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Abstract: Succinic acid (SA) is one of the top candidate value-added chemicals that can be produced 
from biomass via microbial fermentation. A considerable number of cell factories have been pro-
posed in the past two decades as native as well as non-native SA producers. Actinobacillus suc-
cinogenes is among the best and earliest known natural SA producers. However, its industrial appli-
cation has not yet been realized due to various underlying challenges. Previous studies revealed 
that the optimization of environmental conditions alone could not entirely resolve these critical 
problems. On the other hand, microbial in silico metabolic modeling approaches have lately been 
the center of attention and have been applied for the efficient production of valuable commodities 
including SA. Then again, literature survey results indicated the absence of up-to-date reviews as-
sessing this issue, specifically concerning SA production. Hence, this review was designed to dis-
cuss accomplishments and future perspectives of in silico studies on the metabolic capabilities of 
SA producers. Herein, research progress on SA and A. succinogenes, pathways involved in SA pro-
duction, metabolic models of SA-producing microorganisms, and status, limitations and prospects 
on in silico studies of A. succinogenes were elaborated. All in all, this review is believed to provide 
insights to understand the current scenario and to develop efficient mathematical models for de-
signing robust SA-producing microbial strains. 
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1. Introduction 
In the past few years, tremendous attempts and successes have been witnessed in the 

development of the green economy through the production of chemicals, fuels, materials, 
etc., from bio-based sources [1]. To begin with, succinic acid (SA) is one of the top potential 
value-added chemicals that can be produced biotechnologically from biomass resources 
[2,3]. More interestingly, SA as a high-value platform chemical can be co-produced with 
high-yield products such as biofuels via integrated biorefinery approaches [4,5] that could 
offset the process cost [6] and also alleviate waste management issues. In fact, the appli-
cation of SA ranges from being a specialty chemical in pharmaceutical, food and agricul-
tural areas to being a precursor for industrially important bulk chemicals [7,8]. Among 
the well-known SA producers are natural host rumen bacteria, model microorganisms 
and non-conventional microbial cell factories. To this end, Actinobacillus succinogenes, be-
ing one of the best natural SA producers, has been given more emphasis in the current 
review. 

From the pre-genomic era to date, the metabolic control and optimization of envi-
ronmental conditions have been implemented in the microbial production of value-added 
commodities. However, obviously, there are other complicated genotypic traits that are 
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beyond the appliance of these strategies. In addition, traditional mutagenesis and screen-
ing methods have also been employed in the development of improved strains to produce 
desired products [9]. The success stories of these traditional methods in strain improve-
ment are still undeniable. However, despite being time- and resource-consuming, they 
could also pose some problems such as the possession of undesired mutations [10], un-
controlled multiple traits, and irreversible damage to the host cell [11]. Furthermore, Lee 
et al. explained that it could be challenging to recognize which genes have to be manipu-
lated from many lists of genes of a given organism to generate the desired phenotype [12]. 
On the other hand, taking advantage of technological advancements in high-throughput 
(HT) techniques and the availability of vast genomic data provides a new paradigm for 
the rational design of cell factories via the development of predictive mathematical mod-
els [9,13]. Hence, these mathematical models would assist in predicting in silico outcomes 
of genetic and phenotypic traits rather than choosing desired strains resulting from tedi-
ous random mutagenesis [9]. Besides, in silico metabolic models combined with other 
computational, evolutionary and comparative genomic analyses could serve as proof-of-
concept for the successful metabolic engineering of cell factories for the synthesis of de-
sired products such as SA [12,14].  

Despite the availability of numerous studies and huge potential applications, there is 
a lack of up-to-date comprehensive reviews covering the implications of in silico meta-
bolic modeling in SA production. The only claimed review in this regard was first pub-
lished online at the end of 2016 [14]. Therefore, the current study included topics that were 
not discussed in the previous review, viz., A. succinogenes, new advancements and pro-
spective in this area. This review presented highlights on advancements of research and 
development (R&D), metabolic pathways and in silico studies generally on SA production 
and specifically regarding A. succinogenes. Finally, the status quo and future perspectives 
of in silico metabolic modeling in SA production were summarized. We believe this re-
view can be taken as the first step (from the lists below) in the quest towards the develop-
ment of robust SA-producing hosts by applying computational methods: (1) understand, 
summarize the current scenario, identify gaps and suggest possible prospects, (2) design 
and employ state-of-the-art models, (3) validate via experimentation and literature, and 
(4) implement an in silico model in vitro and in vivo. 

