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Abstract: Native microorganisms present on grapes can influence final wine quality. Chambourcin is
the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures
and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from
spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based
methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out
of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri,
P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and
ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol
and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of
candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with
wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast,
Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone
associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a
group of esters and acetals associated to fruity and herbaceous aroma. Microbial and chemical char-
acterization of non-Saccharomyces yeasts presents an exciting approach to enhance flavor complexity
and regionality of hybrid wines.

Keywords: wine; hybrid grapes; fermentation; non-Saccharomyces yeast

1. Introduction

Saccharomyces cerevisiae has been widely applied to many fermentation processes
including baking, winemaking, and brewing for thousands of years [1]. High tolerance
of glucose and ethanol, and ability to convert sugars to alcohol in fermentation makes
S. cerevisiae important for alcoholic beverages [2]. In winemaking, commercial strains of
S. cerevisiae are selected for their efficient and reliable fermentation capabilities especially
important in producing final wines that are consistent in taste and aroma. Although
commercial S. cerevisiae yeasts are common in winemaking, there is increasing interest in
using non-Saccharomyces yeasts (also known as native ‘wild’ yeasts) during early stages
of wine fermentation. Previous studies demonstrate that unique physiological properties
of certain non-Saccharomyces yeast strains can influence resulting wine such as alcohol
levels and volatile metabolite profile [3–7]. For example, Metschnikowia pulcherrima and
Torulaspora delbrueckii were able to produce 0.28 and 0.3 g ethanol/g sugar, respectively,
compared to S. cerevisiae at 0.46 g ethanol/g sugar [8]. Decreased ethanol levels in wines
is favorable from a regulatory and health-related perspective [9]. Coinoculation of non-
Saccharomyces yeasts such as Hanseniaspora uvarum and Starmerella bacillaris were able to
enhance aromatic profile by producing higher alcohols that correspond to floral odor (i.e., β-
phenylethyl alcohol) [10–12]. β-phenylethyl alcohol is an important phenolic higher alcohol
in wine and consumers have responded favorably to richer, fruitier, and more complex
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styles of wine [9,13]. Thus, targeted use of non-Saccharomyces yeasts through sequential or
coinoculation can favorably impact physicochemical properties that determine quality of
final wines.

The composition, distribution, and abundance of non-Saccharomyces yeasts are affected
by environmental factors such as weather, soil, rainfall, and winemaking practices [14].
Among diverse non-Saccharomyces yeasts present within vineyards and winery environ-
ments, Hanseniaspora spp., Pichia spp., and Candida spp. are dominant yeast populations
that have been previously reported to contribute to the initial stages of fermentation and
improve the organoleptic characteristics of final wine [15]. To date, most studies that char-
acterize the diversity of non-Saccharomyces yeasts have been associated with Vitis vinifera
varieties. Much is still unknown relative to how microbial populations present on hybrid
grapes affect final wine quality. Hybrid grape varieties or also known as interspecific
varieties have been of recent interest due to their versatile characteristics related to the
ability to tolerate extreme cold weathers and increased disease resistance [16]. For example,
Marquette (cross between two hybrids, MN 1094× Ravat 262) is resistant to downy mildew
and cold temperature at −34 ◦C [17]. Chambourcin (Joannès Seyve × Seibel 5455) is a
French–American hybrid grape varietal and is the most abundant hybrid grape grown in
Pennsylvania, USA. Chambourcin grapes have been shown to tolerate cold temperatures
(−25 ◦C) and fungal diseases such as grey rot caused by Botrytis cinerrea [17]. Therefore,
hybrid grapes could be used as an approach to decrease risks of wine faults.

During the initial and early stages of winemaking, sulfur dioxide (SO2) and ethanol are
critical intrinsic factors that can directly impact the diversity and abundance of microbial
populations including non-Saccharomyces yeasts. The addition of SO2 is recommended
for protection against spoilage fungi or bacteria. Therefore, one important characteristic
of wine yeasts is the ability to tolerate and grow in varying levels of sulfites during
winemaking. On the other hand, tolerance of wine yeasts to increasing concentrations of
ethanol during alcoholic fermentation is also a prerequisite for winemaking. Generally, red
wines contain between 12% and 14% of ethanol and commercial strains of S. cerevisiae have
been reported to be able to tolerate up to 13% ethanol [18]. However, depending on the
yeast strain, cell growth and viability can be inhibited by high ethanol concentrations, and
thus limit fermentation productivity and ethanol yield [19–22]. Therefore, physiological
properties of yeast strains such as SO2 and ethanol tolerance is important to support the
use of non-Saccharomyces yeasts in winemaking applications.

Wine flavor is a complex interaction of nonvolatile and volatile chemical constituents
that contribute to taste and smell. Certain core compounds such as ethanol, glycerol, or-
ganic acids, and residual sugars contribute to the primary taste of wine. Sensory panelists
perceive these core nonvolatile compounds as a mouth-warming effect, viscosity, sourness,
and sweetness. These core compounds are fundamental components of wine which an
individual experiences via sense [23]. On the other hand, volatile compounds in wine are
composed of hundreds of different compounds with concentrations ranging from 10−1 to
10−10 g/kg typically perceived as wine aroma [24]. Wine associated volatile metabolites are
a result of three processes, (1) metabolism of grape-derived compounds into active aroma
compounds, (2) biosynthesis of fermentation-derived metabolites, and (3) post-fermentation
practice-derived metabolites such as barrel aging [25]. Previous literature have identified
methoxypyrazines, C13-norisoprenoids, volatile sulfur compounds, and terpenes as the major
contribution to primary aroma, and volatile fatty acids, higher alcohols, esters, and aldehydes
as contribution to secondary aroma [26,27]. However, the balance and interaction of these
chemical compounds determine the wine quality. The biosynthesis of these compounds
depends on the microorganism present in winemaking. Therefore, in order to isolate and
identify novel non-Saccharomyces yeast strains for applications in winemaking, it is critical to
analyze core volatile and nonvolatile metabolites of individual strains.

The annual economic impact of the wine industry in the State of Pennsylvania is
approximately USD 2.5 billion with more than 300 wineries across the State. Pennsylvania is
ranked fifth for wine production in the USA [28,29]. The overall objective of this study is to
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determine the potential contribution of hybrid grapes-associated non-Saccharomyces yeasts
for use in winemaking to enhance regionality of local wines. Cultured-based methods
coupled with ITS sequencing were used to isolate and identify Chambourcin-associated
non-Saccharomyces yeasts from three regional vineyards in Pennsylvania. UHPLC-RI and
GC-MS were used to measure volatile and nonvolatile compounds within inoculated
fermentation using five candidate non-Saccharomyces yeast in a sterile Chambourcin grape
juice system. Here, we focus on volatile metabolite changes that drive differentiation
between candidate non-Saccharomyces yeasts compared to the commercial benchmark strain,
S. cerevisiae. We hypothesize that non-Saccharomyces yeast isolated from hybrid grapes
like Chambourcin can enhance regional characteristics of hybrid grapes and potentially
increase the quality and appreciation of hybrid wines.

