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Abstract: A growing awareness of global climate change has led to an increased interest in investi-
gating renewable energy sources, such as the anaerobic digestion of biomass. This process utilizes
a wide range of microbial communities to degrade biodegradable material in feedstock through a
complex series of biochemical interactions. Anaerobic digestion exhibits nonlinear dynamics due
to the complex and interacting biochemical processes involved. Due to its dynamic and nonlinear
behavior, uncertain feedstock quality, and sensitivity to the process’s environmental conditions,
anaerobic digestion is highly susceptible to instabilities. Therefore, in order to model and operate a
biogas production unit effectively, it is necessary to understand which parameters are most influential
on the model outputs. This also reduces the amount of estimation required. Through a scoping
review, the present study analyzes the studies on the application of sensitivity analysis in anaerobic
digestion modeling. Both local and global sensitivity analysis approaches were carried out using
different mathematical models. The results indicate that anaerobic digestion model no.1 (ADM1)
was the most commonly used model for analyzing sensitivity. Both local and global sensitivity
analyses are widely employed to investigate the influence of key model parameters such as kinetic,
stoichiometric, and mass transfer parameters on model outputs such as biogas production, methane
concentration, pH, or economic viability of the plant.
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1. Introduction

Anaerobic digestion (AD), a biochemical process, is well-recognized as an alternative
method for recycling and treating organic wastes while generating bioenergy [1]. The
application of AD has been widespread in several fields over the last few decades. It
is possible to produce usable biogas as a source of clean energy through AD [2]. As a
sustainable, renewable, and carbon-neutral energy source, the anaerobic digestion of biogas
has been demonstrated to be an effective method of reducing the world’s carbon footprint,
as well as its reliance on fossil fuels [3].

Several anaerobic digestion models have been developed over the past few decades.
Emebu et al. [4] reviewed different AD models and classified them into single-equation
or multi-step dynamic models. Typically, single-equation models are simple, requiring
a limited number of inexpensive experiments to fit the curves and making them easily
applicable for simulation and control. Models based on one equation assume that biogas can
be produced from feedstock without incorporating the various biochemical, mass transfer,
and physicochemical processes involved. The single-equation method can be categorized
into dynamic, cumulative, and multi-regression single-equation models. In contrast, the
multi-step dynamic model incorporates more than one sequentially interconnected dynamic
equation to account for many AD process phenomena. Many equations are involved
in biogas production prediction, including microbial growth, feedstock and substrate
utilization, biogas formation and evolution, etc. The multi-step dynamic model can be
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classified into single-step, two-step, and multi-step degradation models. A single-step
degradation model (SSDM) is a simplified model that can be used to evaluate biogas yield
from a substrate directly. Two-step degradation models (TSDM), also known as AM2
models, are ideal for monitoring and controlling software sensors and AD systems. The
multi-step degradation model (DSDM) represents the most comprehensive AD model that
incorporates reaction dynamics for all intermediates.

Mathematical models for AD were first proposed by Eastman and Ferguson [5] in
the early 1980s. Based on ordinary differential equations (ODE) systems, they primarily
modeled biochemical processes occurring in AD reactors, and in order to reduce the model
complexity, different simplifications and assumptions were made [6]. Model development
continued for several decades, and several approaches were consolidated during this
time. For years, the mathematical modeling of AD processes has been challenging for the
scientific community [7]. The International Water Association (IWA) task group developed
the anaerobic digestion model no.1 (ADM1) in 2002, which offered a unified approach to AD
mathematical modeling [8]. ADM1, as the most popular multi-step degradation model [9],
provides a structured mathematical representation of complex processes in converting
organic substrates into methane, CO2, and inert byproducts (biogas) [10]. It is important to
note that, while the ADM1 does not cover all processes involved in the AD process (such
as precipitation of solids and sulfur reduction), it is intended to provide predictions that
are as accurate as possible and can be used to develop, operate, and optimize the anaerobic
digestion process [11]. There are several steps involved in ADM1 [12]. The first step
involves disintegrating complex solids into soluble and particulate inerts, carbohydrates,
proteins, lipids, and inert substances (a non-biological step) [13]. In the next step, the
disintegration products are hydrolyzed by enzymes, and sugars, amino acids, and long-
chain fatty acids (LCFAs) are the main products. In the acidogenesis process, sugars
and amino acids are fermented to produce volatile fatty acids (VFAs), hydrogen gas, and
carbon dioxide. Lastly, methane is produced both by acetoclastic (cleavage of acetate to
methane) and hydrogenotrophic (reduction of carbon dioxide to methane) methanogenesis
processes [14]. Figure 1 illustrates the reaction path in ADM1, as described in [8].
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Additionally, there are some other models for anaerobic digestion. One of the most
widely used open-source implementations of ADM1 is the Benchmark Simulation Model
number 2 (BSM2), developed in the MATLAB/SIMULINK environment [15]. BSM2 is the
enhanced version of BSM1, which does not allow for evaluating control strategies at the plant
level. The activated sludge models (ASM) [16] and novel approaches such as the process
simulation model (PSM) [17] and GM (1, N), which is a Grey model with N variable.