2. Major R&D Advancements on SA and A. succinogenes  
When we look back to timelines of SA, its discovery, application and production 

should be assessed. Figure 1 demonstrates major milestones in the history of SA and A. 
succinogenes. To begin with, documents revealed that SA was first purified in 1546 by dis-
tillation from amber (SA is also known as amber acid), and since then it has been used for 
various applications [15,16]. However, until recently, the majority of SA has been derived 
from petroleum-based sources. Encouragingly, SA was proposed twice as “top value-
added chemicals from biomass” in 2004 [2] and in the revised 2010 [3] studies. Following 
this, the first commercial bio-based SA production plants were launched and it was re-
ported that these companies contributed half of the annual global SA production [17,18]. 
As far as A. succinogenes is concerned, a patent for the production of SA using this strain 
was registered in 1996 [19], and the first strain isolated from bovine rumen was published 
in 1999 [20].  
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Figure 1. Major timelines of succinic acid and A. succinogenes. The shaded boxes represent A. succinogenes. The numbers 
represent the sources of the studies: 1 [15,16], 2 [21], 3 [22], 4 [23], 5 [24], 6 [19], 7 [25], 8 [20], 9 [2], 10 [26], 11 [27], 12 [27], 
13 [8], 14 [18], 15 [3], 16 [28], 17 [29], 18 [30]. 

A literature survey was conducted using the Web of Science database against the 
terms “succinic acid” and “Actinobacillus succinogenes” separately, employing the “Basic 
Search” option. According to the search results, there were 19,338 and 426 studies about 
SA and A. succinogenes, respectively. Figure 2 shows the number of these publications fil-
tered from 1999 to 2020. The research trends of SA revealed that the number of publica-
tions has increased chronologically with slight exceptions. For instance, the number of 
studies in 2018 (the highest) was increased almost 5-fold compared with the 1999 coun-
terpart. This is, in fact, one indication of the attraction of the subject matter to the scientific 
community. Unlike SA, the number of studies on A. succinogenes indicated yearly fluctu-
ations, with only one published study in 2000 and the absence of publications in the next 
two consecutive years. Additionally, the number of publications has increased dramati-
cally since 2007, which coincided with the release of A. succinogenes’ genome sequence to 
GenBank (Figure 1). As a matter of fact, from the total number of publications regarding 
A. succinogenes, more than 96% of them have been disseminated since the aforementioned 
year. This shows that the aftermath of the availability of the organism’s genomic data has 
led to a significant growth of interest and opened a new avenue in research. It is worth 
mentioning that genomic data are also a stepping stone for in silico metabolic modeling, 
which is the core theme of this review. Moreover, the highest number of publications for 
both SA and A. succinogenes was recorded in 2018 (Figure 2). 
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Figure 2. Literature survey results on succinic acid and A. succinogenes. The inset graph represents A. succinogenes. 

3. Succinic Acid Production Pathways  
It is important to have an unequivocal understanding about SA production pathways 

before directly moving to the topic of metabolic modeling. This is partly because finding 
appropriate biochemical pathways from the metabolic network represents the most chal-
lenging task in computational metabolic modeling [31]. Therefore, the realization of the 
participating pathways in SA production is a crucial step to develop plausible metabolic 
models and implement the existing ones accordingly. In line with this, applying accumu-
lated knowledge of metabolic pathways combined with the optimization of fermentation 
processes and other advanced techniques has enabled the development of efficient strains 
capable of producing target products with high efficiency [32,33]. 

The tricarboxylic acid (TCA) cycle is among the major biochemical hubs with inevi-
table functions in the cell mainly for energy generation and precursor synthesis [34]. Ob-
viously, being an intermediate compound of the TCA cycle [35], it is possible to infer that 
almost all living things can produce SA, whereas the choice of host strain relies on SA 
being the major end product and, so far, rumen microbes such as A. succinogenes are po-
tentiality considered as the best natural SA producers [36]. In general, based on the down-
stream metabolites of glycolysis and the TCA cycle, there are three pathways that lead to 
SA production, namely the reductive and oxidative branches of the TCA cycle and the 
glyoxylate shunt (GS) (Figure 3). Accordingly, various organisms follow one or more of 
these routes to produce SA. This diversity may arise due to the absence and/or inactiva-
tion of certain enzymes, environmental conditions (e.g., mode of fermentation) or any 
other reasons. However, interestingly, it is possible to manipulate biochemical pathways 
by adding novel routes, redirecting existing pathways or removing unnecessary ones 
through genetic engineering to construct efficient tailor-made cell factories. What is more 
fascinating is if the TCA cycle has to be exploited for chemical production, SA is the best 
candidate to be produced with maximum possible routes, whereby the two branches of 
the TCA cycle are linked via the GS [34] (Figure 3).  
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Figure 3. Major metabolic pathways of succinic acid production. The numbers represent alternative routes towards suc-
cinic acid. 