2. Materials and Methods
2.1. Grape Sampling and Juice Collection

Chambourcin grapes were obtained from three regional vineyards in Pennsylvania, USA.
Grapes were collected and refrigerated at 4 ◦C until further processing (not more than 72 h).
One hundred and fifty grams of grape berries were crushed to produce must and allowed to
ferment in a 1000-mL sterile beaker covered with aluminum foil at 25 ◦C for 24 h. Previous
studies demonstrate that addition of sulfite is one factor that can decrease richness and
evenness of non-Saccharomyces yeast during fermentation, thus representative yeast selection
was conducted without supplemental sulfite to maximize isolation of diverse populations.

2.2. Growth Media and Fungal Isolation

To isolate and identify non-Saccharomyces yeasts, a combination of microbiological
culture-based approaches with molecular methods facilitates the identification of species.
Fungal isolation was conducted as outlined in Raymond Eder et al. (2017) and Vaudano
et al. (2019) with minor modifications related to type of selective agar and sampling
timepoint [14,30]. To isolate grape-associated fungal populations, appropriate dilutions
(10−1∼10−4 dilutions) of fermented Chambourcin must at 0 and 24 h were plated on
Dichloran Rose Bengal Chloramphenicol (DRBC) agar based on manufacturer’s instructions
(Difco, Sparks, MD, USA). DRBC agar is recommended for the enumeration and selection
of yeasts and molds in food and dietary supplements. It contains peptone as a source
of carbon and nitrogen, dextrose as a sugar source, and magnesium sulfate to provide
trace elements [31]. Chloramphenicol is added to inhibit bacterial growth resulting in
better recovery of fungal cells, and rose bengal is added to increase the selectivity of
non-Saccharomyces yeast by suppression of rapidly growing molds such as Neurospora and
Rhizopus spp. [32]. Dichloran is added to inhibit the spreading of molds by reducing colony
diameters [33]. Culture plates were incubated at 25 ◦C for 5 days. Twenty colonies were
selected based on unique colony morphology observed from 0 and 24 h samples across all
three regional wineries. Five milliliter enrichments were prepared for individual isolates
using liquid yeast peptone dextrose (YPD) medium (1% yeast extract (Difco, Sparks, MD,
USA), 2% peptone (Difco, Sparks, MD, USA) and 2% dextrose (VWR International, Radnor,
PA, USA)), and grown at 25 ◦C for 24 h with shaking at 200 rpm (standard laboratory
conditions). Yeast Peptone Dextrose is a complete medium used for cultivation of a wide
range of yeasts, including Saccharomyces cerevisiae [34]. Four milliliters of enrichment
culture (YPD + single colony yeast isolate grown for 24 h) was centrifuged at 3000×
g for 3 min, supernatant was discarded, and cell pellets were kept frozen at −80 ◦C
until further use. Remaining enrichment cultures were stored at −80 ◦C as a yeast cryo-
stock supplemented with 30% (v/v) glycerol and deposited into our laboratory’s culture
collection. Saccharomyces cerevisiae BY4742 [ATCC 4040004, YVC1] was used as a reference
strain, grown in liquid YPD medium under standard laboratory conditions, and stored
with 30% (v/v) glycerol at −80 ◦C.
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2.3. Molecular Identification of Fungal Isolates

After culturing of yeast isolates, internal transcribed spacer (ITS) region consisting
of the 5.8S rRNA genes has been shown to provide the highest probability of successful
identification for the broadest range of fungi [35]. Thus, studies to date use a combination
of culture-based methods and sequencing to identify fungal populations in complex fer-
mentation systems such as winemaking. A total of 120 isolated strains were identified by
analysis of the ribosomal internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) from
three regional vineyards [30]. It is important to note that for molecular identification of
Ascomycota yeast, the 28S nuclear ribosomal large subunit rRNA gene (LSU) is used in
combination with the ITS region to improve accuracy of identification [35]. For the purpose
of this study, ITS was chosen to support wine yeast literature as well as metagenomic HTS
analyses [36]. Genomic DNA were extracted from frozen cell pellets using a MasterPure
Yeast DNA Purification Kit based on manufacturer’s instructions (Lucigen, Middleton, WI,
USA). For isolates which resemble filamentous fungi characterized by aerial mycelium
growth, isolates were rinsed with 0.1 M MgCl2 and recentrifuged to obtain dry cell tis-
sue for cell lysis and precipitation of DNA. Genomic DNA for colonies with yeast-like
morphologies were extracted based on manufacturers’ instructions.

The ITS region was amplified by PCR using the universal primers, ITS1 (5′- TCC GTA
GGT GAA CCT GCG G-3′) and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′) [37]. PCR
was carried out in a final volume of 25 µL, containing 12.5 µL of PCR Master Mix 5Prime
HotMasterMix (Quantabio, Beverly, MA, USA), 1.25 µL of 10 nM forward primer and
1.25 µL of 10 nM reverse primer, and 10 µL of template DNA (10 ng/µL). PCR cycles were
as follows: initial denaturation at 93 ◦C for 3 min and 35 cycles of denaturation at 93 ◦C
for 30 s, annealing at 52 ◦C for 30 s, extension at 72 ◦C for 1 min, with a final extension at
72 ◦C for 10 min. PCR amplicons were separated on 1.5% agarose gel in 1 x TAE buffer,
stained with SYBR Safe DNA gel stain (Invitrogen, Thermo Fisher Scientific, MA, USA) and
visualized using UV transillumination. PCR products were purified using the QIAquick
PCR purification Kit (Qiagen, Hilden, Germany). Sanger sequencing was performed using
ITS4 primers mentioned above at The Pennsylvania State University’s HUCK Institutes of
Life Sciences (University Park, PA, USA) on an Applied Biosystems 3730XL DNA Analyzer
(Applied Biosystems, Foster City, CA, USA).

ITS sequences obtained from Sanger sequencing were subjected to visual quality
assessment on DNA sequencing chromatogram, and then queried using BLAST (https:
//blast.ncbi.nlm.nih.gov/Blast.cgi) as outlined in Brysch-Herzberg and Seidel (2015) and
Raymond Eder et al. (2017) with minor modifications on criteria of alignment score for
molecular identification [30,38]. The species of reference strain was assigned to an isolate
when an identity score of ≥ 99%. Identity scores lower than 99% were assigned a genus
and not further identified to species level in this study. Of important to this study, five
candidate strains were subsequently aligned with GeneBank type strain sequence with the
following identity score: 100% for Hanseniaspora uvarum PSWCC70, 99.25% for H. opuntiae
PSWCC64, 99.74% for Pichia kluyveri PSWCC62, 93.85% for P. kudriavzevii PSWCC102, and
100% for Aureobasidium pullulans PSWCC82. For isolates with multiple possible genus
and species identification from the National Center for Biotechnology Information (NCBI)
database, MycoBank (http://www.mycobank.org/; [39]) was used for fungal synonyms
searching and UNITE (https://unite.ut.ee/) was used for similarity searches against
additional fungal databases to increase identification for that particular fungal isolate.
ITS sequences for this study have been deposited into NCBI (#Accession MW301459-
MW301578). Phylogenetic analysis was conducted using the Molecular Evolutionary
Genetics Analysis (MEGA) software version 10.1.7 [40,41]. ITS sequences were aligned
with Multiple Sequence Comparison by Log-Expectation (MUSCLE) and phylogenetic tree
was constructed using the maximum likelihood (ML) method supported by 500 bootstrap
replications [42,43].