Identifying the most influential input parameter or variable on the model’s outputs in
a complex model (such as ADM1) with several input parameters and output parameters is
crucial. Sensitivity analysis (SA) is a practical tool for identifying how the outcomes of our
models differ when assumptions are altered. There is a significant fluctuation in the results
when specific assumptions are changed when sensitivity is high; these assumptions must
be extremely well established [18,19]. Moreover, SA can assist in verifying the validity of
model assumptions and identifying the parameters [1,20]. It is also possible to use SA to
calibrate the model parameters to demonstrate a stronger correlation with experimental
data. SA ranks the parameters according to their relevance, and nominal values are assigned
to the parameters with the least influence [6].

As discussed above, in order to determine whether each parameter of a model has
a significant effect on the system’s behavior, sensitivity analysis is commonly used [21].
There are two main types of sensitivity analysis: local and global. Analyzing the impact of
one parameter on the cost function at a time while keeping the other parameters constant
is known as a local sensitivity analysis, and global sensitivity analysis (GSA) examines the
effect of simultaneous variations in model parameters on model outputs [22–24]. Compared
to GSA, local sensitivity analysis (LSA) is very straightforward, can easily be applied
and interpreted, and often requires fewer simulation runs. Global sensitivity analysis
involves varying several input factors simultaneously and evaluating their sensitivity
over the entire range [25]. There are different approaches to conducting a GSA. Tian [26]
provided a classification with four methods: regression, screening-based, variance-based,
and metamodel-based methods. The regression method has the advantage of being easy to
understand and fast to compute. Many indicators can be used for this purpose, usually,
after Monte Carlo is performed, including standardized regression coefficients, partial
correlation coefficients, and their rank transformations. Screening methods are often used
to fix some input factors from a large number of factors without reducing the variance
of the output. Among different screening methods, the Morris method [27] is the most
commonly used approach. By calculating partial derivatives at different locations in the
input variable domain variation, the Morris method overcomes the limitations of the local
SA [28]. In a variance-based analysis, output uncertainty is decomposed according to input
uncertainty. This variance-based method is considered a model-free approach suitable
for complex nonlinear and non-additive models [26]. Although this method has a high
computational cost, it is capable of quantifying the variance of the output caused by each
input as well as considering the interaction effects between variables. Fourier amplitude
sensitivity test (FAST) and Sobol are two commonly used methods [29]. Although the Sobol
method can decompose all output variances, it is much more computationally intensive
than other global sensitivity analysis methods [30]. With the advancements in computing
cost, the metamodel-based method, or surrogate method, has received increased attention
in recent years. These models have been extensively discussed in [31].

Following PRISMA guidelines [32–35], the present study aims to conduct a scoping
review to identify and assess the frequency with which sensitivity analysis approaches are
reflected in anaerobic digestion modeling studies. Therefore, the present study aims to
address the following research questions:

1. What type of sensitivity analysis and what method were addressed?
2. What models of anaerobic digestion were used?
3. How have sensitivity analysis methods been applied to resolve a particular problem?
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2. Research Methodology and Design: Scoping Review

Arksey and O’Malley [31] and Peters et al. [32] proposed a methodological framework
for scoping reviews. This method was employed because it is more rigorous than a traditional
literature review [23]. PRISMA flow diagrams include a report of the papers found at each
stage [36]. As part of PRISMA’s reporting methodology, flow diagrams (Figure 2) are an
established method for systematic and scoping reviews [21,32]. Since the literature identified
is not intended to be critically assessed, this method is neither a mapping review nor a
systematic review. An alternative approach is to present a descriptive and qualitative thematic
analysis. As part of the research process, Figure 1 illustrates these six steps.
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2.1. Review Procedure

The scoping review protocol involves different main stages, such as identifying re-
search questions, selecting studies, charting data, and summarizing and reporting the
results. As illustrated in Figure 1, the following steps were taken under the scoping review
protocol (PRISMA):

1. As seen in Section 1, three research questions were defined.
2. Several trial-and-error searches were performed using scientific databases (Web of

Science, Scopus, and ScienceDirect) to begin the search. Each database’s search
strings are listed below. Web of Science: ALL = ((anaerobic AND digestion) OR adm1
OR bsm2) AND sensitiv* Scopus: TITLE-ABS-KEY ((anaerobic AND digestion) OR
adm1 OR bsm2) AND sensitiv* ScienceDirect: ((anaerobic AND digestion) OR adm1
OR bsm2) AND sensitivity. In the initial search, titles, abstracts, and keywords were
searched with no limit throughout all databases. As a result, 1071, 1011, and 89 studies
(in all categories) were listed in Web of Science, Scopus, and ScienceDirect, respectively.
Asterisks can often be used to increase a search’s search results by indicating terms
with a similar first letter [21]. For example, sensitiv* can find sensitive, sensitivity,
sensitivities, etc. According to the limited number of studies at this stage (with no
limitation), although there is considerable interest in studying anaerobic digestion,
few studies have addressed sensitivity analysis.