Phosphoenolpyruvate (PEP) and pyruvate are important branching nodes for SA 
production. As shown in Figure 3, the reductive branch of the TCA cycle possibly splits 
from these nodes and is directed towards SA predominantly by carboxylation reaction. In 
total, four routes are shown in Figure 3, with two routes from each node represented by 1 
to 4. Route 1 and 2 depict the route from PEP to oxaloacetate (OAA), catalyzed by PEP 
carboxylase and PEP carboxykinase. Route 3 and 4 are directed from pyruvate to OAA 
and malate, catalyzed by pyruvate carboxylase and malic enzyme, respectively. All in all, 
this pathway is active under anaerobic conditions and covers TCA cycle intermediate me-
tabolites of OAA, malate, fumarate and SA as an end product. The detailed reactions and 
mechanisms have been reported in previous publications [34,37–39]. Microbes may pos-
sess one or more of these alternative pathways, and their efficiencies in SA production 
have been evaluated previously (Table 1). According to Kim et al., the overexpression of 
PEP carboxykinase from A. succinogenes’ genome to Escherichia coli improved SA produc-
tion compared with the native PEP carboxylase [40]. The common byproducts of SA pro-
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duction (formate, acetate, lactate and ethanol) occur at the C3 pathway diverted from py-
ruvate and acetyl-CoA and cause the competition of carbon flux between the product for-
mation C4 pathway (reductive TCA pathway) and byproduct formation C3 pathway (Fig-
ure 3). Researchers attempted to overexpress one or more of the above-mentioned carbox-
ylation enzymes and could enhance SA production and reduce byproduct formations 
through redirecting carbon flow towards SA-producing reductive branches of the TCA 
cycle [38,41–43].  

Table 1. A few examples of metabolic pathways employed for succinic acid production. 

Production 
Route Pathway Construction Microorganism Reference 

Reductive TCA 
cycle (RT) 

Inactivate lactate and acetate formation 
pathways and overexpress pyruvate 

carboxylase gene (pyc) 

Corynebacterium 
acetoacidophilum 

[44] 

 Activate enzymes of RT Lactobacillus plantarum [45] 
 Overexpress pyc C. glutamicum [46] 

Oxidative TCA 
cycle (OT) 

Delete succinate dehydrogenase (SDH) 
gene (sdh) 

Yarrowia lipolytica [47] 

 
Overexpress genes in the PPP for xylose 

utilization and delete sdh 
Y. lipolytica [48] 

Glyoxylate 
shunt (GS) 

Reverse PEP carboxylase via deletion of 
sdh and overexpress genes involved in 

GS 
E. coli [49] 

 

Activate GS via inactivation of SA 
biosynthetic byproduct (lactate, acetate, 

formate and ethanol) formation-
encoding genes 

E. coli [50] 

RT-OT (TCA) 

Disrupt genes of aconitase, fumarate 
reductase, alpha ketoglutarate 

dehydrogenase, SDH, fumarase, 
isocitrate lyase and fumarate reductase 

S. cerevisiae [51] 

 
Delete ptsG and genes of SA biosynthetic 

byproducts and overexpress PEP 
carboxykinase  

E. coli [52] 

RT-GS 
Overexpress genes in the PPP for xylose 

utilization, pyc, citrate synthase and 
succinate exporter 

C. glutamicum  [53] 

 Delete genes of SDH (sdh1 and sdh2) and 
isocitrate dehydrogenase (idh1 and idh2) 

S. cerevisiae [54] 

OT-GS 
Delete genes of SDH, IDH and acetate-

producing pathway 
E. coli [55] 

 
Delete genes of SDH and acetate-

producing pathway and overexpression 
of pyc and PEP carboxylase  

C. glutamicum [56] 

TCA-GS (RT-
OT-GS) 

Delete genes of SDH and acetyl-CoA 
transferase and overexpression of key 

enzymes of RT, OT and GS 
Y. lipolytica [41] 

 
Kinetic study including RT, OT, GS and 

other pathways 
E. coli [57] 

PPP: pentose phosphate pathway. 