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.mycobank.org/
https://unite.ut.ee/
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2.4. Physiological Characterization of Non-Saccharomyces Yeasts

Candidate non-Saccharomyces yeasts for downstream characterization experiments
were selected based on results obtained from sequencing analysis and the absence of toxin
production based on previously published studies. For example, strains with highest
statistical confidence based on BLAST results, de novo sequences alignment, and phyloge-
netic analysis were selected as candidate strains. Candidate strains Hanseniaspora uvarum
PSWCC70, H. opuntiae PSWCC64, Pichia kluyveri PSWCC62, P. kudriavzevii PSWCC102, and
Aureobasidium pullulans PSWCC82 isolated from spontaneously fermenting Chambourcin
must were chosen for downstream analysis. Saccharomyces cerevisiae BY4742 was used as a
laboratory control.

Candidate non-Saccharomyces yeast strains were grown under varying concentrations
of sulfite and ethanol using a microplate-based method described by Tofalo et al. (2014)
and Englezos et al. (2015) with minor modifications related to the concentration of sub-
strate [44,45]. For characterization of sulfite tolerance, yeast strains were grown in liquid
YPD media with final concentrations of 0, 40, 60, 80, 100 mg/L sodium metabisulfite (VWR
International, Radnor, PA) at pH = 3.0. Sulfites are most effective as an antimicrobial agent
in acidic conditions due to the effect from the molecular SO2 penetrating the cell wall and
disrupting the enzymatic. For characterization of ethanol tolerance, yeast strains were
grown in liquid YPD media (pH = 6.5) containing 0, 8, 10, 12, and 14% (v/v) ethanol (Decon
Labs, King of Prussia, PA, USA). Varying ethanol concentrations were chosen to represent
12–14% ethanol typically present in red wines.

Five candidate strains and one control strain BY4742 were streaked on YPD agar (1.5%
Bacto Agar) (Difco, Sparks, MD, USA) to obtain single colonies which were transferred to
5 mL of liquid YPD media and allowed to grow for 24 h at 25 ◦C with shaking (200 rpm).
Cell pellets were collected by centrifugation at 4000× g for 5 min and washed twice
with sterile phosphate-buffered saline (PBS) and resuspended in fresh liquid YPD media
to obtain a starting optical density (OD) of 0.2 at 600 nm. A starting OD600 of 0.2 is
approximately equal to a cell density of 106∼107 cfu/mL. The resulting yeast culture
(20 µL) was added to 180 µL liquid YPD media supplemented with varying concentrations
of sodium metabisulfite or ethanol described above. The microplate-based assay was
conducted at 25 ◦C and OD600 was measured every 30 min after orbital shaking for
10 s using the continuous measurement mode on a microplate reader for 48 h (BioTek
Instruments, Winooski, VT, USA). To determine ethanol and sulfite tolerance of these
isolates, the ratio (%) between growth of the isolate in YPD media with and without
sodium metabisulfite or ethanol at the end of incubation time (t = 48 h) was calculated
using the following equation:

Growth ratio (%) =
Growth in substract (OD600)

Growth in YPD (OD600)
× 100%

Isolates with a percentage growth ratio of larger than 10% were considered toler-
ant [45]. Three biological experiments containing triplicate samples for each experimental
condition were used for sulfite and ethanol tolerance experiments.

2.5. Laboratory Scale Fermentation

Fresh Chambourcin grapes were obtained from three regional vineyards as described
above. Grapes were crushed in the lab, must obtained, juice centrifuged, and filter-sterilized
through a 0.2 µm membrane filter (VWR International, Radnor, PA, USA) and stored at
−20 ◦C until used. For the remaining of this manuscript, we use the term “sterile juice” to
represent filter sterile Chambourcin juice. Five candidate strains and control S. cerevisiae
BY4742 were inoculated into sterile juice (pH = 3.26) for laboratory scale fermentation.
Inoculated fermentation of sterile juice has been previously established [4,46]. We use the
term “inoculated fermentations” to represent filtered sterile juice inoculated with candidate
yeast strains or control S. cerevisiae. Yeast cultures were prepared from enriched 5 mL of
liquid YPD media with a single colony. Cell pellets were washed with PBS resuspended in
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fresh liquid YPD media to obtain a starting optical density (OD) of 0.2 at 600 nm with same
procedure as for the tolerance test.

Laboratory scale fermentations were carried out starting OD600 = 0.2 (106∼107 cfu/mL)
inoculated to 50 mL sterile juice in 250-mL glass Erlenmeyer flask fitted with an airlock
closure to enable carbon dioxide release. Inoculated fermentations were performed at 25 ◦C
in static condition, and fermentation was monitored by measuring weight loss due to carbon
dioxide release as previously described [4,46,47] (see Supplementary Materials Figure S1).
Fermentation was considered complete when weight loss of each sample was lower than 0.05 g
in 24 h as outlined in [4]. The resulting fermented juice was collected at the end of fermentation
and frozen at −20 ◦C for analysis of volatile and nonvolatile compounds. For volatile and
nonvolatile analysis, three independent laboratory scale fermentations were conducted for
each experimental condition.

2.6. Analysis of Flavor Compounds of Fermented Chambourcin Juice
2.6.1. Analysis of Nonvolatile Compounds by UHPLC

To analyze nonvolatile compounds, sterile juice and inoculated fermentations were
filtered through a 0.2 µm membrane. Nine nonvolatile compound standards and mobile
phase were prepared including glucose (99%, Acros Organics, Thermo Fisher Scientific,
Waltham, MA, USA), fructose (99%, Alfa Aesar, Haverhill, MA, USA), glacial acetic acid
(VWR International, Radnor, PA, USA), tartaric acid (99%, TCI America, Portland, OR,
USA), citric acid (99.5%, VWR International, Radnor, PA, USA), malic acid (99%, Acros Or-
ganics, Thermo Fisher Scientific, Waltham, MA, USA), succinic acid (99%, Acros Organics,
Thermo Fisher Scientific, Waltham, MA, USA), glycerol (VWR International, Radnor, PA,
USA), ethanol (Decon Labs, King of Prussia, PA, USA), and sulfuric acid (Sigma-Aldrich,
St. Louis, MO, USA) were purchased. Standards and mobile phase were dissolved in
deionized water to a desired concentration and filtered through 0.2 and 0.45 µm membrane
filters, respectively. Standards were prepared according to previously published concentra-
tion of compounds in juice or wine [48,49]. Five concentrations of each compound were
made by a two-fold serial dilution to construct a standard curve. The highest concentration
of each compound was glucose and fructose: 40 g/L; glacial acetic acid: 0.8 g/L, tartaric
acid: 8 g/L, citric acid: 2 g/L, malic acid: 6 g/L, succinic acid: 2 g/L, glycerol 6 g/L, and
ethanol: 7% (v/v). Serial dilution standards were injected to construct a standards curve
and the retention time (RT) of each compound was recorded and validated. Equations of
each standard curve had R2 = 1.