3. In order to obtain more precise results at this stage, the search was limited to just
the tile. Therefore, the remaining articles dropped to 18, 21, and 11 for WoS, Scopus,
and ScienceDirect. The limited number of studies at this stage (with no limitation)
reveals that, although there is considerable interest in studying anaerobic digestion,
few studies have addressed sensitivity analysis.

4. Due to the reason above, no limit was applied on the year of publication, and all
studies until September 2022 were considered.
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5. The language of the studies was also limited to English. Despite this, there was no
language other than English, and the number of studies remained the same.

6. The list contained many duplicates. Therefore, after trimming the list and removing dupli-
cates using Microsoft Excel® v2016 (Microsoft, Redmond, WA, USA), only 23 remained.

7. By screening the titles and full text of the studies, eligibility was assessed at two stages.
During the title screening stage, one document was considered non-relevant, and
two articles were eliminated during the full-text screening stage. At this stage,
19 publications were included in the list.

8. In the last step, by backward snowballing, 12 studies were found relevant and added
to the list, and the final list consisted of 31 studies. A snowballing strategy that can be
forward or backward involves identifying additional papers by using the reference
list or citations to a paper [37,38].

After the extraction of bibliographic information, the collected articles were catego-
rized according to the characteristics such as year, country, type of papers, method, and
tools. Section 3 presents a summary of the results. Figure 3 illustrates the results of the
screening process in order to present the retained articles and studies at each stage following
the PRISMA methodology.
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2.2. Limitations

This section discusses the limitations of the study. Three well-known and frequently
used databases (Web of Science, Scopus, and ScienceDirect) were utilized among the
numerous metadata service providers and publishers. Adding additional databases, such
as Google Scholar, would improve results. Additionally, this study only includes journal
and conference papers, as well as book chapters, and not gray literature, white papers,
publicly available records, and technical reports. As discussed in Section 2.1, the search
was limited to the titles only. Commonly, AD studies include sensitivity analysis, but
this study aimed to address studies in which sensitivity analysis dominates. Despite the
English language limitation, all selected studies were in English. Moreover, more extensive
snowballing would enhance the outcome.

3. Results and Discussion

This section provides the descriptive information associated with the latest studies on
performing sensitivity analysis in anaerobic digestion modeling.

3.1. Classification Based on the Publication Year

A year-wise analysis informs the reader about the progress research, and highlights
the researchers’ interest in the subject. Figure 4 illustrates the number of published studies
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since 1984. There were some initiatives in 1984 and 1985, followed by three studies in 2003,
2005, and 2008. The main studies began in 2012, with the highest in 2015, 2019, and 2021
by four studies. Interestingly, as of September 2022, no studies have been registered. One
reason for this low interest could be the huge uncertainties associated with mathematical
modeling. Moreover, as mentioned earlier, the current mathematical models are not
covering all reactions, and because this analysis is mainly based on mathematical models,
it is challenging to interpret the results.
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3.2. Classification Based on the Publication Country

Analysis of the selected publications revealed that 23 countries contributed to this
topic (1984–2022). As seen in Figure 5, the highest contribution belongs to Sweden and
Denmark, with five studies (4 joint publications), followed by Italy, with four studies. Brazil,
Canada, South Korea, and Belgium contributed to three publications. France, Spain, the
USA, China, and Chile had two publications each. Eleven countries were involved in only
one publication each, categorized under “Other Countries.” Norway, Romania, Australia,
Russia, Finland, Iran, Lebanon, Saudi Arabia, the UK, France, South Africa, and Cuba
belong to this category.
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3.3. Classification Based on Document Type

As discussed earlier, this review considered all types of publications, excluding reports
and gray literature. According to Figure 6, there are three types in the selected documents.
Articles have the highest rank of 84%, conference papers have the second-highest rank of
13%, with four studies [39–42], and one thesis [43] makes up only 3%. Book chapters and,
most importantly, reviews were not addressed in the 30 selected studies, which emphasizes
the importance and lack of review studies on this topic.
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3.4. Anaerobic Digestion Models

Apart from limited studies based on experiments, most of the analyses were based on
mathematical models, emphasizing the importance of developing mathematical models. A
summary of the models and frequencies found in the 30 selected studies is presented in Table 1.

Table 1. Models used in sensitivity analyses.