In the oxidative TCA cycle, pyruvate enters into the TCA cycle via acetyl-CoA and is 
converted to citrate, isocitrate and eventually to SA under aerobic fermentation, as shown 
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in Figure 3 route 5. Likewise, SA production using GS, shown in Figure 3 route 6 and 7, is 
catalyzed by isocitrate lyase and malate synthase, respectively. This pathway also oper-
ates optimally under aerobic conditions. The central metabolic pathway of A. succinogenes 
lacks GS, and the TCA cycle is also incomplete due to the absence of oxidative TCA cycle 
enzymes of citrate synthase and isocitrate dehydrogenase [8] (Figure 4). Hence, the wild 
strain depends entirely on the reductive branch of the TCA cycle for SA production. Table 
1 demonstrates SA production by various microorganisms using the aforementioned 
three major pathways and their combinations. It is also worth noting that each route has 
merits and demerits. In this regard, Raab et al. explained that the concurrent operation of 
oxidative and reductive routes appears to be more advantageous than exclusively oxida-
tive or reductive, compromising the advantages and disadvantages of each pathway [58]. 
As a remark, the final goal of metabolic modifications should be to maximize SA produc-
tion and at the same time minimize/eliminate byproduct formation to achieve a homo-SA 
production system.  

 
Figure 4. Central metabolic pathway of A. succinogenes. The green dashed box represents the reductive TCA cycle (C4) for 
succinic acid production (incomplete TCA cycle) and the red dashed box represents the byproduct formation routes (C3). 
Numbers represent enzymes involved in the metabolic reactions: 1, PEP: glucose phosphotransferase or hexokinase; 2, 
PEP carboxykinase; 3, malate dehydrogenase; 4, fumarase; 5, fumarate reductase; 6, pyruvate kinase; 7, lactate dehydro-
genase; 8, pyruvate dehydrogenase; 9, pyruvate-formate lyase; 10, formate dehydrogenase; 11, phosphotransacetylase; 12, 
alcohol dehydrogenase; 13, acetyl-kinase; 14, acetaldehyde dehydrogenase. See the abbreviations in the designated section 
“Abbreviations”. 
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4. Metabolic Models of SA Producers  
This section describes the developments of in silico metabolic modeling in selected 

SA-producing strains. The detailed description of various computational methods of met-
abolic modeling is not within the scope of this review as these concepts have been ex-
haustively reviewed elsewhere [9,10,14,59–64]. Scholars have proposed several metabolic 
modeling approaches and each method comes with intrinsic advantages and disad-
vantages. Hence, the application of a specific modeling strategy should consider viable 
parameters accordingly. In fact, various resources are publicly available for users to en-
gage with for such purposes. For the sake of convenience, Copeland et al. [65], Jing et al. 
[66] and O’Shea et al. [67] listed out databases, software tools, resources, etc., that could 
be employed for metabolic modeling studies. Combining accumulated biological 
knowledge, experimental studies, genomic information and appropriate aforementioned 
computational inputs, one can possibly execute a metabolic model of a particular biocat-
alyst for target product synthesis.  

Metabolic modeling studies can be generally based on either of the two broad as-
sumptions or their combinations: dynamic/kinetic and static/stoichiometric/steady-state 
[9,68]. The former describes the variation of metabolites with time by applying differential 
equations, while the latter assumes that the production and loss of metabolites are equal, 
resulting in net zero production [31,61]. Kinetic models require a myriad of experimental 
data for enzyme rate parameters. On the contrary, constraint-based metabolic models, un-
der the assumption of steady-state conditions, involve fundamentally fewer parameters 
for construction [61]. Hence, this model is commonly employed for the metabolic synthe-
sis of desired products including SA.  

Flux balance analysis (FBA) based on constraints has become a universally applicable 
strategy for metabolic studies [68,69]. In FBA, the flow of metabolites in the metabolic 
network is analyzed using mathematical approaches. In principle, in silico approaches are 
executed at dry labs and these simulation results could provide theoretical backgrounds 
to move to wet labs for the actual experimental studies. This is because of the presence of 
a plethora of conditions that are practically challenging or even impossible to be tested 
experimentally in vitro or in vivo. Metabolic models of SA-producing microbes from the 
very earliest study by Lee et al. [70] to the latest ones are listed chronologically in Table 2. 
Most of the computational studies were basically focused on non-native strains such as E. 
coli to explore the metabolic capabilities of microbes and hunt for efficient ways to pro-
duce SA. These metabolic models led to the identification and construction of alternative 
SA pathways (as discussed in the above section) and finally the development of model-
guided experimental strategies for enhanced SA production. To begin with, in probably 
the first in silico study for SA production, Lee et al. constructed a metabolic pathway of E. 
coli and further conducted metabolic flux analysis (MFA) to calculate flux distributions 
for the maximum possible SA yield [70]. MFA results of this study revealed that the theo-
retical SA yield could be improved through recruiting the pyruvate carboxylation path-
way (see Figure 3, route 4) rather than the native PEP carboxylation. Interestingly, this 
theoretical assumption was ultimately validated by experimental set ups.  

Table 2. In silico metabolic studies on succinic acid-producing microorganisms. 