Chromatographic separations were performed on an Ultra High-Performance Liquid
Chromatography (UHPLC) system (Vanquish UHPLC Systems, Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a refractive index (RI) detector (RefractoMax 521,
Thermo Fisher Scientific, Waltham, MA, USA) at the HUCK CSL Behring Fermentation
Facility at Penn State. Targeted compounds were separated and analyzed on an Aminex
HPX-87H column (300 × 7.8 mm) (Bio-Rad Laboratories, Hercules, CA, USA), protected by
a Micro-Guard Cation H guard column (30 × 4.6 mm) (Bio-Rad Laboratories, Hercules,
CA, USA) and kept at 60 ◦C. The analytical conditions used were as follows: 10 µL of
injection volume, flow 0.5 mL/min, eluent 5 mM H2SO4. Temperatures set for autosampler
and RI detector were 4 and 35 ◦C, respectively. A standard curve was prepared using
standards to determine the relationship between concentration and the peak area of a
particular compound eluted. The chromatographic peak corresponding to each compound
was identified by comparing the retention time with that of standards. All standards and
samples were injected in technical triplicate.

2.6.2. Analysis of Volatile Compounds by Gas Chromatography-Mass Spectrometry

Aromatic compounds were analyzed by gas chromatography-mass spectrometry
(GC-MS) (7890B System, 5977B MSD, Agilent Technologies, Santa Clara, CA, USA) using
the method described here with minor modifications [50]. In total, 2 mL of samples was
mixed with 3 g sodium chloride (VWR International, Radnor, PA, USA), 50 µL internal
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standard (including 13.7 mg/L 2-octanol and 9.9 mg/L naphthalene-d8 in methanol), and
0.5g D-gluconic acid lactone (Sigma-Aldrich, St. Louis, MO, USA), which inhibits grape
β-glucosidase activity during sample preparation and analysis [51]. Samples were then
vortexed and analyzed immediately. Each injection was performed in technical triplicates
from three biological flasks.

Solid-phase microextraction (SPME) mixture comprised heptanal (0.452 g/L), oc-
tanal (0.484 g/L), nonanal (0.477 g/L), 1-decanol (0.394 g/L), 1-undecanol (0.392 g/L),
1-dodecanol (0.521 g/L), n-decane (0.451 g/L), n-dodecane (0.481 g/L), n-tetradecane
(0.497 g/L), methanol (0.511 g/L), (-)-trans- and (-)-cis-carveol (0.778 g/L), (+)-carvone
(0.584 g/L), a-pinene (0.553 g/L), b-pinene (0.472 g/L), and p-cymene (0.424 g/L) in ace-
tone. A total of 50 µL of internal standard as a blank and 10 µL of SPME mixture as a
quality control were used and placed in the first and last order of each batch of samples,
respectively. Performance test of GC-system was carried by the mixture of 5 µL alkane
standard solution (C8−C20, ~40 mg/L each in hexane; Sigma-Aldrich, St. Louis, MO, USA)
and 50 µL internal standard.

Samples were incubated at 30 ◦C for 5 min under agitation at 250 rpm, and then ex-
tracted using a 2 cm Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS)
SPME fiber assembly (Sigma-Aldrich, St. Louis, MO, USA) for 30 min. Separation was
carried out with a Rtx-Wax capillary column (25 m × 0.25 mm I.D. × 0.25 µm film thick-
ness; Restek Corporation, Bellefonte, PA, USA) in splitless mode. The transfer line and ion
source (70 eV) were maintained at 250 and 230 ◦C, respectively. The oven temperature was
programmed as follows: hold at 30 ◦C for 1 min; increase to 250 ◦C at rate of 10 ◦C/min
and hold for 5 min. Helium was used as the carrier gas under constant flow at 1 mL/min.
Mass spectra were acquired at a rate of 33–350 amu scan.

To identify fermentation associated volatile compounds, chromatograms were stripped
of common contaminating ions (147, 148, 149, 207, 221, 267, and 281 m/z) using the De-
noising function in OpenChrom followed by the Savitzky–Golay smoothing filter with
default settings (width = 15; order = 2) to enhance chromatographic data by reducing noise
while maintaining the shape and height of waveform peaks [52–54]. The PARAFAC2 based
Deconvolution and Identification System (PARADISe) computer platform (version 3.9)
was used to deconvolute mass spectra with 7000 iterations and non-negativity constraint
settings [55]. Retention time intervals were manually selected to increase the resolution of
peak identification. Identification based on deconvoluted mass spectra were conducted
using the National Institute of Standards and Technology (NIST14) mass spectral library
with criteria of match factor over 700, and validated with Kovats retention indices referred
to NIST14 library, PubChem (https://pubchem.ncbi.nlm.nih.gov/) or literature. Relative
abundance of volatile compounds was calculated by dividing the peak area of volatile
compounds by the peak area of internal standards (IS) and then subtracted by the relative
abundance of such in the blank, 50 µL internal standard.

2.7. Statistical Analysis

IBM® SPSS® Statistic software version 26 was used for ANOVA and Tukey post-hoc
test [56]. One-way analysis of variance (ANOVA) to calculate statistical significance of
optical density (OD600) data obtained from the tolerance assays and quantification of non-
volatile compounds by UHPLC analysis. Significant differences were established by using
the Tukey post-hoc test (p < 0.05) comparing the mean values of treatment groups. Partial
least squares-discriminant analysis (PLS-DA) and clustered heatmap was generated using
MetaboAnalyst to help visualize volatile and nonvolatile compounds driving separation
between inoculated fermentations (https://www.metaboanalyst.ca/) [57]. Input data was
normalized using log transformation and Pareto scaling function to remove heteroskedas-
ticity resulting in a data set with normal distribution [58]. ANOVA was used to identify
significant differences of relative abundance of volatile compounds across inoculated fer-
mentations conducted by candidate yeast strains using false discovery rate (FDR) adjusted
p-value (or q-value) of 0.05.

https://pubchem.ncbi.nlm.nih.gov/
https://www.metaboanalyst.ca/
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3. Results
3.1. Spontaneous Fermentation of Chambourcin Grape Must Provides Insights into Fungal
Diversity of Red Hybrid Grapes