Model Reference

ADM1 [6,12,43–53]

BSM2 [39,40,54,55]

Economic models of AD plants [56,57]

BSM [58]

Experimental-based model [59]

Simplified AD bioprocess [42]

Structured model for high-solids AD [60]

Single-component feedstock digestion model
with substrate inhibition [45]

Simplified AD model (ADM1) [1]

Surface-based ADM1 [7]

Linearized ADM1 [61]

1-D reactor model with six parabolic partial
differential equations [41]

Anaerobic batch system [62]

Other mathematical AD models [63–65]
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3.5. Sensitivity Analysis Approaches

A comprehensive content-based analysis was conducted in order to answer the re-
search questions. Following is a summary of 30 selected research studies conducted over
the years. As discussed earlier, generally, there are two approaches to analyzing sensitivity:
local and global. Table 2 summarizes two main sensitivity analysis approaches and their
frequency in the selected publications. As expected, the local approaches dominate by
almost 60 percent. The local sensitivity analysis is a one-at-a-time technique that examines
the impact of one parameter on the output at a time while keeping the other parameters
constant. As the biggest limitation, this method does not consider parameter interaction.
Four studies used a specific method in a local sensitivity analysis. Local relative sensitivity
analysis introduced by Dochani and Vanrolleghem [66] is a method for calculating sensi-
tivity functions for dynamic simulations utilizing finite difference approximations. The
objective of parametric sensitivity analysis (SA) is to select the sensitive parameters that
have the greatest impact on the model output variables, thus improving the efficiency of
design optimization by adjusting a limited number of sensitive parameters rather than
all the adjustable parameters [67]. A dynamic sensitivity analysis is one in which the
sensitivity indexes are time-dependent [68,69].

Table 2. Sensitivity analysis approaches and their frequency.

Sensitivity Analysis Methods Freq. Ref.

Local Approaches 19

Local sensitivity analysis (LSA) 15 [7,12,41,42,44,47,51–53,56,57,59,61,63,64]
Local relative sensitivity analysis (LSRA) 1 [48]

Parametric sensitivity analysis (PSA) 2 [46,65]
Dynamic sensitivity analysis (DSA) 1 [50]

Global approach 12

Global sensitivity analysis (GSA) 12 [1,6,39,40,43,45,49,54,55,58,60,62]

Total 31

In contrast with local sensitivity analysis, when all input factors are varied simulta-
neously, and the sensitivity is evaluated over each input factor’s full range, a sensitivity
analysis is considered global [25]. As discussed in Section 1, there are different global
sensitivity analysis methods. Several approaches were identified from the selected studies,
which will be discussed further.

3.6. Local Approaches
3.6.1. Local Sensitivity Analysis

According to Table 2, fifteen studies used local sensitivity analysis, indicating the
highest level of interest. In a comprehensive LSA, Barahmand [12] explored the potential
effects of varying 48 stoichiometric and kinetic parameters in ADM1 on 35 output vari-
ables. As a result of the analysis, all correlations and sensitivity indexes between input
variables and output variables were provided. As a conclusion, in this study, pH, as one
of the critical output variables, shows the highest sensitivity to Tbase, kdec,ac, and San.in.
Panaro et al. [7] performed calibration, validation, and sensitivity analysis on a surface-
based ADM1 model for the AD of potatoes to investigate the most sensitive parameters. In
order to validate and calibrate the model at a laboratory scale, ad-hoc anaerobic digestion
experiments were applied. Moreover, LSA investigated the importance of selecting the
correct parameters for methane generation and volatile fatty acid concentrations in real
AD bioreactors. Depending on which partial derivative is greater in absolute terms, the
maximum or minimum value of those partial derivatives was used as a sensitivity index
for each parameter [7]. Disintegration kinetic constant Ksbk presented the highest sensitivity
among disintegration/hydrolysis-related parameters and Monod-specific uptake rates.
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In order to implement a model predictive control system for AD systems, Li et al. [61]
developed linearized ADM1 (LADM) as a model predictive control for anaerobic digestion
systems. Model input data from the lab-scale AD system was used for the sensitivity test. SA
resulted that kdis, khyd_ch, km_ac, KS_ac, and Yac were the most influential parameters. Based on
an anaerobic digestion model, Silva and De Bortoli [63] calculated the first-order sensitivity
coefficients for a system of stiff nonlinear differential equations. As part of this approach,
the auxiliary equations were used to calculate the sensitivity coefficients solved separately
from the model equations, using the same numerical approximations and time steps used
to calculate the model solution using the 4th-order Rosenbrock method [70]. Based on the
results, they could determine the importance of each reaction for each species involved
in the model. Fatolahi et al. [44] calibrated ADM1 incorporated into Matlab/Simulink to
simulate a mesophilic lab-scale reactor fed with the organic fraction of municipal solid
waste. A sensitivity index based on Shannon entropy was used to determine five parameters
as indicators: biogas flow, methane flow, pH, effluent COD, and ammonia concentration.
Shannon entropy [71] refers to a measure of the uncertainty regarding the occurrence
of a given event, given partial information about the system. According to the results,
all other indicators’ parameters could be covered by the parameters of the biogas flow
indicator with an entropy greater than 0.2 dB. In addition, genetic algorithms were used
to estimate 13 critical kinetic parameters, including the maximum specific uptake rate of
sugar, propionate, acetate, etc. Based on a techno-economic approach, Fuess and Ziait [57]
identified the key factors affecting the economic performance of sugarcane biorefineries’
AD of vinasses.