Organism In Silico Operation and Purpose Year Reference 

E. coli 
Metabolic flux analysis (301 reactions and 294 metabolites) to attain the highest 

in silico SA yield 2002 [70] 

M. succiniciproducens 
Genome-scale flux analysis (373 reactions and 352 metabolites) to determine the 

general genome-scale metabolic characteristics 2004 [71] 

E. coli 
Metabolic flux analysis (310 reactions and 295 metabolites) to predict volumetric 

rates of intracellular metabolites  2004 [72] 

E. coli  
Comparative genomic analysis to estimate the relationship between the 
maximum biomass and SA production in metabolically modified strains  2005 [73] 
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E. coli 
Genome-scale in silico aided metabolic analysis and flux comparisons to 

determine the in silico optimal SA production pathway 2006 [74] 

M. succiniciproducens 
Genome-scale metabolic analysis (686 reactions and 519 metabolites) for 

genome-scale analysis and designing efficient metabolic engineering studies 2007 [75] 

M. succiniciproducens 
Constraints-based flux analysis of genome-scale metabolic model to evaluate the 

production patterns of various organic acids against variable rates of glucose, 
CO2 and H2 

2009 [76] 

A. niger 
Genome-scale stoichiometric metabolic model to identify target genes for 

metabolic manipulation and redirect the pathway towards SA production route 2009 [77] 

E. coli 
Genome-scale thermodynamics-based flux balance analysis to predict the 

maximum biomass and SA flux  2011 [52] 

S. cerevisiae 
Genome-scale metabolic model and flux balance analysis to establish SA 

overproduction strategies 2013 [78] 

S. cerevisiae 
Genome-scale metabolic network reconstruction to predict gene deletions that 

can couple enhanced biomass and SA production 2013 [79] 

Basfia 
succiniciproducens Metabolic flux analysis to identify undesired fluxes and improve SA yield  2013 [80] 

E. coli 
Metabolic network construction (65 reactions and 44 metabolites) to evaluate the 

effect of the carboxylation reactions on SA production 2014 [39] 

A. succinogenes  
Metabolic model (27 reactions and 28 metabolites) for SA production using a 

mixture of glucose and xylose substrates 2014 [81] 

E. coli  
Kinetic model prediction to predict response to multiple environmental 

perturbations and overproduction of SA  2015 [57] 

E. coli Optimization algorithm and flux balance analysis to identify a set of genes for 
deletion to improve SA and lactic acid productions  2015 [82] 

E. coli  
Genome-scale metabolic core model to reconstruct the metabolic fluxes and 

evaluate the characteristics so as to improve SA production and reduce 
byproduct formation 

2016 [83] 

E. coli 
Genome-scale metabolic model and Minimization of Metabolic Adjustment 

algorithm to improve the strain and increase SA production using glucose and 
glycerol substrates  

2016 [84] 

E. coli 
Genome-scale metabolic model to evaluate the effect of gene deletion for 

enhanced SA production 2016 [85] 

M. succiniciproducens 
Genome-scale metabolic simulations to identify gene targets to be engineered for 

enhanced nearly homo-SA production 2016 [86] 

M. succiniciproducens 
Genome-scale metabolic flux analysis, omics analyses and metabolic 

reconstruction to develop a high-yield homo-SA-producing strain by metabolic 
engineering and carbon source optimization  

2016 [87] 

A. succinogenes 
Thermodynamically constrained metabolic flux analysis to demonstrate the 

effect of environmental conditions on metabolic fluxes 2016 [88] 

E. coli 
Simulation and reaction expression analysis to identify genetic strategies for 

overproduction of SA 2017 [89] 

E. coli and A. 
succinogenes 

Dynamic flux balance analysis to estimate the maximum theoretical productivity 
of a batch culture system 2017 [90] 

E. coli 
Metabolism–downstream coupled model for metabolic engineering of the strain 

to produce SA using glycerol substate 2018 [91] 

E. coli and Z. mobilis 
Hybrid of differential search algorithm and flux balance analysis to identify 

knockout relations for enhanced SA production 2018 [92] 

E. coli Genome-scale metabolic model to predict gene deletion for enhanced SA 
production using glycerol substrate 2018 [93] 
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E. coli and S. cerevisiae 
Hybrid of optimization algorithm and genome-scale metabolic models to predict 

the near-optimal set of gene deletions for overproduction of SA 2018 [94] 

A. succinogenes  
Comprehensive carbon metabolism model (375 reactions) to analyze the 

metabolism and predict knockout strategies for maximum SA production with 
maintaining the cell growth 

2018 [95] 

A. succinogenes 
Genome-scale metabolic model to evaluate the metabolic capability of the strain 

to produce SA under various conditions 2018 [30] 