One hundred and twenty isolates from Chambourcin grape must were obtained from
three vineyards during the 2019 vintage. Phylogenetic analysis of the fungal ITS region clus-
tered these isolates into four main clades (Figure 1). Forty isolates were identified from each
location by colony morphology and Sanger sequencing (see Section 2). Hanseniaspora spp.
and Pichia spp. were the most abundant populations followed by Sporidiobolus pararoseus,
Starmerella bacillaris, and Aureobasidium pullulans (Figure 2A). Observations from all three
regional wineries suggests that H. uvarum, H. meyeri, and H. opuntiae were the most abun-
dant (41.5%) in grape must. Pichia fermentans, P. kluyveri, P. kudriavzevii, and P. terricola
were the second most abundant species (10.8%), as well as S. pararoseus. S. bacillaris (9%),
Aureobasidium pullulans, and Filobasidium floriforme were also identified with equal rela-
tive abundance (5%). In PAV1, fungal composition was most diverse (17 fungal species
identified) highlighted by diversity of Hanseniaspora spp. and Pichia spp. as well as the
presence of filamentous fungi such as Cladosporium angustisporum, Epicoccum sorghinum,
Neopestalotiopsis clavispora, and Pestalotiopsis vismiae. In PAV2, 11 fungal species were iden-
tified with H. uvarum, S. pararoseus, and A. pullulans being the most dominant species.
Finally, 12 fungal species were identified in PAV3 where H. uvarum accounted for 50% of
isolated strains and Pichia spp., S. bacillaris and Candida spp. accounted for the remaining
fungal community.

Other yeast species isolated and identified from spontaneous fermentation include
Candida spp., Meyerozyma carpophila, Kregervanrija sp., and Papiliotrema sp. Candida species
included C. californica and C. railenensis. Candida californica was identified only from
PAV3. One strain of Kregervanrija sp. and Papiliotrema sp. was found in PAV1 and PAV2,
respectively. Using this culture-based approach, filamentous fungi were less dominant
and less consistent across vineyards compared to the abundance of yeast species present
on grape berries. Leptosphaerulina chartarum was the only species found across vineyards
at PAV1 and PAV2. Other examples of filamentous fungi identified within individual
vineyards include Alternaria alternata, Cladosporium spp., Epicoccum sorghinum, Fusarium sp.,
Mucor nidicola, Neopestalotiopsis clavispora, Penicillium brevicompactum, P. spinulosum, and
Pestalotiopsis vismiae (Table S1). After 24 h of spontaneous fermentation, decreased fungal
diversity in Chambourcin must was observed and filamentous fungi were not identified
in Chambourcin grape must. Hanseniaspora spp. and Pichia spp. were the most dominant
species in PAV1, and Hanseniaspora spp. and S. bacillaris were dominant in PAV2 and PAV3
after 24 h of spontaneous fermentation (Figure 2B).
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Figure 1. Phylogenetic diversity of fungal strains associated with Chambourcin hybrid grape must during spontaneous
fermentation based on ribosomal internal transcribed spacer (ITS) regions and 5.8S rRNA gene sequences. Branches
corresponding to partitions reproduced from less than 50% bootstrap replicates were collapsed. The percentage of replicate
trees in which the associated taxa clustered together in the bootstrap test are shown next to the branches. Hanseniaspora
clade was suppressed into a black empty triangle including all Hanseniaspora species clustered with 96% bootstrap support.
Subtrees including same species supported by 100% bootstrap value were suppressed and represented as solid black
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Figure 2. Main contributing fungal species during spontaneous fermentation of Chambourcin grape must. (A) Relative
proportion of identified fungal species (%) from 120 randomly selected colonies (20 isolates/sampling time; 40 isolates
from each location) obtained during spontaneous fermentation. (B) Fungal species identified on Dichloran Rose Bengal
Chloramphenicol (DRBC) agar plates at 0 and 24 h (20 colonies/time point).

3.2. Physiological Characterization of Non-Saccharomyces Yeasts

Hanseniaspora uvarum PSWCC70, H. opuntiae PSWCC64, Pichia kluyveri PSWCC62, P. ku-
driavzevii PSWCC102, and Aureobasidium pullulans PSWCC82 were candidate yeasts selected
for downstream microbial and chemical analysis. Previous literature suggests Hanseniaspora
spp. and Pichia spp. can utilize fruit sugars for fermentation and have not been shown to
produce harmful toxins whereas Aureobasidium pullulans is well known for the production of
extracellular enzymes such as pectinases [59]. Therefore, we characterized sulfite and ethanol
tolerance of these five strains compared to control S. cerevisiae BY4742. Hanseniaspora opuntiae
PSWCC64 showed a tolerance at 80 mg/L sodium metabisulfite, and other candidate strains
and S. cerevisiae BY4742 had tolerance at 100 mg/L. Hanseniaspora uvarum PSWCC70 and
H. opuntiae PSWCC64 were relatively sensitive to sulfite with significantly decreased growth ra-
tio when sodium metabisulfite concentration was higher than 80 mg/L (Figure 3A). On the other
hand, all five candidate strains demonstrated lower tolerance to ethanol compared to BY4742.
Hanseniaspora uvarum PSWCC70, H. opuntiae PSWCC64, and P. kluyveri PSWCC62 demonstrate
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tolerance at 8% of ethanol while A. pullulans PSWCC82 was not tolerant to any concentration of
ethanol tested. Interestingly, P. kudriavzevii PSWCC102 was the only non-Saccharomyces yeast
candidate with comparable ethanol tolerance to BY4742 grown in 10% ethanol (Figure 3B).
These results suggest that H. opuntiae PSWCC64 and P. kudriavzevii PSWCC102 could adapt to
high ethanol environment better than the other candidate non-Saccharomyces yeasts during the
alcoholic fermentation process.
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Figure 3. (A) Sulfite and (B) ethanol tolerance of candidate non-Saccharomyces isolates compared to laboratory control,
S. cerevisiae BY4742. The heights of bar graphs represent tolerance which is defined as a ratio greater than 10% between
growth of a strain in media supplemented with and without sulfite or ethanol. Yeast Peptone Dextrose (pH 3.0) was used as
a growth medium for sulfite tolerance assay whereas YPD at pH 7.0 was used for ethanol tolerance (see Section 2). Dotted
line across the y-axis represents a 10% cutoff. Strains used in this study are represented on the x-axis. Data is presented as
mean ratio ± SEM with a common superscript indicating significance (p < 0.05).
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3.3. Characterization of Core Nonvolatile Compounds Highlight Fermentative Potential of
Candidate Non-Saccharomyces Yeasts