Macleod et al. [59] determined the models’ quantitative sensitivities using factorial
design. A factorial design allows the effects of a factor to be assessed at several levels of the
other factors, enabling valid conclusions to be drawn over a wide range of variables [72].
The retention time had the greatest impact on total solids removal and volatile solids
removal, and biogas was greatly influenced by loading rate and temperature. There
was a high degree of precision in the regression model fitted to the experimental data,
indicating that small reactors were as sensitive to changes in loading, retention time, and
temperature as full-scale digesters. Benbelkacem et al. [47] performed a sensitivity analysis
on ADM1 to investigate how biogas production was affected by KLa and KmX. Atallah
et al. [51] conducted an LSA on ADM1 based on the two sets of digester data to optimize
parameters based on five performance indicators: methane generation, pH, acetate, total
COD, and ammonia. It was concluded that at one end of the simulated range, some
parameters are highly sensitive. However, on the other end, they are less sensitive. In order
to simulate the operation of continuous digesters fed at different HRTs, Souza et al. [52]
evaluated the feasibility of using biochemical methane potential (BMP) tests data to calibrate
ADM1. Based on data from BMP tests, a sensitivity analysis was conducted to determine
the most sensitive ADM1 parameters to be calibrated. The “fminsearch” function from
MATLAB®(Mathworks, Natick, MA, USA) was used for calibrating the differences between
experimental and simulated values. As a result, asymmetric characteristics were observed
for kdis, khydch, khydpr, and khydli when the parameters were varied at low levels. At low
ranges, kmac also showed a high degree of sensitivity. In order to establish the basis for the
appropriate application of the ADM1, Jeong et al. [53] developed a model for the serum
bottle test that allows for a comparison of stoichiometric and kinetic parameters with
the components. The results showed that the product yield on the substrate had a high
sensitivity to model components, with methane concentration being the most sensitive.
Although Monod’s maximum specific uptake rate was strongly associated with biomass
concentration, individual values could not be determined.

Pinto et al. [56] identified the most sensitive parameters affecting the economic viability
of investments for generating electrical energy through anaerobic bio-digestion of vinasses.
Several strategically selected variables were subjected to a univariate sensitivity analysis.
In the sensitivity analysis, the NPV for the vinasse daily flow, the electricity sale price in
the RCE, the contracted amount in the FCE, and the power limit of the installed plant were
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examined. The profitability of the process was also evaluated using a sensitivity analysis.
Biogas reuse is governed primarily by investment costs for AD power plants and product
prices (electricity or biomethane). In order to design an optimal control strategy for the
bioprocess, Iancu and Petre [42] performed a system sensitivity analysis to determine how
command and parameter changes affect the evolution of the system states and outputs.

Although the most commonly used sensitivity analysis method for adapted ADM1
models is the local sensitivity method, it has some drawbacks [26,73,74]. LSA does not con-
sider interaction effects between parameters. Moreover, small variations and fluctuations
make the analysis challenging [6].

3.6.2. Parametric Sensitivity Analysis

Chen et al. [46] concocted a parametric sensitivity analysis on the ADM1 model using
AQUASIM 2.0 (Reichert, 1994) to simulate biogas production from Hydrilla verticillata and
select the most sensitive parameters for estimation using the absolute–relative sensitivity
function. The results indicated that biogas production is greatly influenced by the disin-
tegration constant (kdis), the protein hydrolysis constant (khyd_pr), the maximum specific
substrate uptake rate (km_aa, km_ac, km_h2), and the half-saturation constants (Ks_aa, Ks_ac).
The model equations were optimized by fitting the batch experiment data to the model
equations. They could predict the experimental results of daily biogas production and
composition using their ADM1 model after parameter estimation. According to them, batch
experiments alone are not sufficient to determine the actual biogas potential of HV under
actual process conditions; continuous anaerobic digestion reactions will also be necessary.
Furthermore, a future plan for their study was grouped into three steps: (1) developing
an anaerobic digester with continuous flow, such as an up-flow anaerobic sludge blanket
(UASB) or a continuously stirred tank reactor (CSTR); (2) analyzing the stability of the
anaerobic reactor by applying the modified ADM1 model to simulations of continuous AD
processes in CSTR or UASB reactors; and (3) experimentally verifying the predictive effects
of the modified ADM1 model by conducting continuous AD experiments in the CSTR or
UASB reactor.

In another study, Havlik et al. [65] applied a parametric sensitivity method to a
mathematical model of anaerobic digestion in order to determine how individual model
parameters affected selected output variables. According to the relative parametric sen-
sitivity value, yield coefficients and rate constants were the most influential parameters
in the process. As a result of the parametric sensitivity analysis of the anaerobic digestion
model, it was concluded that the stoichiometric coefficients and rate constants should be
evaluated with the highest priority during the construction of the model. In contrast, other
coefficients, such as saturation and inhibition constants, had relatively little influence, and
their order-of-magnitude estimates were sufficient for construction.

