http://dx.doi.org/10.1016/j.tcsw.2019.100021
http://dx.doi.org/10.1002/smll.201702671
http://dx.doi.org/10.1016/j.cmi.2016.12.028
http://dx.doi.org/10.1128/AAC.02194-18
http://dx.doi.org/10.1073/pnas.1415348112


Fermentation 2020, 6, 28 8 of 9

11. Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling human fungal infections. Science 2012, 336, 647. [CrossRef]
[PubMed]

12. Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M.
Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog.
2010, 6, e1000713. [CrossRef] [PubMed]

13. Rupp, S. Interactions of the fungal pathogen Candida albicans with the host. Future Microbiol. 2007, 2,
141–151. [CrossRef] [PubMed]

14. Filler, S.G.; Sheppard, D.C. Fungal Invasion of Normally Non-Phagocytic Host Cells. PLoS Pathog. 2006, 2,
e129. [CrossRef] [PubMed]

15. Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69,
71–92. [CrossRef] [PubMed]

16. Chaffin, W.L.; López-Ribot, J.L.; Casanova, M.; Gozalbo, D.; Martínez, J.P. Cell Wall and Secreted Proteins
ofCandida albicans: Identification, Function, and Expression. Microbiol. Mol. Biol. Rev. 1998, 62, 130–180.
[CrossRef]

17. Sundstrom, P. Adhesion in Candida spp. Cell. Microbiol. 2002, 4, 461–469. [CrossRef]
18. Filler, S.G. Candida-host cell receptor-ligand interactions. Curr. Opin. Microbiol. 2006, 9, 333–339. [CrossRef]
19. Ghannoum, M.A.; Burns, G.R.; Abu Elteen, K.; Radwan, S.S. Experimental evidence for the role of lipids in

adherence of Candida spp. to human buccal epithelial cells. Infect. Immun. 1986, 54, 189–193. [CrossRef]
20. Jimenez-Lucho, V.; Ginsburg, V.; Krivan, H.C. Cryptococcus neoformans, Candida albicans, and other fungi

bind specifically to the glycosphingolipid lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), a possible adhesion
receptor for yeasts. Infect. Immun. 1990, 58, 2085–2090. [CrossRef]

21. Yu, L.; Lee, K.K.; Sheth, H.B.; Lane-Bell, P.; Srivastava, G.; Hindsgaul, O.; Paranchych, W.; Hodges, R.S.;
Irvin, R.T. Fimbria-mediated adherence of Candida albicans to glycosphingolipid receptors on human buccal
epithelial cells. Infect. Immun. 1994, 62, 2843–2848. [CrossRef] [PubMed]

22. Cameron, B.J.; Douglas, L.J. Blood group glycolipids as epithelial cell receptors for Candida albicans.
Infect. Immun. 1996, 64, 891–896. [CrossRef] [PubMed]

23. Sandin, R.L.; Rogers, A.L.; Patterson, R.J.; Beneke, E.S. Evidence for mannose-mediated adherence of Candida
albicans to human buccal cells in vitro. Infect. Immun. 1982, 35, 79–85. [CrossRef] [PubMed]

24. Critchley, I.A.; Douglas, L.J. Role of glycosides as epithelial cell receptors for Candida albicans. J. Gen.
Microbiol. 1987, 133, 637–643. [CrossRef]

25. Macura, A.B.; Tondyra, E. Influence of some carbohydrates and concanavalin A on the adherence of Candida
albicans in vitro to buccal epithelial cells. Zentralbl. Bakteriol. 1989, 272, 196–201. [CrossRef]

26. Brassart, D.; Woltz, A.; Golliard, M.; Neeser, J.R. In vitro inhibition of adhesion of Candida albicans
clinical isolates to human buccal epithelial cells by Fuc alpha 1—-2Gal beta-bearing complex carbohydrates.
Infect. Immun. 1991, 59, 1605–1613. [CrossRef]

27. Donohue, D.S.; Ielasi, F.S.; Goossens, K.V.Y.; Willaert, R.G. The N-terminal part of Als1 protein from Candida
albicans specifically binds fucose-containing glycans. Mol. Microbiol. 2011, 80, 1667–1679. [CrossRef]

28. Ielasi, F.S.; Alioscha-Perez, M.; Donohue, D.; Claes, S.; Sahli, H.; Schols, D.; Willaert, R.G. Lectin-glycan
interaction network-based identification of host receptors of microbial pathogenic adhesins. MBio 2016, 7.
[CrossRef]

29. Everest-Dass, A.V.; Kolarich, D.; Pascovici, D.; Packer, N.H. Blood group antigen expression is involved in C.
albicans interaction with buccal epithelial cells. Glycoconj. J. 2017, 34, 31–50. [CrossRef] [PubMed]

30. Calderone, R.A.; Scheld, W.M. Role of fibronectin in the pathogenesis of candidal infections. Rev. Infect. Dis.
1987, 9, S400–S403. [CrossRef]