Zymomonas mobilis 
Genome-scale metabolic model to characterize SA-producing capability and 

comparatively identify gene deletions for enhanced SA production 2018 [96] 

E. coli 
Optimization modeling to identify near-optimal knockout genes for the 

maximum production of SA  2020 [97] 

Aspergillus niger 
Integration of genome-scale metabolic model with dynamic modeling and 

genetic algorithm to provide simpified gene deletion strategies for the complex 
evolutionary goals containing multiple targets  

2020 [98] 

M. succiniciproducens 
Flux variability scanning using genome-scale metabolic model to identify 

amplification target genes for improved SA production  2020 [99] 

Likewise, other potential microbes were also evaluated for their metabolic capability 
of SA production. The fundamental difference in these in silico studies, besides the algo-
rithms employed, is the scope of metabolic network coverage. The scope could range from 
central carbon, intermediate, to genome-scale metabolic models. Genome-scale metabolic 
models (GEMs) are by far the most inclusive models that can help us to predict system-
wide phenotypic and genotypic traits so as to facilitate the manipulation of the metabolic 
network of an organism [13]. Herewith, we have included GEMs of the most commonly 
employed SA-producing microorganisms (Table 3). As it can be seen in Table 3, each ver-
sion (if any) of GEM of a given microbe evolves with the incorporation of more metabo-
lites, metabolic reactions, genes and so forth (in reference to the previous version) in the 
quest towards the construction of the most comprehensive model. In this regard, recent 
reviews pointed out that E. coli’s GEM appears to be the most complete [59] and the best 
validated [100] so far. On top of other advantages, one beauty of GEM construction is that 
it can be applied not only for specific target products like SA, but it can also be used for 
any aspects of studies of an organism. The GEMs shown in Table 3 may not be necessarily 
constructed for the purpose of SA production. Therefore, the public availability of the 
GEMs can be used as a reference (1) for the construction of their latest version, (2) to ma-
nipulate the organism’s metabolism for tailored studies and (3) to design GEMs for other 
related stains and purposes. Moreover, the availability of multiple GEMs of an organism 
may assist in picking the most suitable model based on specific interest. For instance, 
Agren et al. [78] considered the earliest GEM (iFF708) [101] to metabolically engineer S. 
cerevisiae for SA production, despite the availability of other latest models. The authors 
explained that they chose this model because it focuses on central carbon metabolism and 
includes relatively small subcellular compartments, which favors it for SA production 
studies. The power of in silico metabolic modeling has also been seen in a recent SA pro-
duction study using M. succiniciproducens as a biocatalyst. In this research, GEM [75] was 
analyzed to characterize malate dehydrogenase (MDH) and finally the overexpression of 
genes encoding MDH led to the production of the highest overall SA reported to date [99]. 
This is one of the latest tangible pieces of evidence of applications of model-guided in 
silico studies in the journey of developing industrially compatible SA-producing strains. 
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Table 3. Genome-scale metabolic models of A. succinogenes and other selected succinic acid producers. 

 
Genome Size 

(bp) 
Total 

#Genes 
Model 

Version Year 
#Genes in the 

Model #Metabolites #Reactions 
ORF 

Coverage (%) Reference 

A. succinogenes 2,319,663 2210 iBP722 2018 722 713 1072 35.00 [30] 
M. succiniciproducens 2,314,078 2384 - 2004 335 352 373 14.05 [71] 

   - 2007 425 519 686 17.83 [75] 
C. glutamicum 3,282,708 3002 ModelCg1 2008 247 411 446 8.23 [102] 

 3,282,708 3002 ModelCg2 2009 277 423 502 9.23 [103] 
 3,292,392 3015 iJM658 2015 658 984 1065 21.82 [104] 
 3,282,708 3002 iC773  2017 773 950 1207 25.57 [32] 

E. coli 4,641,652 4453 iJR904 2003 904 625 931 20.30 [105] 
 4,641,652 4453 iAF1260 2007 1260 1039 2077 28.30 [106] 
 4,639,675 4325 iJO1366 2011 1366 1136 2251 31.58 [107] 
 4,639,675 4420 iOL1650-ME 2013 1541 6563 12009 34.86 [108] 

S. cerevisiae 12,261,038 6183 iFF708 2003 708 733 1175 16.00 [101] 
   iIN800 2008 800 1013 1446 17.20 [109] 
   iMM904 2009 904 1228 1412 19.65 [110] 
   iTO977 2013 977 1353 1566 21.24 [111] 

#number; ORF: open reading frame. 