3.6.3. Local Relative Sensitivity Analysis

Barrera et al. [48] modeled the anaerobic digestion of cane-molasses vinasses. They
extended ADM1 with sulfate reduction for high-strength and sulfate-content wastewater.
Four parameters of the original ADM1 (km,pro, km,ac, km,h2, and Yh2) and all sulfate reduction
parameters (Spro, Sac, pH, Qgas, Sgas,ch4, Sgas,co2, Sso4, Sh2s, and Sgas,h2s) were calibrated based
on a local relative sensitivity analysis. It was found that the mentioned process variables
were accurately predicted during model validation, despite some deviations between the
model predictions and the experimental values. Thirty-six days of dynamic data were used
to calibrate the model. Using an iterative approach [75], the most sensitive parameters
were calibrated by fitting the model to the experimental results for the mentioned process
variables. Their model showed high-to-medium accuracy (10–30%), with a mean absolute
relative error ranging between 1 and 26%. As the sulfate loading rate increased, the model
was able to predict the failure of methanogenesis and sulfidogenesis.
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3.6.4. Dynamic Sensitivity Analysis

Lee et al. [50] conducted the anaerobic model for co-substrate degradation by a
temperature-phased anaerobic digestion process based on ADM1 in order to validate
the performance of ADM1. Moreover, dynamic sensitivity analyses of kinetic parameters
were carried out. In order to analyze the dynamic sensitivity of the continuous experimental
model, the average of absolute differences between simulation results with parameters
previously determined by Batstone et al. [8] and parameters with a relative change of the
target parameter was used as the sensitivity index. For sensitivity analysis, the kinetic
parameters were taken into account. However, stoichiometric parameters were negligible
due to their small variation. According to the sensitivity analysis, the maximum specific
uptake rate and half saturation value were highly sensitive to model components. For
propionate users and acetate utilizers, key parameters, including the maximum uptake rate
and half saturation constant, were estimated using iterative methods, which optimized the
parameters based on experimental results. For acetate utilizers, the maximum uptake rate
was estimated using iterative methods. Table 3 summarizes the sensitivity approaches and
methods in the selected studies.

Table 3. Sensitivity approaches and methods used in analyses.

Approach Via Ref. Year

LSA Sensitivity index [12] 2022
GSA Definitive screening design and multiple linear regression analysis [1] 2021
GSA Screening analysis with the Morris method and Sobol indices [6] 2021
LSA [7] 2021
LSA [61] 2021
LSA [56] 2020
LSA Calculating sensitivity coefficients, 4th order Rosenbrock method [63] 2020
SA Shannon entropy concept and genetic algorithms [44] 2020

GSA Integrating with functional principal component analysis (FPCA), rank-clustering
techniques, and Morris’ technique [45] 2019

GSA Sobol analysis [60] 2019
GSA Monte Carlo simumation [43] 2019
GSA Metamodel-based method [54] 2019
LSA [57] 2018
SA Sensitivity matrix [42] 2017

PSA
Using the absolute–relative sensitivity function and minimizing the absolute–relative

sensitivity function, the sum of the squares of the weighted deviations between
measurements and calculated model results

[46] 2016

SA Factorial design of experiments [59] 2015
LSA [47] 2015

LRSA Fisher information matrix [48] 2015
GSA Standardized regression coefficients (SRCs), and Morris’ screening (MS) [49] 2015
DSA [50] 2014
SA Multi-objective optimization [51] 2014

GSA linear regression of Monte Carlo simulations (SRC method), and Morris screening [55] 2014
GSA Sobol analysis [62] 2013
LSA Sensitivity index [52] 2013

GSA Monte Carlo simulations, standardized regression coefficients (SRC), and cluster
analysis [58] 2012

GSA linear regression of Monte Carlo simulations (SRC method), and Morris screening [39] 2012
GSA Monte Carlo simumation [40] 2008
LSA [53] 2005
LSA [41] 2003
SA [64] 1985

PSA [65] 1984
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3.7. Global Approaches

Twelve of the thirty selected studies utilized GSA as the sensitivity analysis method. Based
on a definitive screening design and multiple linear regression analysis, Boutoute et al. [1]
demonstrated the reliability of a GSA methodology. The method was applied to a simplified
model of anaerobic digestion. According to the sensitivity analysis, the slow hydrolysis constant
and the upper pH inhibition limit of the hydrolytic biomass were crucial for accurate prediction
of the biogas production rate, and biogas methane percentage varied slightly with kinetic
parameters. Furthermore, the mass transfer coefficient significantly impacted the pH due to
CO2 desorption. Trucchia and Frunzo [6] conducted a GSA and uncertainty quantification
(UQ) for a modified version of the ADM-based model. A large number of parameters were
analyzed to perform GSA, which led to a first preliminary screening analysis using the Morris
method. Based on the two defined quantities of interest (QoI), a surrogate model for ADM1 was
developed. For the quantitative GSA, the output results from the surrogate model have been
analyzed with Sobol indices. They resulted that for the whole set of QoI which was adopted,
the role of parameters particle radius (r0) and surface-based kinetic constant (Ksbk) were crucial.