31. Nett, J.E.; Cabezas-Olcoz, J.; Marchillo, K.; Mosher, D.F.; Andes, D.R. Targeting fibronectin to disrupt in vivo
Candida albicans biofilms. Antimicrob. Agents Chemother. 2016, 60, 3152–3155. [CrossRef] [PubMed]

32. Ropars, J.; Maufrais, C.; Diogo, D.; Marcet-Houben, M.; Perin, A.; Sertour, N.; Mosca, K.; Permal, E.; Laval, G.;
Bouchier, C.; et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans.
Nat. Commun. 2018, 9, 2253. [CrossRef] [PubMed]

33. Murciano, C.; Moyes, D.L.; Runglall, M.; Tobouti, P.; Islam, A.; Hoyer, L.L.; Naglik, J.R. Evaluation of the Role
of Candida albicans Agglutinin-Like Sequence (Als) Proteins in Human Oral Epithelial Cell Interactions.
PLoS ONE 2012, 7, e33362. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1222236
http://www.ncbi.nlm.nih.gov/pubmed/22582229
http://dx.doi.org/10.1371/journal.ppat.1000713
http://www.ncbi.nlm.nih.gov/pubmed/20072605
http://dx.doi.org/10.2217/17460913.2.2.141
http://www.ncbi.nlm.nih.gov/pubmed/17661651
http://dx.doi.org/10.1371/journal.ppat.0020129
http://www.ncbi.nlm.nih.gov/pubmed/17196036
http://dx.doi.org/10.1146/annurev-micro-091014-104330
http://www.ncbi.nlm.nih.gov/pubmed/26488273
http://dx.doi.org/10.1128/MMBR.62.1.130-180.1998
http://dx.doi.org/10.1046/j.1462-5822.2002.00206.x
http://dx.doi.org/10.1016/j.mib.2006.06.005
http://dx.doi.org/10.1128/IAI.54.1.189-193.1986
http://dx.doi.org/10.1128/IAI.58.7.2085-2090.1990
http://dx.doi.org/10.1128/IAI.62.7.2843-2848.1994
http://www.ncbi.nlm.nih.gov/pubmed/8005674
http://dx.doi.org/10.1128/IAI.64.3.891-896.1996
http://www.ncbi.nlm.nih.gov/pubmed/8641797
http://dx.doi.org/10.1128/IAI.35.1.79-85.1982
http://www.ncbi.nlm.nih.gov/pubmed/7033143
http://dx.doi.org/10.1099/00221287-133-3-637
http://dx.doi.org/10.1016/S0934-8840(89)80007-6
http://dx.doi.org/10.1128/IAI.59.5.1605-1613.1991
http://dx.doi.org/10.1111/j.1365-2958.2011.07676.x
http://dx.doi.org/10.1128/mBio.00584-16
http://dx.doi.org/10.1007/s10719-016-9726-7
http://www.ncbi.nlm.nih.gov/pubmed/27639389
http://dx.doi.org/10.1093/clinids/9.Supplement_4.S400
http://dx.doi.org/10.1128/AAC.03094-15
http://www.ncbi.nlm.nih.gov/pubmed/26902759
http://dx.doi.org/10.1038/s41467-018-04787-4
http://www.ncbi.nlm.nih.gov/pubmed/29884848
http://dx.doi.org/10.1371/journal.pone.0033362
http://www.ncbi.nlm.nih.gov/pubmed/22428031


Fermentation 2020, 6, 28 9 of 9

34. Schönherr, F.A.; Sparber, F.; Kirchner, F.R.; Guiducci, E.; Trautwein-Weidner, K.; Gladiator, A.; Sertour, N.;
Hetzel, U.; Le, G.T.T.; Pavelka, N.; et al. The intraspecies diversity of C. albicans triggers qualitatively and
temporally distinct host responses that determine the balance between commensalism and pathogenicity.
Mucosal Immunol. 2017, 10, 1335–1350. [CrossRef] [PubMed]

35. Skerl, K.G.; Calderone, R.A.; Segal, E.; Sreevalsan, T.; Scheld, W.M. In vitro binding of Candida albicans yeast
cells to human fibronectin. Can. J. Microbiol. 1984, 30, 221–227. [CrossRef] [PubMed]

36. Douglas, L.J. Adhesin—Receptor interactions in the attachment of Candida albicans to host epithelial cells.
Can. J. Bot. 1995, 73, 1147–1153. [CrossRef]

37. Alsteens, D.; Beaussart, A.; Derclaye, S.; El-Kirat-Chatel, S.; Park, H.R.; Lipke, P.N.; Dufrêne, Y.F. Single-cell
force spectroscopy of Als-mediated fungal adhesion. Anal. Methods 2013, 5, 3657–3662. [CrossRef] [PubMed]

38. Li, F.; Palecek, S.P. EAP1, a Candida albicans Gene Involved in Binding Human Epithelial Cells. Eukaryot.
Cell 2003, 2, 1266–1273. [CrossRef] [PubMed]