5. Attempts at Metabolic Modeling of A. succinogenes  
Despite the fact that excess studies have been published on the optimization of up-

stream, midstream and downstream processing steps of SA production using A. suc-
cinogenes, the application of in silico study on this microorganism has not yet been covered 
as expected. Additionally, one of the core objectives of this study is to expose the current 
status of computational studies on the development of this biocatalyst and inspire schol-
ars to engage with the topic straightaway. In our previous review [11], we identified six 
major bottlenecks for industrial application of this strain: (1) byproduct formation, (2) aux-
otrophy, (3) pH sensitivity, (4) dearth of metabolic engineering tools, (5) redox imbalance 
(NADH limitations) and (6) product inhibition. Several attempts have been assessed to 
overcome these challenges. However, almost all of these efforts were fragmented and te-
dious in a way to solve these grand challenges with commonly employed traditional 
methods. Therefore, developing well-organized systematic strategies though computa-
tional approaches is crucial to alleviate these situations.  

As shown in Tables 2 and 3, there are very few in silico studies in general and only 
one GEM specifically regarding A. succinogenes. The majority of modeling studies were 
based on glucose metabolism focusing on the central carbon (specifically glycolysis and 
TCA cycle) pathways. This is most probably because glucose is the most preferable carbon 
source of the strain and the two pathways harbor the most important steps in the SA pro-
duction process. Examples of non-glucose-based metabolic modeling studies include xy-
lose [112,113], sugar mixture [113] and glycerol [88,114]. In general, the metabolic model-
ing study timeline of A. succinogenes could be seen by dividing it into two major separate 
eras as pre- and post-genomic. The fundamental research during the pre-genomic [115–
117] and genomic [8] metabolic modeling studies of A. succinogenes was led by McKinlay 
et al. In the pre-genomic era, metabolic studies were essentially based on isotope labeling 
experiments. In the first study, a chemically defined medium was created to evaluate the 
intracellular metabolic flux and predict the SA production metabolic map of A. suc-
cinogenes using 13C labeling experiments [115]. Later on, the strain’s metabolic pathways 
and fluxes were determined by spectrometry (gas chromatography–mass spectrometry 
and nuclear magnetic resonance) through C-labeled product isotopes [116]. In the subse-
quent study, MFA was performed to estimate the influence of carbon dioxide and reduct-
ant concentrations on the strain’s metabolism [117]. All the above three experiments were 
based on C-labeled glucose substrate, in which the first one provided insights on the gen-
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eral SA production metabolism, the second focused on the product/byproduct metabo-
lism and the last one emphasized the intermediate metabolites. Obviously, the results of 
these in vitro experiments could be viable assets for the construction and validation of the 
upcoming in silico metabolic studies after them.  

The release of the complete genome sequence of A. succinogenes 130Z [8] was a phe-
nomenal motivation for researchers to undergo progressive experiments and attempt a 
few in silico analysis studies as well. Remarkably, the output has been further stretched 
beyond this strain in a way that powerful genes of A. succinogenes were transferred into 
other microorganisms to develop efficient SA-producing cell factories. Besides, these se-
quence data could be applied in comparative genomic studies of related microbes. The 
post-genomic metabolic modeling studies are shown in Table 2. Rafieenia developed the 
metabolic model of A. succinogenes composed of 27 reactions and 28 metabolites with a 
sugar mixture of glucose and xylose by applying MFA via a computational technique [81]. 
Furthermore, constrained [88] and dynamic [90] MFA methods were employed to deter-
mine flux ranges and maximum productivity in A. succinogenes metabolism, respectively. 
Clearly, previously discussed modeling studies were all limited at the central carbon me-
tabolism boundaries. Hence, the development of models with more inclusive and higher 
predictive power was needed. Nag et al. developed an extended intermediate model that 
contained nucleic acid, amino acid, lipid and glycogen metabolisms in addition to the cen-
tral carbon metabolism [95]. However, this model still did not explicitly incorporate all 
the known metabolic pathways of A. succinogenes to have a comprehensive understanding 
of the strain’s metabolism. At last, the first and only GEM (iBP722) of A. succinogenes was 
published [30] two decades after the first GEM (i.e., Haemophilus influenzae) was released 
[118]. To date, to the best of our knowledge, there is no experimental study based on this 
GEM. All in all, advancements of in silico metabolic modeling of A. succinogenes upgraded 
from the first 27 reactions to 375 and finally a GEM with 1072 reactions (Tables 2 and 3). 
The next model is expected to consider these achievements as frameworks and will be 
designed thereof.  