A computational approach was demonstrated by Fortela et al. [45] in order to explore
the importance of biochemical mechanism parameters in AD models with variations in the
concentrations of feedstock. Their methodology incorporated GSA, functional principal
component analysis (FPCA), and rank-clustering techniques. With GSA-FPCA integration,
the time-varying nature of GSA (Morris’ indices) was removed, while rank-clustering
provided a statistically based method to group parameter sensitivities based on variations
in the feedstock. Based on the first principal component scores, the ranked Morris sensitivity
indices revealed the stoichiometric parameters most likely to influence kinetic responses,
as well as those that were the least sensitive. Pastor-Poquet et al. [60] evaluated the effect
of high NH3 levels on the high-solids anaerobic digestion of organic fractions of municipal
solid waste through calibration and cross-validation of a high-solids anaerobic digestion
model for homogenized reactors. Based on the experimental data available, the GSA
was designed to identify the most influential parameter that should be calibrated. The
identifiability of 35 biochemical parameters and 32 initial process conditions were assessed
using batch experiments at different solid-to-substrate ratios.

Parameter optimization was carried out using variance-based global sensitivity analy-
sis and approximate Bayesian computation. Xu [43] developed a method for calibrating
parameters that could be incorporated into ADM1 built for industrial-scale digesters. A
partial least squares (PLS) method was proposed, which consisted of four steps: a series
of Monte Carlo simulations; GSA as a multivariate regression technique called PLS Re-
gression, which was applied to the results in the previous step; parameter calibration; and
validation. According to the author, the parameter calibration method proposed in this
thesis significantly improved the model’s overall accuracy, and comparing the PLS method
with other methods, such as Group and Brute Force methods, showed promising results. A
systematic framework for the construction and validation of high-accuracy meta-models
for the efficient scenario-based GSA of complex wastewater treatment plant models was
presented by Al et al. [54]. Four engineering scenarios were investigated in order to assess
the efficiency and robustness of three meta-modeling approaches, namely polynomial chaos
expansion [76], Gaussian process regression [77], and artificial neural networks [78,79].
The proposed framework showed significant computational gains compared to the Monte
Carlo-based approaches. An investigation into the influence of influent fractionation, ki-
netics, stoichiometry, and mass transfer parameter uncertainties on biogas production in
wastewater treatment plants was conducted by Solon et al. [49]. Using BSM2, the amounts
of CH4, H2, and CO2 generated in a plant were quantified. In order to identify the set
of parameters that have the greatest influence on the biogas production uncertainty, a
comprehensive global sensitivity analysis was conducted based on standardized regression
coefficients (SRC) and Morris’ screening’s (MS’s) elementary effects. GSA was repeated in
the anaerobic digester for different solids retention times (SRTs) and temperature regimes.
It resulted that unless the anaerobic digester operates at low SRT and mesophilic conditions,
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both SRC and MS are good sensitivity measures. The influent fractionation was the most
influential parameter for predicting the emissions of CH4 and CO2 at high SRT.

Using one-dimensional secondary settling tanks (1-D SST) models with first-order
and second-order mathematical structures, Ramin et al. [55] examined the sensitivity
of wastewater treatment plant model performance. Based on the input uncertainties
associated with the biokinetic parameters in ASM1, the fractionation parameter in the
primary clarifier, and the settling parameters in the SST model, a GSA was performed
on BSM2. In particular, for the biogas production and treated water quality in the plant
model, the settling parameters were found to have the most influence on uncertainty as the
biokinetic parameters. A study was conducted by Ramin et al. [39] to examine the impact
of two operational strategies for reducing excess activated sludge waste on the simulation
performance. They conducted GSA on BSM2 using linear regression (SRC method) with
Monte Carlo simulations and Morris screening. According to the results obtained in this
study, 1-D SST model parameters greatly influenced biogas production through anaerobic
digestion and the quality of the plant’s effluent water. However, they showed a limited
effect on estimating the quality of nitrogen-rich returns from anaerobic digestion.