39. Li, F.; Svarovsky, M.J.; Karlsson, A.J.; Wagner, J.P.; Marchillo, K.; Oshel, P.; Andes, D.; Palecek, S.P. Eap1p,
an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 2007, 6,
931–939. [CrossRef] [PubMed]

40. Li, F.; Palecek, S.P. Distinct domains of the Candida albicans adhesin EAP1 p mediate cell-cell and cell-substrate
interactions. Microbiology 2008, 154, 1193–1203. [CrossRef]

41. Hooshdaran, M.Z.; Barker, K.S.; Hilliard, G.M.; Kusch, H.; Morschhäuser, J.; Rogers, P.D. Proteomic analysis
of azole resistance in Candida albicans clinical isolates. Antimicrob. Agents Chemother. 2004, 48, 2733–2735.
[CrossRef] [PubMed]

42. Singleton, D.R.; Fidel, P.L.; Wozniak, K.L.; Hazen, K.C. Contribution of cell surface hydrophobicity protein
1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. FEMS Microbiol. Lett. 2005, 244,
373–377. [CrossRef] [PubMed]

43. de Groot, P.W.J.; Hellingwerf, K.J.; Klis, F.M. Genome-wide identification of fungal GPI proteins. Yeast 2003,
20, 781–796. [CrossRef] [PubMed]

44. McCall, A.D.; Pathirana, R.U.; Prabhakar, A.; Cullen, P.J.; Edgerton, M. Candida albicans biofilm development
is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 2019, 5,
21. [CrossRef]

45. Watts, H.; Cheah, F.S.; Hube, B.; Sanglard, D.; Gow, N.A. Altered adherence in strains of Candida albicans
harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol. Lett. 1998, 159, 129–135.
[CrossRef]

46. Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans Secreted Aspartyl Proteinases in Virulence and
Pathogenesis. Microbiol. Mol. Biol. Rev. 2003, 67, 400–428. [CrossRef]

47. Kumar, R.; Breindel, C.; Saraswat, D.; Cullen, P.J.; Edgerton, M. Candida albicans Sap6 amyloid regions
function in cellular aggregation and zinc binding, and contribute to zinc acquisition. Sci. Rep. 2017, 7, 1–15.
[CrossRef]

48. Klotz, S.A.; Gaur, N.K.; Lake, D.F.; Chan, V.; Rauceo, J.; Lipke, P.N. Degenerate peptide recognition by
Candida albicans adhesins Als5p and Als1p. Infect. Immun. 2004, 72, 2029–2034. [CrossRef]

49. Sheppard, D.C.; Yeaman, M.R.; Welch, W.H.; Phan, Q.T.; Fu, Y.; Ibrahim, A.S.; Filler, S.G.; Zhang, M.;
Waring, A.J.; Edwards, J.E. Functional and structural diversity in the Als protein family of Candida albicans.
J. Biol. Chem. 2004, 279, 30480–30489. [CrossRef]

50. Argimón, S.; Wishart, J.A.; Leng, R.; Macaskill, S.; Mavor, A.; Alexandris, T.; Nicholls, S.; Knight, A.W.;
Enjalbert, B.; Walmsley, R.; et al. Developmental regulation of an adhesin gene during cellular morphogenesis
in the fungal pathogen Candida albicans. Eukaryot. Cell 2007, 6, 682–692. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/mi.2017.2
http://www.ncbi.nlm.nih.gov/pubmed/28176789
http://dx.doi.org/10.1139/m84-033
http://www.ncbi.nlm.nih.gov/pubmed/6370399
http://dx.doi.org/10.1139/b95-371
http://dx.doi.org/10.1039/c3ay40473k
http://www.ncbi.nlm.nih.gov/pubmed/23956795
http://dx.doi.org/10.1128/EC.2.6.1266-1273.2003
http://www.ncbi.nlm.nih.gov/pubmed/14665461
http://dx.doi.org/10.1128/EC.00049-07
http://www.ncbi.nlm.nih.gov/pubmed/17416898
http://dx.doi.org/10.1099/mic.0.2007/013789-0
http://dx.doi.org/10.1128/AAC.48.7.2733-2735.2004
http://www.ncbi.nlm.nih.gov/pubmed/15215138
http://dx.doi.org/10.1016/j.femsle.2005.02.010
http://www.ncbi.nlm.nih.gov/pubmed/15766793
http://dx.doi.org/10.1002/yea.1007
http://www.ncbi.nlm.nih.gov/pubmed/12845604
http://dx.doi.org/10.1038/s41522-019-0094-5
http://dx.doi.org/10.1111/j.1574-6968.1998.tb12851.x
http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003
http://dx.doi.org/10.1038/s41598-017-03082-4
http://dx.doi.org/10.1128/IAI.72.4.2029-2034.2004
http://dx.doi.org/10.1074/jbc.M401929200
http://dx.doi.org/10.1128/EC.00340-06
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Yeast Strains 
	Experimental Procedures 
	Nanomotion Detector 
	Software and Nanomotion Analysis 
	Viability Assay 
	Adhesion Assay 
	Statistical Analysis 

	Results 
	Discussion 
	References