Nine nonvolatile compounds that represent fermentative potential of non-Saccharomyces
yeasts compared to control strain, S. cerevisiae BY4742 were measured at the end of fermen-
tation (Figure S1). Glucose (89.56 ± 0.78 g/L) and fructose (90.75 ± 0.56 g/L) are major
sugars in Chambourcin juice. We hypothesized that candidate non-Saccharomyces strains
can contribute to production of fermentation important metabolites. In support of this,
the ability of non-Saccharomyces strains to convert sugars into different wine important
fermentation by-products was examined. There was no significant difference in residual
sugars measured in inoculated fermentations of Pichia kudriavzevii PSWCC102 (35.99 g/L)
compared to S. cerevisiae BY4742 (36.88 g/L) (Figure 4A). Residual sugars are typically
expressed as ◦Brix and are important to monitor the progress of fermentation. During
inoculated fermentations, S. cerevisiae BY4742 and P. kudriazevii PSWCC102 converted
about 80% of total sugars (glucose and fructose) followed by H. opuntiae PSWCC64 and
A. pullulans PSWCC82 (60%), and H. uvarum PSWCC70 and P. kluyveri PSWCC62 (40%).
All non-Saccharomyces strains produced similar levels of ethanol measured as “g EtOH/g
Sugars” except A. pullulans PSWCC82. Interestingly, the conversion efficiency of H. uvarum
PSWCC70 (0.54 (±0.03)) was not significantly different when compared to S. cerevisiae
BY4742 (0.51 (±0.05)) (Figure 4B).
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Figure 4. Composition of major sugars, sugar consumed, and ethanol yield in sterile juice compared to inoculated
fermentations with candidate non-Saccharomyces yeast strains measured by UHPLC analysis. (A) Glucose (blue) and
fructose (orange) represent major sugars in grape juice and wine. (B) Percent sugar consumed and ethanol yield during
fermentation. Circles represent ethanol yield measured at the end of fermentation. Different types of yeasts used in this
study are represented on the x-axis. Data presented as mean ratio ± SEM with a common superscript indicating significance
(p < 0.05). Strains used in this study are represented on the x-axis, S. cerevisiae BY4742 was used as a control.
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Ethanol and glycerol are two major primary metabolites produced during alcoholic
fermentation of yeast and are important indicators of fermentation. The amount of ethanol
produced by P. kudriazevii PSWCC102 (74.71 g/L) was not statistically different compared
to S. cerevisiae BY4742 (74.29 g/L), but was significantly higher than ethanol levels pro-
duced by H. uvarum PSWCC70 (37.84 g/L), H. opuntiae PSWCC64 (52.90 g/L), P. kluyveri
PSWCC62 (2.75 g/L), and A. pullulans PSWCC82 (32.11 g/L). However, there was no signif-
icant difference between glycerol production by S. cerevisiae BY4742, P. kluyveri PSWCC62,
P. kudriazevii PSWCC102, and A. pullulans PSWCC82 (5.95~7.54 g/L) (Figure 5A). One as-
pect of wine quality relative to fermentation-derived nonvolatile metabolites are the types
and levels of organic acids. Organic acids contribute to sourness, bitterness, and tartness of
final wines [49]. Although present at low levels compared to ethanol, five organic acids
were chosen for analysis of common acids present in inoculated fermentations. Specifically,
P. kudriazevii PSWCC102 produced 1.90 ± 0.69 g/L of malic acid and 0.81±0.06 g/L of
acetic acid with no significant difference compared to S. cerevisiae BY4742. Concentration
of tartaric acid decreased after fermentation by most of the yeast strains (0.29~0.54 g/L)
and was significantly different compared to sterile juice (0.69 ± 0.02 g/L). The control
strain, BY4742 produced the highest amount of citric acid (0.20 ± 0.003 g/L) followed by
A. pullulans PSWCC82 (0.17 ± 0.005 g/L). Hanseniaspora opuntiae PSWCC64 produced the
highest amount of succinic acid (0.17 ± 0.02 g/L) followed by S. cerevisiae BY4742 with no
significant difference (Figure 5B).

Partial least squares-discriminant analysis (PLS-DA) was used to identify how nine
core nonvolatile compounds present in inoculated fermentations drive differentiation
of candidate non-Saccharomyces yeast strains compared to S. cerevisiae. In PLS-DA score
plot the first two components explained 76.5% of variance which separated experimental
control (sterile juice) and inoculated fermentations (Figure 6A). Uninoculated juice was
included in this analysis as a benchmark for comparison to ensure that the model system
using Chambourcin sterile juice is reliable and reproducible to characterize candidate yeast
strains for use in winemaking. The main compounds separating the samples analyzed in
component 1 are glucose (C3) and fructose (C5) (negative loading), and malic acid (C4),
succinic acid (C6), and ethanol (C9) (negative loading). In the case of PC2, tartaric acid (C2)
was the major compound responsible for the separation between inoculated fermentations
(Figure 6B).
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Figure 5. Nonvolatile compounds in sterile juice compared with inoculated fermentations with candidate non-Saccharomyces
yeast strains with S. cerevisiae BY4742 as control. UHPLC-RI was used to measure nonvolatile compounds in inoculated
fermentation, sugars (glucose and fructose), ethanol, glycerol (A), and acids (malic acid, acetic acid, tartaric acid, citric acid,
and succinic acid) (B). The different types of yeasts used in this study are represented on the x-axis. S. cerevisiae BY4742 was
used as a control. Data presented as mean ratio ± SEM with a common superscript indicating significance (p < 0.05).
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(A)

(B)

Figure 6. Nonvolatile compounds from inoculated fermentations differentiates from sterile juice.
(A) PLS-DA scores plot and (B) loading plot of the variables with components 1 and 2 based on the
nonvolatile composition of sterile juice (eight spoked asterisk) and inoculated fermentations with
candidate yeast strains and S. cerevisiae BY4742. Each symbol in panel A represents a yeast strain and
the ellipse around symbols represents a 95% confidence region of biological and technical triplicates.

3.4. Distinct Fermentation-Derived Volatile Metabolites Provide Insights into Unique Properties of
Candidate Non-Saccharomyces Yeast from Chambourcin