A GSA was conducted by Flores-Alsina et al. [58] on a phenomenological model
based on BSM2 that generates dynamic scenarios of an influent disturbance at wastewater
treatment plants. Combined Monte Carlo simulations and SRC were employed for the
GSA. In the next step, cluster analysis was applied in order to categorize the influence of
the model parameters into three groups: strong, medium, and weak. Flow rates during
dry weather and their variability were strongly influenced by both catchment size and
wastewater production per person. In wet weather conditions, the probability of a rain
event, the catchment size, and rainfall falling on permeable surfaces were the most influ-
ential parameters. Bendetti et al. [40] applied GSA using the Monte Carlo approach to
BSM2. Among the parameters, the design and operation parameters were found to be the
most sensitive, followed by the parameters of the wastewater treatment model, while the
adopted BSM2 evaluation criteria were relatively insensitive to variations in the parameters
of the sludge treatment model. Using a simplified AD model, Donoso-Bravo et al. [62]
introduced a three-step procedure for estimating kinetic and stoichiometric parameters
with a high degree of accuracy. A variance-based GSA and a multi-start strategy that
helped to identify the possible local minima were all part of this process. Table 4 lists
and provides information about anaerobic digestion models and the application of the
sensitivity analyses in the selected studies.

Table 4. Sensitivity approaches and methods used in analyses.

Model Sensitivity of/Aim Ref.

Simplified AD model (ADM1) biogas flowrate, the percentage of methane in the biogas, and pH to
kinetic and mass transfer parameters [1]

ADM1 model outputs to the key model parameter (37 parameters) [6]

ADM1 model outputs to key model parameter [7]

Linearized ADM1 methane production on the model input data from the lab-scale AD system [61]

Economic study investments projects’ economic to contracted plant energy generation [56]

A mathematical AD model with 7
reactions and 9 species

each reaction in the mechanism of chemical species to the chemical
reaction mechanism [63]

ADM1 to identify the most sensitive parameters (6 parameters) for the ADM1
model calibration [44]
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Table 4. Cont.

Model Sensitivity of/Aim Ref.

ADM1 and single-component feedstock
digestion model with substrate inhibition model parameters on the feedstock variation (22 parameters) [45]

Structured model for high-solids AD the practical identifiability of 35 structural/biochemical parameters
and 32 initial conditions [60]

ADM1 model outputs on key model parameters [43]

BSM2 model outputs on key model parameters [54]

Economic study different factors including the sensitivity of profitability of the process
(IRR) to model’s economic parameters [57]

Simplified AD bioprocess state variables of the bioprocess to the dilution rate, and the influent
substrate concentration [42]

ADM1 methane concentration to the key model parameter (16 parameters) [46]

Experiment-based model digester performance indicators to the operating conditions [59]

ADM1 model outputs to the mass transfer coefficient (kLa) and the maximum
substrate consumption rate (kmX) [47]

ADM1 to calculate sensitivity functions for the dynamic simulations [48]

ADM1 studying the influent waste composition and model parameters to
estimate how the predicted biogas production [49]

ADM1 model outputs to the kinetic parameters [50]

ADM1
methane, pH, acetate, ammonia, total chemical oxygen demand (COD),
and equally weighted combination (EWC) of the five indicators to the

key model parameter (15 parameters)
[51]

BSM2

wastewater treatment plant (WWTP) model performance to the
selection of one-dimensional secondary settling tanks (1-D SST) models
to biokinetic parameters in the activated sludge model No. 1 (ASM1), a

fractionation parameter in the primary clarifier, and the settling
parameters in the SST model

[55]

Anaerobic batch system biogas production and pH to key model parameter [62]

ADM1 to define the most sensitive ADM1 parameters to be calibrated using
data from BMP tests. [52]

BSM influent variations to generate dynamic wastewater treatment plant
(WWTP) influent disturbance scenarios [58]

BSM2
to provide a parameter sensitivity ranking and predict key plant

performance criteria, including methane production and effluent water
quality index

[39]

BSM2 model outputs to key model parameter (68 parameters) [40]

ADM1 model outputs to 17 kinetic and stoichiometric parameters [53]

1-D reactor model with 6 parabolic
partial differential equations

model variables (W-waste, B-biomass, VFA, CH4) to key model
parameters (eleven parameter values within the ±50% range) [41]

A mathematical AD model methane production to the key model parameter (seven parameters) [64]

A mathematical AD model the sensitivity of methane production and degree of volatile solids
degradation to the key model parameter (19 parameters) [65]

4. Conclusions

Sensitivity analysis is an integral part of anaerobic digestion modeling. The literature
lacks reviews on this topic, and the present study, in order to fill the gap, aims to conduct a
scoping review to investigate the application of sensitivity analysis in anaerobic digestion
modeling. The results indicate that in addition to calibration and estimation, it can be
used to investigate the influence of input parameters on the model’s output. There is
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considerable interest in both local and global approaches to sensitivity analysis in the
literature. Mathematical models, in particular, ADM1-based models were commonly used
to perform sensitivity analyses. The sensitivity of methane production, pH, COD, and
biogas flow rate were studied extensively in the selected studies. Many advantages can
be derived from sensitivity analysis. It is far more reliable to make predictions based on
a detailed analysis of all the variables. As a result, decision-makers and designers can
identify exactly where improvements can be made, and are able to make informed decisions
about the process. Moreover, local sensitivity analysis can serve as the basis for uncertainty
analysis, particularly possibilistic approaches such as fuzzy set theory.
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