6. Perspectives and Conclusions  
Beholding the magnificent characteristics of computing such as the speed, versatility, 

accuracy and more, in silico study of metabolic modeling is generally priceless. We have 
listed some of the advancements, existing gaps and future outlooks in the development 
of computational methods for effective SA production (Table 4). The accumulated exper-
imental data can be principally helpful to construct and validate in silico metabolic mod-
els. In the case of A. succinogenes, the majority of the modeling study relied on isotope 
labeling on a glucose substrate. The limitation of this approach is its restriction to only 
core metabolic networks so that it is unable to move forward to a GEM [119]. Besides, in 
such studies, non-glucose substrates were overlooked and this could impact the notion to 
exploit all available bioresources for SA production. Bear in mind that one of the fascinat-
ing advantages of A. succinogenes as an SA-producing biocatalyst is its utilization of a wide 
range of substrates.  

Table 4. Opportunities, gaps/challenges and perspectives for in silico metabolic modeling of suc-
cinic acid production. 

Opportunities/Advancements Gaps/Challenges Perspectives/Recommendations 

 Availability of sufficient ex-
perimental data * 

 Limited study 
on non-glucose 
substrates  

 Modeling more non-glucose-
based metabolism  

 Sequence and omics data  Confined at the-
oretical stage 

 More GEMs and other models 
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 Resources, database and soft-
ware tools 

 Limited number 
of metabolic 
models  

 Model-guided metabolic engi-
neering  

 Advantages of the strain over 
the other related organisms* 

 Auxotrophy and 
other draw-
backs* 

 Explore metabolic pathways to 
avoid auxotrophy * 

 Lessons learned from existing 
models 

 Appropriate 
computational 
method   

 Adopt genomic modeling stud-
ies  

 High-throughput (HT) tech-
niques 

 Operation skill 
for some HT 
techniques 

 New computational tools and 
strategies 

 High-performance computing 
(HTC) 

 Cost and opera-
tion skill for 
HPC 

 Collaboration from various dis-
ciplines  

   Develop user-friendly and cost-
effective instruments 

* more emphasis on A. succinogenes. 

Progress in in silico modeling is related to advancements in biotechnological HT tech-
niques and access to omics data, bioinformatics tools and resources and literatures inte-
grated with high-performance computing (HPC) systems. This is an interdisciplinary ap-
proach that needs collaboration from various experts from life, chemical and physical sci-
ences and computational, mathematical and other backgrounds. In case technical gaps in 
HT and HPC and other issues are encountered, this could apparently be addressed by 
these collaborations and lessons learned from previous models. It is worth mentioning 
that the final goal of in silico modeling is to develop metabolically capable organisms for 
the large-scale production of target products. Nonetheless, most of the previous compu-
tational studies, particularly on SA production, remained at the theoretical stage. Evi-
dently, a review by Valderrama-Gomez et al. [14] verified that only approximately 38% of 
the reported studies in the temporal years between 2002 and 2016 could be experimentally 
tested from the total computational studies. Unfortunately, none of them were the exact 
applications of their corresponding in silico predictions. It is recommended to construct 
highly predictive models, and this model should guide metabolic engineering strategy to 
achieve the outline goal: in silico → in vitro → in vivo.  

As far as A. succinogenes is concerned, taking overwhelming advantages of this strain 
over other SA-producing strains and research advancements discussed in our previous 
review [11] and points raised here, it is crucial at this point to design an industrially robust 
biocatalyst of its kind.  
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Abbreviations 
AcAld acetaldehyde 
ATP adenosine triphosphate 
C4 4 carbon 
e.g., example 
F-6-P fructose-6-phosphate 
G-3-P glyceraldehyde-3-phosphate 
GEM genome-scale metabolic model 
HPC high-performance computing 
IDH isocitrate dehydrogenase 
NADH nicotinamide adenine dinucleotide 
OAA oxaloacetate 
PEP phosphoenolpyruvate 
PPP pentose phosphate pathway 
pyc pyruvate carboxylase gene 
R&D research and development 
Ru-5-P ribulose-5-phosphate 
SA succinic acid 
TCA tricarboxylic acid 
AcP acetylphosphate 
C3 3 carbon 
CO2 carbon dioxide 
F-1,6-P fructose-1,6-bisphosphate 
FBA flux balance analysis 
G-6-P glucose-6-phosphate 
GS glyoxylate shunt 
HT high throughput 
MFA metabolic flux analysis 
NADPH nicotinamide adenine dinucleotide phosphate 
OPR open reading frame 
Pi inorganic phosphate 
ptsG PEP-dependent phosphotransferase system glucose-specific gene 
Pyr pyruvate 
Rbo-5-P ribose-5-phosphate 
S-7-P sedoheptulose-7-phosphate 
SDH succinate dehydrogenase 
X-5-P xylulose-5-phosphate 
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