One aspect of wine quality is the contribution of fermentation-derived volatile com-
pounds which can enhance sensory characteristics of final wine. Using GC-MS, 74 volatiles
were identified when comparing sterile juice and inoculated fermentations and assigned to
11 classes based on their chemical structure (Figure S2). All 74 identified compounds were
validated and included for further analysis (Table S2). Statistical differences of volatile
compounds in inoculated fermentations are shown in Table S3. The correlation between
volatile profiles and candidate yeast strains were analyzed by PLS-DA based on the iden-
tified volatile compounds. In total, 59.9% of the experimental variance was explained
by the first three components, while components 1, 2 and 3 accounted for 20.8%, 21.3%,
and 17.8%, respectively (Figure 7A–C). In the PLS-DA score plot, three components sep-
arated the inoculated fermentations into distinctive groups. Fifteen identified volatile
compounds with the highest variable importance in projection (VIP) scores by PLS-DA
can help explain volatile metabolome features driving separation between inoculated fer-
mentations (Figure 7D). In this context, we interpret volatile compounds with high VIP
scores as the most discriminant variables in PLS-DA. Here, we are most interested in fea-
tures that differentiate candidate non-Saccharomyces fermentations compared to S. cerevisiae
inoculated fermentations. For example, ionone (V42); 3-(methylthio)propyl acetate (V33);
2-heptanol (V9); 1-propanol, 3-(methylthio)- (V72); hexanoic acid, methyl ester (V23) were
the most abundant compounds in inoculated fermentations with Hanseniaspora strains
PSWCC64 and PSWCC70 but had low abundance in S. cerevisiae control strain. In addition,
linalool (V53); acetoin (V40); acetyl valeryl (V38); 2-buten-1-ol, 3-methyl-, acetate (V6);
3(2H)-Thiophenone, dihydro-2-methyl- (V67) were also important features driving the
differences of inoculated fermentation present with high intensity in A. pullulans but low
intensity in S. cerevisiae control strain. On the contrary, two of the other important features,
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butanoic acid, 2-methyl- (V50) and octanoic acid, ethyl ester (V32), were present with high
intensity in both P. kudriazevii and S. cerevisiae.
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Figure 7. Partial least squares discriminant analysis (PLS-DA) performed on volatile compounds in inoculated fermentations
by candidate yeast strains. (A,B) Score plots demonstrated a clear separation between inoculated fermentations and the
variables could be explained with three components. Each symbol represents a yeast strain and ellipse around symbols
represents at 95% confidence region of biological and technical triplicates. (C) Variables in loading plot of the components
1 and 2, and (D) selected compounds as important features based on variable important in projection (VIP) scores. The
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Next, we asked whether important features identified using the VIP scores plot were
associated with particular strains or categories of metabolites. Based on Pearson’s correla-
tion, we observed hierarchal clustering of 74 volatile metabolites against non-Saccharomyces
strains compared to S. cerevisiae (Figure 8). Of particular interest is the group of metabolites
associated with P. kudriazevii but not with other strains. Volatile metabolites associated with
this cluster include 3-methyl-1-pentanol (V10); heptanoic acid, ethyl ester (V30); 2-hexenoic
acid, ethyl ester (V31); propanoic acid, 2-methyl- (V47); butanoic acid (V48); butanoic
acid, 3-methyl- (V49); benzaldehyde, 3-methyl- (V60); butane, 1-(1-ethoxyethoxy)- (V63);
and butane, 1,1-diethoxy-3-methyl- (V64) was distinct compared to other strains. In ad-
dition, A. pullulans is associated with increased levels of 2-buten-1-ol, 3-methyl-, acetate
(V6); 3-hexen-1-ol, acetate, (Z)- (V27); ethyl (S)-(-)-lactate (V29); acetyl valeryl (V38); L-à-
terpineol (V54); 3(2H)-thiophenone, dihydro-2-methyl- (V67) in inoculated fermentations.
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The other distinct group of compounds, 1-pentanol, 4-methyl- (V7); 2-buten-1-one, 1-(2,6,6-
trimethyl-1,3-cyclohexadien-1-yl)- (V45); benzaldehyde, 4-methyl- (V61) were positively
correlated to H. uvarum. Pearson’s correlation of candidate strains with relative abundance
of volatile metabolites from inoculated fermentation could provide a unique fingerprint to
further explore different combinations of non-Saccharomyces yeast strains in sequential or
coinoculation.

Fermentation 2021, 7, x FOR PEER REVIEW  19 of 25 
 

 

Figure 8. Clustered heatmap based on the volatile compounds in inoculated fermentations with candidate yeast strains 

compared to S. cerevisiae BY4742. Data were normalized by a pooled sample from the control group, S. cerevisiae BY4742. 

The correlation between each compound and candidate strain is illustrated with a chromatic scale (from dark blue, nega‐

tive correlation, to dark red, positive correlation). Dendrogram for the hierarchical clustering was analyzed using Ward’s 

cluster algorithm. Abbreviations: Ap, A. pullulans (class 1, black); Ho, H. opuntiae (class 2, orange); Hu, H. uvarum (class 3, 

yellow); Pk, P. kluyveri (class 4, dark blue); Pki, P. kudriavzevii (class 5, blue); Sc, S. cerevisiae (class 6, red). 

   

S
c

H
o

H
u

P
ki

A
p

P
k

V49
V47
V71
V70
V66
V64
V63
V60
V48
V31
V10
V30
V72
V33
V42
V2
V23
V9
V17
V5
V56
V55
V59
V40
V53
V67
V54
V38
V29
V6
V27
V20
V26
V22
V21
V69
V3
V12
V35
V14
V34
V36
V37
V61
V7
V45
V4
V18
V32
V41
V65
V51
V16
V11
V74
V15
V24
V50
V46
V73
V1
V43
V44
V68
V28
V57
V13
V25
V39

class class

Ap

Ho

Hu

Pk

Pki

Sc

−2

−1

0

1

2

Figure 8. Clustered heatmap based on the volatile compounds in inoculated fermentations with candidate yeast strains
compared to S. cerevisiae BY4742. Data were normalized by a pooled sample from the control group, S. cerevisiae BY4742.
The correlation between each compound and candidate strain is illustrated with a chromatic scale (from dark blue, negative
correlation, to dark red, positive correlation). Dendrogram for the hierarchical clustering was analyzed using Ward’s cluster
algorithm. Abbreviations: Ap, A. pullulans (class 1, black); Ho, H. opuntiae (class 2, orange); Hu, H. uvarum (class 3, yellow);
Pk, P. kluyveri (class 4, dark blue); Pki, P. kudriavzevii (class 5, blue); Sc, S. cerevisiae (class 6, red).
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4. Discussion

Terroir is an expression in viticulture used to describe the unique contribution of
regional features such as cultivar, vintage, and climate, that define wine sensory character-
istics and product identity in a particular region. Although much is known about terroir
relative to Vitis vinifera varieties, much is unknown about hybrid grapes. In this work,
29 species were identified from 120 isolates and distinct patterns of microbial composition
in three PA vineyards were observed. In support of a parallel study on Chambourcin mi-
crobiome, these results highlight unique differences in microbial populations even within a
small geographic area (radius about 90 km) [60]. In 15 vineyards across southern Australia
(5–400 km part), distinct microbial profiles were found in environmental samples collected
from soil, plant, must, and across fermentation stages [61]. Previous studies also demon-
strate that microbial populations can impact wine quality [62]. For example, Starmerella
bacillaris and Metschnikowia pulcherrima isolated from multiple regions of Italy were found
to increase production of higher alcohols such as β-phenylethyl alcohol corresponding to
floral odor through coinoculation [12]. Kazachstania aerobia and K. servazzii in Shiraz grape
must from southern Australia were found to have increased production of esters, such as
phenylethyl acetate and isoamyl acetate associated to rose and fruity aroma [63]. These
examples prompted us to ask whether microbial populations on Chambourcin hybrid
grapes in PA vineyards can shape wine characteristics of the region.

Hanseniaspora spp. and Pichia spp. were the most dominant species identified dur-
ing spontaneous fermentation of Chambourcin with relative abundances of 42% and
11% of total isolates, respectively (Figure 1 and Table S1). Previous studies have re-
ported the dominance of Hanseniaspora and Pichia species on various grape varieties (i.e.,
V. vinifera, V. labrusca, and hybrid grapes), in grape must, and at early stages of fermenta-
tion [30,38,64–66]. The abundance of Hanseniaspora spp. and Pichia spp. appear as core
non-Saccharomyces yeasts on wine grapes and could be related to nutrient availability of
mature grape berries which supports fast growth of these species while suppressing other
microorganisms [62]. In early stages of spontaneous fermentation, high abundance of H.
uvarum, P. klyuveri, P. novergenisis, and P. guilliermondii were found on V. vinifera (Malbec),
V. labrusca (Isabel and Bordeaux), and hybrid grapes (Zweigelt, cross between St. Laurent
and Blaufränkisch) [65–67]. Therefore, our findings on the dominance of Hanseniaspora
spp. and Pichia spp. further suggest these two species are the conserved components in
microbial terroir of Chambourcin hybrid grapes.

Tolerance to sulfite and ethanol are two characteristics important in non-Saccharomyces
strains for potential use in winemaking. In particular, P. kudriavzevii PSWCC102 can tolerate
10% (v/v) ethanol comparable to the control strain S. cerevisiae, whereas Hanseniaspora
species PSWCC70 and PSWCC64 can tolerate up to 8% (v/v) ethanol. Several studies have
indicated increased ethanol tolerance of up to 6% in some non-Saccharomyces yeasts such
as H. guilliermondii and C. stellate [68]. Although there are fewer studies on mechanism
of higher ethanol tolerance on non-Saccharomyces yeasts, increased ethanol tolerance in
S. cerevisiae has been positively linked to the improvement of fermentation capacity and
production of wine important flavor compounds [69,70]. Thus, it would be interesting
in future studies to add H. uvarum PSWCC70, H. opuntiae PSWCC64, and P. kudriavzevii
PSWCC102 in sequence or in combination with S. cerevisiae to assess improvement of flavor
profile in wine fermentation.

Nonvolatile compounds typically contribute to production of conserved metabolites
most easily perceived by sensory analysis of wines such as metabolites that contribute to
the perception of sweetness, sourness, and mouthfeel (Figure 6). Previous study reported
no more than 25% of tartaric acid degraded by S. cerevisiae and non-Saccharomyces species
(Kloeckera, Candida, Schizosaccharomyces, and Hansenula spp.) which corresponds to our
results except H. uvarum PSWCC70 [71]. The association between H. uvarum and degra-
dation of tartaric acid could possibly be yeast strain using, for example, the carbon and
energy source regardless of the presence of assimilable sugar [72]. Hanseniaspora opuntiae
PSWCC64 producing higher concentration of succinic acid with no significant difference
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with S. cerevisiae control strain might indicate a larger proportion of fermented sugar was
used for the production of succinic acid [73]. Moreover, the trend of acetic acid production
by yeast strains was similar to the glycerol production as the production of these two
compounds has been linked together. According to these results, although nonvolatile
profiles by candidate strains were clustered with control strain on PLS-DA score plot,
different productions of nonvolatile compounds indicated that non-Saccharomyces yeasts
utilized fermented sugar differently in the metabolic pathway to S. cerevisiae.

One area of interest in winemaking is strain innovation. Previous works have demon-
strated that fermentation-derived metabolites from non-Saccharomyces yeast can contribute
to unique volatile characteristics of final wines. We hypothesize that non-Saccharomyces
isolates from local wineries can enhance and preserve regionality of final wines. To this end,
we used GC-MS coupled with statistical methods that enable visualization of important
volatile metabolites that drive differences between candidate strains. Notable differences
in volatile wine-associated profile between candidate non-Saccharomyces yeasts and control
strain were demonstrated by PLS-DA and Pearson’s correlation. We were particularly
interested in compounds that drive volatilome changes in non-Saccharomyces strains com-
pared to BY4742 (Figure 7D). High VIP scores indicate important compounds positively
correlated to Hanseniaspora strains PSWCC64 and PSWCC70 were 2-heptanol (V9) having
fruity and herbaceous odor, ionone (V42) with floral and fruity odor, and 1-propanol,
3-(methylthio)-(V72) preserved odor of cauliflower and potato, which were negatively
correlated to S. cerevisiae BY4742 [74–77]. This demonstrated the potential of candidate
strains in winemaking to increase the complexity of wine aroma which Saccharomyces
yeasts were less capable of contributing to wines. Of particular interest in this study, P.
kudriazevii PSWCC102 positively correlates with a group of volatiles which is negatively
correlated to other candidate strains. This included esters and acetals, such as heptanoic
acid, ethyl ester (V30), 2-hexenoic acid, ethyl ester (V31), butane, 1-(1-ethoxyethoxy)- (V63),
benzaldehyde, 3-methyl- (V60), and butane, 1,1-diethoxy-3-methyl- (V64) having pleasant
fruity and herbaceous aroma [78–81]. In addition, P. kudriavzevii PSWCC102 demonstrates
ethanol tolerance (10%) comparable to S. cerevisiae control strain. Therefore, P. kudriazevii
PSWCC102 could be a potential candidate for future studies that investigate the sequential
or coinoculation of P. kudriasevii during winemaking and production of fruity aroma com-
pounds that are unique to the strain. Others have shown that sequential or coinoculation
of non-Saccharomyces yeasts with S. cerevisiae has been demonstrated to increase complexity
of wine-important volatiles and sensory qualities [82–85]. Conducting sensory analysis is
also valuable to understand whether cofermentation could positively influence the sensory
qualities and consumer preferences by considering the attributes of taste, flavor, mouthfeel,
and color.

5. Conclusions

Our investigations on candidate strains isolated from local PA vineyards suggest the
potential of non-Saccharomyces yeasts in winemaking based on the unique fermentation char-
acteristics. Two candidate strains, Hanseniaspora opuntiae PSWCC64 and Pichia kudriavzevii
PSWCC102 demonstrated relatively high tolerance to ethanol at 8–10% as well as the
ability to produce volatile metabolites associated with flowery and fruity aroma which
was negatively correlated to S. cerevisiae BY4742 control strain. This study provides an
exciting step to incorporate non-Saccharomyces yeasts within winemaking of hybrid grapes
to enhance regional characteristics and quality of hybrid grapes. Other isolated strains in
our collection constitutes a valuable source for more microbiological, evolutionary, and
ecological studies to provide more beneficial knowledge to the Pennsylvania Wine Industry
and fortify the interest in the novel non-Saccharomyces yeasts as the wine starters.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-5
637/7/1/15/s1, Figure S1: Fermentation kinetics of candidate non-Saccharomyces strains compared
with control S. cerevisiae BY4742 inoculated into sterile juice. Figure S2. Volatile compounds in sterile
juice and inoculated fermentations grouped based on chemical structures. Table S1. Fungal species
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identified from spontaneously fermenting Chambourcin grapes isolated from three Pennsylvania
vineyards at 0 and 24 h combined by number of species and relative abundance (%). Table S2. List
of volatiles detected in sterile juice and inoculated fermentations with candidate non-Saccharomyces
strains and S. cerevisiae BY4742 with mean retention time (RT) and Kovats retention indices (RI). Table
S3. Volatile compounds with significant difference (ANOVA, FDR-adjusted p-value < 0.05) across
inoculated fermentations with candidate yeast strains. Data shown here were after normalization by
control group, S. cerevisiae BY4742.
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